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The collective electrophysiological dynamics of the brain as a result of sleep-related

biological drives in Drosophila are investigated in this paper. Based on the Huber-Braun

thermoreceptor model, the conductance-based neurons model is extended to a coupled

neural network to analyze the local field potential (LFP). The LFP is calculated by using

two different metrics: the mean value and the distance-dependent LFP. The distribution

of neurons around the electrodes is assumed to have a circular or grid distribution on a

two-dimensional plane. Regardless of which method is used, qualitatively similar results

are obtained that are roughly consistent with the experimental data. During wake, the

LFP has an irregular or a regular spike. However, the LFP becomes regular bursting

during sleep. To further analyze the results, wavelet analysis and raster plots are used

to examine how the LFP frequencies changed. The synchronization of neurons under

different network structures is also studied. The results demonstrate that there are

obvious oscillations at approximately 8 Hz during sleep that are absent during wake.

Different time series of the LFP can be obtained under different network structures and

the density of the network will also affect the magnitude of the potential. As the number

of coupled neurons increases, the neural network becomes easier to synchronize, but

the sleep and wake time described by the LFP spectrogram do not change. Moreover,

the parameters that affect the durations of sleep and wake are analyzed.

Keywords: coupled neural network, LFP, network structure, synchronization, duration of sleep and wake

1. INTRODUCTION

Recently, the collective dynamics of the brain has become a very hot topic because of its wide
applications in sleeping, associative memories, image processing, learning, disease, and so on. In
particular, synchronization is one of the most important collective dynamics of neural networks
and plays an important role in brain activity. Many research results on synchronization have been
extensively reported (Mirollo and Strogatz, 1990; Maex and Schutter, 2003; Hammond et al., 2007;
Buzsaki and Watson, 2012; Noah et al., 2018; Muhammet et al., 2019). In Muhammet et al. (2019),
the authors researched the reason for the spontaneous termination phenomenon of neurons, and
three different coupling methods, i.e., gap junctions, and the excitatory or inhibitory synapses
of neurons, were considered. Noah et al. (2018) investigated the synchronization dynamics and
spiking patterns of thalamic neurons and gave the membrane voltage of thalamic neurons to show
the process of the brain from sleep to wake. Therefore, it is a critical step to understand how neural
systems work in the brain. In particular, some phenomena are related to sleep.
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We spend one third of our life asleep, however, how the
brain changes during sleep and wake is still not clear. Thus,
research on brain sleep is important and valuable (Hendricks
et al., 2000; Shaw et al., 2000; Tononi and Cirelli, 2003; Bushey
et al., 2011; Donlea et al., 2011; Xie et al., 2013; Dissel et al.,
2015; Watson and Buzsaki, 2015; Liang et al., 2017; Melvyn
et al., 2017). In Melvyn et al. (2017), observed the activity of the
brain of Drosophila and applied several experimental methods,
such as heating, the use of gaboxadol, genetic activation, and
so on, to induce sleep. The brain activity of Drosophila during
induced and spontaneous sleep was compared by performing
local field potential recordings. The alternation of slow wave
sleep epochs and rapid-eye movement sleep is important for
sleep. These dynamic sleep processes were deemed to be unique
to birds, initially because rapid-eye movement sleep is helpful
for animals that have the ability to close or move their eyes.
However, some analogous sleep function memory consolidation
exists in Drosophila (Shaw et al., 2000; Donlea et al., 2011).
Dissel et al. (2015) studied some behaviors of Drosophila mutants
after sleep and discovered that sleep induction can improve
learning. However, the abovementioned references on fly sleep
are all experimental studies. In Liang et al. (2017) studied the
Drosophila circadian neural circuit using whole-brain imaging in
vivo. This is an experimentally-validated model of interactions
among circadian neurons to translate the phase of the molecular
clock into neuronal activity. As a matter of fact, mathematical
modeling has become an important tool for understanding the
dynamics of neural networks (Smolen et al., 2002; Fathallah-
Shaykh et al., 2009; Noah et al., 2018; Jin et al., 2019). Noah
et al. constructed a minimal model of four coupled conductance-
based neurons to study spiking patterns and synchronization
dynamics of thalamic neurons along the sleep-wake cycle in
Noah et al. (2018). Jin et al. (2019) introduced electromagnetic
induction and its noise in the model and investigated their
effects on the regulation of sleep wake cycle. In Smolen et al.
(2002), the authors reduced a previously detailed model to a
minimal representation of the transcriptional regulation essential
for circadian rhythmicity in Drosophila. Unfortunately, very few
research results on the study of the collective dynamics of fly
brain during sleep by constructing a neural network model have
been published. Thus, constructing a neural network model for
fly sleep would be beneficial.

The local field potential (LFP) refers to the low-frequency
part (usually less than 500 Hz) of the extracellular voltage signal
recorded in the brain and can record the activity of many
neurons near the electrodes. Thus, LFP is helpful and useful for
researching the dynamics of local networks, such as cognitive
processes including memory, attention and perception (Colgin
et al., 2009), sensory processing (Montemurro et al., 2009), etc.
A large number of papers on fly sleep also made use of LFP
from sleeping flies to analyze their brain activity (van Swinderen
et al., 2004; van Alphen et al., 2013; Melvyn et al., 2017; Troup
et al., 2018). The authors found that LFP activity is reduced
during spontaneous sleep in flies but is increased when sleep
is induced. Moreover, 7–10 Hz oscillations can be observed via
spectrograms of the LFP in both spontaneous and induced sleep
(Melvyn et al., 2017). Similarly, the sleep in flies is related to

decreased LFP activity (van Swinderen et al., 2004; van Alphen
et al., 2013). Hence, the LFP is a powerful tool for analyzing
the collective dynamics of brain neurons. On the other hand,
the network structure is also important for researching the LFP.
Different network structures may lead to different results in
many situations.

In this study, the collective electrophysiological dynamics of
coupled neurons in the fly brain via sleep-related biological
drives was considered. First, the conductance-based neurons
were extended to a coupled neural network to simulate sleep
neuron activity in the fly brain. Then, two different metrics
(mean value and dependence of the single-neuron distance) were
used to estimate the LFP. Based on the two different metrics,
qualitatively similar results were obtained that were roughly
consistent with the experimental results. Third, the effects of
different network structures on the LFPwere examined, and these
structures were divided into three cases: (1) a grid connection,
(2) a random increase in the number of long-range connections
of each neuron by 5, 20, and 50 based on the grid connection,
and (3) the Watts-Strogatz (WS) small world networks. These
results indicate that different LFP time series can be obtained
under different network structures and the density of the network
will also affect the magnitude of the potential, and the suitable
network structure should develop significantly low average
distance while maintaining its large clustering coefficient. As
the number of coupled neurons increases, the network becomes
synchronized, but no impact on the duration of sleep and wake
is described by the LFP spectrogram. Finally, the influence of
parameters related to the coupling strength and time constant
on the duration of sleep and wake was considered. The results
show that the coupling strength ggj has no effect on the duration
of sleep and wake, however, the duration of sleep and wake are
positively correlated with τ1, τ2.

2. MODELS AND METHODS

A single neuron of our networks is modeled based on the Huber-
Braun thermoreceptor model (Braun et al., 2003) as follows:

C
dVi

dt
= −Ili − α(INai + IKi )− β(IpNai + IK,Cai )− Igji − Iexti

where i = 1, 2, · · · , n represents the number of neurons; Vi is
the membrane potential of the i-th neuron; C is the membrane
capacitance; Ili is the leakage current of the i-th neuron:

Ili = gli (Vi − El) (1)

where gli is the conductance and El is the equilibrium potential.
INai and IKi are the fast depolarizing and repolarizing currents
for the spike generation of the i-th neuron, respectively; IpNai
and IK,Cai are slow currents for subthreshold oscillations; And
the role of the parameters α,β is to alter the magnitude of the
spike currents or subthreshold currents separately. The voltage-
dependent currents are given in the following equations:

Iji = gjiaji (Vi − Vj) (2)

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2021 | Volume 15 | Article 616193

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Qiu et al. Collective Dynamics of Neural Networks

TABLE 1 | The parameters values for the model.

Parameter Value Unit Parameter Value Unit

C

Vl

VNa = Vsyn

Vk

V0Na = V0K

V0pNa

sNa = sK

spNa

η

k

τK

τpNa

τK,Ca

α = β

gdclock = gper

1

–60

50

–90

–25

–40

0.25

0.09

0.012

0.17

0.000875

0.00425

0.00875

4

0.05

µF/cm2

mV

mV

mV

mV

mV

mV−1

mV−1

cm2/µA

· · ·

s

s

s

· · ·

mS/cm2

gl

gNa

gK

gpNa

gK,Ca

ggj

τ1

τ2

vsp

vsc

kdp

kdc

K1

K2

Esyn

0.4

1.3

1.75

0.22

0.35

0.0001

10

10

0.5

0.25

0.5

0.5

0.3

0.1

50

mS/cm2

mS/cm2

mS/cm2

mS/cm2

mS/cm2

mS/cm2

h

h

nMh−1

nMh−1

h−1

h−1

nM

nM

mV

The parameter values are very similar as proposed in an earlier preliminary study (Smolen

et al., 2002; Svetllana et al., 2011).

where j = Na, K, pNa,K,Ca.

aNai =
1

1+ exp[−sNa(Vi − V0Na)]
(3)

τK
daKi

dt
=

1

1+ exp[−sK(Vi − V0K)]
− aKi (4)

τpNa
dapNai
dt

=
1

1+ exp[−spNa(Vi − V0pNa)]
− apNai (5)

τK,Ca
daK,Cai

dt
= −ηIpNai − kaK,Cai (6)

where τj is the time delay; sj is the slope of the activation curve;
V0j is the half-activation potential; η is the coupling constant; and
k is the relaxation factor. Igji is the total synaptic current received
by neurons c1, c2, · · · , ci. The model’s parameter values are listed
in Table 1 and the parameter values are very similar as proposed
in an earlier preliminary study (Svetllana et al., 2011). For a gap
junction, the synaptic current is

Igji =
∑

k∈neighbors(i)

ggj(Vk − Vi) (7)

where neighbors (i) is the set of neighbors of neuron i; ggj is
the coupling strength; And Iexti is the external input of the i-
th neuron from sleep-related biological drives used to regulate
the sleep-wake cycles. The sleep-related biological drives include
interconnected positive and negative feedback loops (Smolen
et al., 2002; Fathallah-Shaykh et al., 2009; Liang et al., 2017).
In this paper, a simplified model that represents the dynamics
of the positive and negative feedback loops of the Drosophila
oscillator was used (Smolen et al., 2002). A negative feedback loop

is included, in which PER protein represses per transcription by
binding the dCLOCK transcription factor. A positive feedback
loop is also included, in which dCLOCK indirectly enhances its
own formation.

Iexti = Idclockfreei = Idclocki − Iperi (8)

Idclocki = gdclocki[dCLOCK](Esyn − Vi) (9)

Iperi = gperi[PER](Esyn − Vi) (10)

The differential equations for [dCLOCK] and [PER] are based on
an earlier published model of the Drosophila circadian oscillator
(Smolen et al., 2002).

d[dCLOCK]

dt
= vscRsc − kdc[dCLOCK] (11)

Rsc =<
K2

K2 + [dCLOCKfree]
> τ2 (12)

d[PER]

dt
= vspRsp − kdp[PER] (13)

Rsp =<
[dCLOCKfree]

K1 + [dCLOCKfree]
> τ1 (14)

where [dCLOCKfree] = [dCLOCK] − [PER] or zero, whichever
is greater. τ1 denotes the time delay between per transcription
and the synthesis of new PER protein. τ2 means the time delay
between dclock transcription and the synthesis of new dCLOCK
protein. The models (11)–(14) have been described in detail
before (Lema et al., 2000; Smolen et al., 2001, 2002) so here we
only provide a brief summary of the unified model and report
model parameters in Table 1 for completeness.

In this paper, we established a coupled neuron network for
studying collective electrophysiological dynamics of Drosophila
during sleep and wake. In the network model, many neurons
(C1,C2, · · · ,Ci) are coupled via gap junctions, and all receive
an excitatory input from sleep-related drives, as shown in
Figure 1. The sleep-related drives have one positive and
negative feedback loop. dCLOCK activates per transcription
and thus PER synthesis. PER represses per transcription (and
thus PER synthesis) by binding dCLOCK. PER also activates
dCLOCK synthesis by binding dCLOCK and relieving dCLOCK’s
repression of dclock transcription. During wake, neurons
(C1,C2, · · · ,Ci) receives circadian current input Idclockfree and

dCLOCK activates per to synthesize PER and the current
Idclockfree = 0 during sleep.

To observe the activity of the Drosophila brain during sleep
and wake, we make observations after 24 h to ensure the validity
of the results.

To better understand the brain activity during wake and sleep,
it is important to research the LFP of the Drosophila brain.
In this paper, the LFP is estimated by two methods. One is to
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FIGURE 1 | Schematic of the coupled neuron by sleep-related biological drives in Drosophila.

approximate the LFP with the average value of the membrane
potential of the whole network:

8 =

∑n
i=1 Vi

n

and the other is to consider the distance-dependent LFP (Lindn
et al., 2011). All neurons are distributed around the electrode
on a two-dimensional plane. We calculate the distance ri of
neurons from the electrode by the distance between two points
and then add up the LFPs of each neuron to obtain the LFP of the
entire network.

8 =

n
∑

i=1

Vif (ri) (15)

8 =

n
∑

i=1

Vif (ri) f (ri) =

{

1 ri < θ

θγ r
−γ
i ri ≥ θ

(16)

where ri is the distance from the i-th neuron to the electrode; f (ri)
is the single-neuron shape function; γ ≥ 0 is a decay exponent;
And θ is the cutoff distance to avoid a singularity.

3. RESULTS

To understand the dynamics of the brain by the sleep-related
biological drives in Drosophila, we first research the dynamics
of neurons with a fully coupled network in section 3.1. Then,
we explore the influence of the network structures on the LFP
in section 3.2. Finally, we investigate the effects of different
parameters on Drosophila sleep in section 3.3.

3.1. Dynamics of Neurons in Drosophila
Brain
We first construct a fully coupled network with size N = 100.
How the spiking patterns of coupled neurons are changed by
means of sleep-related biological drives is investigated first. The
results are shown in Figure 2. The overall oscillation activity of
the entire network during sleep and wake is reflected by the
LFP signal in Figure 2A (calculated by the mean value). During
wake, due to PER protein by binding the dCLOCK transcription
factor represses per transcription, the protein enhances its own
formation and the postsynaptic current increases. The LFP
exhibits irregular and regular spike firing and has a regular spike
toward the end of the wake episode (Figure 2A, orange box).
During sleep, PER protein starts to accumulate by dCLOCK
activates per transcription and the current Idclockfree = 0. This
leads to a transition to regular bursting in coupled neurons
(Figure 2A, blue box). In Figure 2C, the circadian oscillator has
a positive and a negative feedback loops (Smolen et al., 2002).
During sleep, dCLOCK (Figure 2C, black) starts to decrease
because it need to activate per transcription to synthesize PER
and thus PER protein is getting more and more (Figure 2C,
blue). During wake, the PER protein binds dCLOCK and thereby
represses per transcription, and activates dCLOCK synthesis.
dCLOCK begins to become more and more and decreased
concentration of PER. According to Figure 2C, the input current
is zero during sleep and increases during wake in Figure 2B.

Except for the above results, the LFP can be estimated
with our neural network mode by using the dependence of
the single-neuron distance. The network size N = 100, and
the mean connectivity z = 99. Twodifferent distributions
are considered: a circle distribution (Figure 3A) and a grid
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FIGURE 2 | Dynamics of coupled neurons in Drosophila brain over 24 h cycles. (A) The LFP is calculated by the mean value. The network size N = 100 and the mean

connectivity z = 99. The coupling strength ggj = 0.0001 mS/cm2. (B) Idclockfree represent postsynaptic current from the dCLOCK. (C) Simulation of circadian

oscillations. Blue(PER), black(dCLOCK), green(dCLOCKfree).

distribution (Figure 3B). For the grid distribution, 100 neurons
(C1,C2, · · · ,C100) are divided into a 10 × 10 square matrix in
the coordinate system, and the distance between each neuron
and its neighboring neurons is 100 µm. These results are similar
to Figure 2A. The difference is shown for the grid distribution
in Figure 3b1. The overall LFP decreased. But, the result will
change if the position of the detection point is changed. For
example, if the position of the detection point changed from
(150, 500) to (200, 500) (Figure 3b2), the overall LFP becomes
almost the same as in Figure 2A. Thus, Based on methods of
mean value and the distance-dependent LFP, qualitatively similar
results were obtained.

3.2. The Network Structure Effect for LFP
The LFP is one of the experimental measures of neural activity
and has wide application. Recently, many research results of
experiments investigating Drosophila sleep were reported by
using the LFP. To understand the network structure effect, we
examine the LFP of a coupled neural network under different
network structures in this subsection.

To test the importance of the network structure, we observe
the LFP signal and spectrogram of the LFP for a fly recording over
24 h. We discuss that the neurons in the network are partially
coupled. Specifically, the partial coupling is divided into three
cases. In the first case, each neuron is coupled to the upper,
lower, left, and right neuron (grid connection). Based on the first
case, each neuron is randomly increased by 5, 20, and 50 long-
range connections. The last case involves the WS small world

networks and the mean connectivity z = 4, 24, 54, respectively
by random rewiring of three percent of links of a regular ring
(p = 0.03). (Note that in each case, except for the different
network structures, the other parameters are the same. The initial
value is random. The LFP signal diagram and spectrogram are
simulated by using the mean value.) The first structure that we
consider is the grid connection. The network size N = 100, and
the mean connectivity z= 4. The results are shown in Figure 4.

Different from the fully coupled network in Figure 2A, i.e., the
LFP amplitude decreases during sleep compared to that during
wake. Actually, many researchers have reported that sleep in
Drosophila is associated with, on average, decreased LFP activity
compared to wake (Nitz et al., 2002; van Swinderen et al., 2004;
van Alphen et al., 2013). The corresponding spectrogram of the
LFP is shown in Figure 4B. We find obvious 7–10 Hz dominated
oscillations during sleep that were absent during wake. For
further confirmation, we apply the Fourier transform to the LFP
(Figures 4C,D). An oscillation at approximately 8 Hz appears in
sleeping flies (blue box) but was absent in awake flies (orange
box). These results are roughly consistent with the experimental
data shown in Figures 1C,E in the research article by Melvyn
et al. (2017).

We also consider the case where each neuron is randomly
increased by 5, 20, and 50 long-range connections. The obtained
results are shown in Figure 5. Obviously, the LFP signal changes
under different network structures. During sleep and wake, the
spike pattern of LFP remains almost unchanged see blue and
orange box. During sleep, the oscillation are all regular bursting
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FIGURE 3 | The LFP of coupled neurons in Drosophila brain over 24 h cycles. The LFP is calculated by using the dependence of the single-neuron distance. The

network size N = 100 and the mean connectivity z = 99. The decay exponent γ = 2 and cutoff distance θ = 10 µm. The coupling strength ggj = 0.0001 mS/cm2.

(A) The distribution of neurons is a circle. The radius is 100µm and the position of the electrode at the center of the circle. (B) The distribution of neurons is a grid

distribution. (B1) The coordinate of the first neuron is C1(100, 100) in the grid distribution and the position of the detection point at (150, 500), (B2) the position of the

detection point is changed to (200, 500).

and it is just that the LFP becomes more ambiguous when the
number of coupled neuron is not enough. The oscillation are
all irregular or chaos spikes during wake. Moreover, the full
LFP signals are different under different network structures. In
Figure 5B, compared with Figure 5A, the LFP decreases first
and then increases during sleep, and all decreases during wake.
In Figure 5C, during sleep, the LFP becomes similar to LFP
of neurons are fully coupled in Figure 2A, however, the LFP
still decreases during wake. Obviously, these network structures
(Figures 5B,C) that increases the degree of nodes in the network
on average are unreasonable. The corresponding spectrogram is
not much different from that of previous results (not shown). The
last structure that we consider is the WS small world network
with the mean connectivity z = 4, 24, 54 by random rewiring of
three percent of links of a regular ring (p = 0.03) in Figure 6. The

results are similar to those of the evolution process of Figure 4.
It is worth noting that the network structure (Figure 6C) also
is unreasonable due to the decreased LFP activity during wake.
We try to change the connection probability p and find the LFP
will change, for example, the LFP of WS small world network
with the mean connectivity z = 24 when p = 0.5 is similar to
Figure 6C (not show). Moreover, as the connection probability p
is lowered, and the LFP ofWS small world network with themean
connectivity z = 54 will not change. Thus, we concluded that
the suitable network structure should develop significantly low
average distance while maintaining its large clustering coefficient.

We perform a similar analysis of the case where the LFP
is calculated by using the dependence of the single-neuron
distance in Figure 7. (Note that we consider that all neurons are
distributed around the electrode on a two-dimensional plane.
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FIGURE 4 | The LFP signal and spectrogram of the coupled neuron in grid network (z = 4). (A) The full and detailed graphs of LFP are given, sleep (blue box), wake

(orange box). (B) Spectrogram of 2–40 Hz LFP power are shown during sleep and wake. (C,D) Power spectra for sleep (blue box) and wake (orange box).

FIGURE 5 | The full and detailed LFP signal of each neuron in the network randomly adds 5, 20, and 50 long-range connections. (A) Each neuron is randomly

increased by 5 long-range connections (z = 9). (B) Each neuron is randomly increased by 20 long-range connections (z = 24). (C) Each neuron is randomly increased

by 50 long-range connections (z = 54).

There exists two distributions: the grid distribution and the
circle distribution. We calculate the distance of neurons from
the electrode as the distance between two points, and for the

grid distribution in Figures 7A–D, we assume that the position
of the electrode is (150, 500) and that of the first neuron C1

is (100, 100). For the circle distribution in Figures 7E–G, the
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FIGURE 6 | The LFP of the coupled neuron in WS small world network by random rewiring of three percent of links of a regular ring (p = 0.03). (A) The LFP signal and

spectrogram of WS small world network with the mean connectivity z = 4. Sleep (blue box), wake (orange box). (B) The LFP signal of WS small world network with

the mean connectivity z = 24. (C) z = 54.

radius is 100 and the position of the electrode at the center of the
circle.) All results on the LFP under the seven different network
structures are shown in Figure 7. Particularly, the LFP and the
corresponding spectrogram of the grid distribution at z = 4 are
given in Figure 7A. Compared with the mean value method, the
difference is that the LFP power is decreased. The other results
are similar to those in Figures 4–6. These results indicate that
regardless of which method is used, qualitatively similar results
are obtained. Furthermore, the time series of the LFP is sensitive
to the underlying structure, but the underlying structure has
almost no influence on the spiking patterns and spectrum.

To further study the dynamics of neurons, we investigated
the raster plots for different network structures. These raster
plots for different network structures are shown in Figures 8,
9 (a-c: regular networks and add long-range connections. d-
f: WS small world networks). The results in Figure 8 show
that the synchronization of neurons during wake when the
coupling strength is 0.0001 and 0.001, respectively. During wake,
as the number of coupled neurons in a network increases, the
synchronization of coupled neurons is obvious (Figures 8A–C)
except for the WS small world networks (Figures 8D–F, top).
And especially, we noticed that as an increasing number of
neurons are coupled with each other, the coupling strength
has a great influence on the synchronization of neurons. The
network (z = 24, Figure 8B) and the WS small world network
(z = 54, Figure 8F) are almost completely synchronized by
comparing the upper figures When ggj = 0.001. Therefore,
we concluded that the synchronization is not only related
to the network structures but also to the coupling strength.
During sleep, the corresponding results are shown in Figure 9.
The obtained results for the synchronization of neurons in
regular network (Figures 9A–C) are similar to those results
during wake. Interestingly, the synchronization transition is
accompanied with a hysteresis loop for the WS small world
networks (Figures 9D–F), and this type of synchronization

is different from the regular networks (Figures 9A–C). This
interesting result may indicate the earlier published that the brain
networks at the microscopic level are similar to WS small world
networks (Shih et al., 2015; Scheffer and Meinertzhagen, 2019).

3.3. Effects of Parameters on the Collective
Dynamics
The sleep time of flies can be changed by, e.g., heating, and
drugs, in an experimental environment. Therefore, we need to
investigate the sleep and wake time of flies by adjusting the
parameters. Based on the discussion in section 3.2, we conclude
that different network structures and methods for estimating the
LFP have an impact on LFP signals but hardly affect the spiking
patterns. Therefore, for the rest of this paper, we report the
results of calculating the LFP based only on the mean value, and
for the network structure, each neuron randomly adds 5 long-
range connections (z = 9). (Note that to validate the results,
the initial value is random. We changed only the parameters of
our research; the other parameters remain unchanged. For each
parameter of our research, we repeat the experiment ten times to
calculate the LFP amplitudes in each frequency band and sleep
time. The final results are obtained after taking the average.)

We consider the network coupling strength ggj and time
constant τ1, τ2. τ1 denotes the time delay between per
transcription and the synthesis of new PER protein and τ2
denotes the time delay between dclock transcription and the
synthesis of new dCLOCK protein (Smolen et al., 2002). These
results are given in Figures 10–12. The amplitudes of the LFP
changes under different coupling strengths during sleep (not
shown). We find clear amplitudes that are very large in the 7–
10 Hz frequency bands during sleep and in other frequency
bands that are not obvious. These observations show that the
oscillations are mainly concentrated in the 7–10 Hz range. As the
coupling strength increases, the amplitudes of the LFP remain
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FIGURE 7 | The LFP by using dependence of the single-neuron distance under seven different network structure. (A) The signal and spectrogram of LFP are shown

at (z = 4). (B–D) Each neuron is randomly increased by 5, 20, and 50 long-range connections (z = 9, 24, 54). (E–G) WS small world networks with the mean

connectivity z = 4, 24, 54 by random rewiring of three percent of links of a regular ring (p = 0.03).

FIGURE 8 | The raster plots for different network structures and coupling strength during wake. (A–C) The grid connection and each neuron is randomly increased by

20 and 50 long-range connections (z = 4, 24, 54). (D–F) The WS small world networks with mean connectivity z = 4, 24, 54 by random rewiring of three percent of

links of a regular ring (p = 0.03).

almost unchanged. The sleep time under different coupling
strengths is kept at approximately 10 s. Therefore, the sleep
and wake time of flies cannot be changed by increasing the
coupling strength.

Figure 10 shows the amplitudes of the LFP (Figures 10A,B)
and sleep time change (Figure 10C) under different values of the
time constant τ1 during sleep. The amplitudes are very high in
the 7–10 Hz (red) frequency bands and are not obvious in other
frequency bands. Obviously, as the time constant τ1 increases,
overall, the amplitudes of the LFP (red) are increased. We also
observe that the sleep time increases creases with increasing time
constant τ1. Moreover, the amplitude of the LFP (Figure 10B)
does not vary monotonically with increasing τ1 but reveals a

fluctuating behavior. Based on the different values of the time
constant τ2, the changes in the amplitudes of the LFP and
sleep time are displayed in Figure 11. Similar to the results in
Figure 10, overall, the amplitudes of the LFP (Figure 11B) are
increased. Meanwhile, τ2 also has a positive effect on the sleep
time (Figure 11C).

For further verification, a diagram of the LFP oscillation and
the corresponding spectrograms at τ1 = 1h, 10h (Figures 12A,B)
and τ2 = 1h, 10h (Figures 12C,D) are given. The time of LFP
bursting is the same as the duration of the frequency band around
8 HZ. The time of bursting is significantly longer in Figure 12B

and the frequency band around 8 HZ is significantly longer in
Figure 12D.
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FIGURE 9 | The raster plots for different network structures and coupling strength during sleep. (A–C) The grid connection and each neuron is randomly increased by

20 and 50 long-range connections (z = 4, 24, 54). (D–F) The WS small world networks with mean connectivity z = 4, 24, 54 by random rewiring of three percent of

links of a regular ring (p = 0.03).

FIGURE 10 | The amplitudes of LFP and sleep time change under different values of the time constant τ1 during sleep. (A) The amplitude of the LFP in the three

different frequency bands were calculated respectively, 3–5 Hz (black), 7–10 Hz (red), 12–15 Hz (blue). (B) The amplitude of the LFP in 7–10 Hz (red). (C) The changes

of the sleep time.

FIGURE 11 | The amplitudes of LFP and sleep time change under different values of the time constant τ2 during sleep. (A) The amplitude of the LFP in the three

different frequency bands were calculated respectively, 3–5 Hz (black), 7–10 Hz (red), 12–15 Hz (blue). (B) The amplitude of the LFP in 7–10 Hz (red). (C) The changes

of the sleep time.
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FIGURE 12 | The LFP oscillation and corresponding spectrograms at τ1, τ2. (A) τ1 = 1 h. (B) τ1 = 10 h. (C) τ2 = 1 h. (D) τ2 = 10 h.

4. CONCLUSION

In this work, we studied the collective dynamics of the brain
in Drosophila by sleep-related biological drives. Four coupled
conductance-based neurons were extended to coupled neural
networks to simulate sleep neurons activity in the fly brain.
The neurons are coupled by electrical gap junctions and
adjusted via sleep-related biological drives. The sleep-related
biological drives include interconnected positive and negative
feedback loops. A negative feedback loop is included, in
which PER protein represses per transcription by binding
the dCLOCK transcription factor. A positive feedback loop
is also included, in which dCLOCK indirectly enhances its
own formation.

To understand the difference between sleep and wake in
flies, we used two methods to estimate the LFP by means of
the given neural network. Regardless of the method, the results
show that the LFP signal becomes regular bursting, and a 7–10
Hz oscillation appears on the spectrogram of the LFP during
sleep. The LFP displays the chaos state (irregular and regular
spikes that occasionally burst) distributed in different frequency
bands during wake. Therefore, based on the two different
methods, qualitatively similar results, roughly consistent with the
experimental results, obtained.

To further study this phenomenon, the effect of the network
structure is considered. First, we use the mean value method
to estimate the LFP. Partial coupling is considered in the
network, involving (1) grid connections, (2) a random increase
in the number of long-range connections for each neuron
by 5, 20, and 50, and (3) WS small world networks. The
acquired results for the time series of an LFP are different
under different network structures, as shown in Figures 4–6.
Actually, many researchers have reported that sleep inDrosophila
is associated with, on average, decreased LFP activity compared
to wake. Therefore, we concluded that the suitable network
structure should develop significantly low average distance
while maintaining its large clustering coefficient and the
duration of sleep and wake does not change as the network
structures change. Then, the synchronization of neurons is
considered by raster plots. The raster plots show that the
neurons become easier to synchronize as the number of coupled
neurons increases and that also synchronization becomes more
obvious as the coupling strength increases. However, there
exists an interesting result that the synchronization transition

is accompanied with a hysteresis loop for the WS small world
networks (see Figures 9D–F), and this type of synchronization
is different from the regular networks (Figures 9A–C). This
interesting result may indicate the earlier published that the
brain networks at the microscopic level are similar to WS
small world networks. Moreover, the dependence of the single-
neuron distance is used to calculate the LFP. Under different
network structures, all results are similar to the results of the
mean value in addition to the amplitude of the LFP. Thus,
these results indicate that the suitable network structure should
develop significantly low average distance while maintaining its
large clustering coefficient, and as the number of coupled neurons
increases, the network becomes synchronized, but no impact on
the duration of sleep and wake is described by the spectrogram of
the LFP.

Many papers on induced sleep in flies have been reported.
The sleep time of flies can be changed by heating, drug
injection, etc., in an experiment. Similarly, we can check
whether several parameters in a network affect the sleep time.
We first consider the coupling strength ggj, the results of
which show that the amplitude of the LFP remains almost
unchanged when the coupling strength ggj is increased and
has no effect on the sleep time. Then, the time constants
τ1, τ2 are examined. The results are different from those of the
coupling strength ggj. The time constants have a large impact
on the sleep time because τ1 denotes per transcription and the
synthesis of new PER protein and τ2 denotes the time delay
between dclock transcription and the synthesis of new dCLOCK
protein. The sleep time is positively correlated with the time
constant τ1, τ2.

This work preliminarily simulated the areas related to sleep
in the Drosophila brain and can be extended to the study of the
underlying sleep mechanism. In this paper, we considered only
sleep neurons coupled by gap junctions. In future research, these
neurons may include combinations of excitatory and inhibitory
synapses and be controlled by other neurons. The sleep-related
drives can also be extended. In practice, there are many neurons
in the brain that implement complex functions. Therefore, sleep-
related drives can included as other related drivers to make
the network more complete and more practical. Moreover, the
impact of environmental interference cannot be ignored. It is
more practical and valuable to add environmental interference
to the model and observe the collective dynamics of the brain
in Drosophila.
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