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Oxidative stress significantly impacts multiple cellular pathways that can lead to the 
initiation and progression of varied disorders throughout the body. It therefore becomes 
imperative to elucidate the components and function of novel therapeutic strategies 
against oxidative stress to further clinical diagnosis and care. In particular, both the 
growth factor and cytokine erythropoietin (EPO), and members of the mammalian 
forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for 
new treatment regimens, since these agents and the cellular pathways they oversee 
cover a range of critical functions that directly influence progenitor cell development, cell 
survival and degeneration, metabolism, immune function, and cancer cell invasion. 
Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as 
biomarkers of disease onset and progression, since their cellular pathways are closely 
linked and overlap with several unique signal transduction pathways. Yet, EPO and 
FoxOs may sometimes have unexpected and undesirable effects that can raise caution 
for these agents and warrant further investigations. Here we present the exciting as well 
as the complex role that EPO and FoxOs possess to uncover the benefits as well as the 
risks of these agents for cell biology and clinical care in processes that range from stem 
cell development to uncontrolled cellular proliferation. 

KEYWORDS: aging, Alzheimer’s disease, angiogenesis, apoptosis, cancer, cardiac, diabetes, 
erythropoietin, forkhead transcription factors, immune system, ischemia, neurodegeneration, 
oxidative stress, sirtuins, stem cells, vascular disease, Wnt, wingless 

 

INTRODUCTION 

Oxidative Stress and Apoptotic Injury 

The generation of reactive oxygen species (ROS) that consist of oxygen free radicals and other chemical 

entities can result in the development of oxidative stress. Oxygen free radicals can be generated in 
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elevated quantities during the reduction of oxygen and lead to cell injury. ROS can involve superoxide 

free radicals, hydrogen peroxide, singlet oxygen, nitric oxide (NO), and peroxynitrite[1,2,3]. Most species 

are produced at low levels during normal physiological conditions and are scavenged by endogenous 

antioxidant systems that include superoxide dismutase (SOD), glutathione peroxidase, catalase, and small 

molecule substances such as vitamins C and E. Other closely linked pathways to oxidative stress may be 

tempered by different vitamins, such as vitamin D3[4] and the amide form of niacin or vitamin B3, 

nicotinamide[5,6,7,8,9,10,11].   

Initial investigations into oxidative stress may have begun with studies that examined the rate of 

oxygen consumption in organisms. Work by Pearl proposed that increased exposure to oxygen through a 

high metabolic rate could lead to a shortened life span[12]. Additional work by other investigators 

demonstrated that increased metabolic rates could be detrimental to animals in an elevated oxygen 

environment[13]. Current studies show that oxygen free radicals and mitochondrial DNA mutations have 

become associated with cellular injury, aging mechanisms, and accumulated toxicity for an organism[14].  

Oxidative stress leads to the destruction of multiple cell types through apoptotic pathways[15,16,17] 

and also through autophagy[18]. However, it has also recently been shown that genes involved in the 

apoptotic process are replicated early during processes that involve cell replication and transcription, 

suggesting a much broader role for these genes than originally anticipated[19]. Apoptotic-induced 

oxidative stress in conjunction with processes of mitochondrial dysfunction[20,21,22] can contribute to a 

variety of disease states, such as diabetes, ischemia, cognitive loss, Alzheimer’s disease[1,23,24], 

Parkinson’s disease[1,25], Huntington’s disease[1,26], and trauma [1,23,27,28,29]. Oxidative stress can 

lead to apoptosis in neurons, endothelial cells (ECs), cardiomyocytes, and smooth muscle cells that 

involve separate as well as overlapping pathways[27,30,31,32,33,34]. 

Apoptosis is a dynamic process that consists of both the early exposure of membrane 

phosphatidylserine (PS) residues and the late destruction of genomic DNA[35,36]. Externalization of 

membrane PS residues is an early event during cell apoptosis[37,38] and can become a signal for the 

phagocytosis of cells that is controlled by caspase 1 and caspase 3[17,39,40]. The loss of membrane 

phospholipid asymmetry leads to the exposure of membrane PS residues on the cell surface and assists 

microglia to target cells for phagocytosis[11,32,41,42,43]. This process occurs with the expression of the 

phosphatidylserine receptor (PSR) on microglia during oxidative stress[44,45]. It has been shown that 

blockade of PSR function in microglia prevents the activation of microglia[42,46]. Externalization of 

membrane PS residues occurs in neurons, vascular cells, and inflammatory microglia during reduced 

oxygen exposure[17,47,48], β-amyloid (Aβ) exposure[49,50], NO exposure[51,52,53,54,55], and during 

the administration of agents that induce the production of ROS, such as 6-hydroxydopamine[56]. 

Membrane PS externalization on platelets also has been associated with clot formation in the vascular 

system[57].  

The cleavage of genomic DNA into fragments[47,58,59] usually occurs after membrane PS 

exposure[60] and is considered to be a later event during apoptotic injury[32,59,61,62]. Several enzymes 

responsible for DNA degradation include the acidic cation-independent endonuclease (DNase II), 

cyclophilins, and the 97-kDa magnesium-dependent endonuclease[1,63]. Three separate endonuclease 

activities have also been found in neurons that include a constitutive acidic cation-independent 

endonuclease, a constitutive calcium/magnesium-dependent endonuclease, and an inducible magnesium-

dependent endonuclease[64,65].  

During oxidative stress, mitochondrial membrane transition pore permeability is also 

increased[10,32,66,67], a significant loss of mitochondrial NAD
+
 stores occurs, and further generation of 

superoxide radicals leads to cell injury[11,68]. Mitochondria are a significant source of superoxide 

radicals that are associated with oxidative stress[1,69]. Blockade of the electron transfer chain at the 

flavin mononucleotide group of complex I or at the ubiquinone site of complex III results in the active 

generation of free radicals, which can impair mitochondrial electron transport and enhance free radical 

production[44,63]. Furthermore, mutations in the mitochondrial genome have been associated with the 

potential development of a host of disorders, such as hypertension, hypercholesterolemia, and 

hypomagnesemia[70,71]. ROS may also lead to cellular acidosis and subsequent mitochondrial 
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failure[23]. Disorders, such as hypoxia[72], diabetes[73,74], and excessive free radical 

production[65,75,76], can result in the disturbance of intracellular pH.  

Biomarkers in Health and Disease 

For biological systems, a “biomarker” can consist of any entity that occurs in the body and that can be 

measured to predict the diagnosis, onset, or progression of a disease process. A biomarker does not have 

to be confined to a single entity. As a result, the definition of a biomarker is intentionally broad and 

application of biomarkers can be used for the determination of specific genes, proteins, products of 

cellular and biological processes, as well as the response of cells or tissues to therapeutic strategies[77].  

Interestingly, some biomarkers can offer the additional benefit to function as a surrogate marker to be 

able to be used to predict clinical outcome in some cases. For example, biomarkers such as estrogen 

levels may predict the onset of postmenopausal breast cancer and a poor clinical outcome. In other 

scenarios, biomarkers may suggest the body’s attempt to initiate reparative processes. Novel pathways 

that involve the cytokine and growth factor erythropoietin (EPO) may indicate that the increased presence 

of this agent during periods of oxidative stress may lead to cellular mechanisms to protect against 

ROS[78,79,80]. Furthermore, the activation of transcription factors during tumor invasion that control 

cell cycle regulation, such as of the forkhead family of the “O” class, may suggest the initiation of cell 

pathways that are attempting to restrict neoplastic growth[81,82,83]. However, reliance on any single 

biomarker may be imperfect and lead to initially unpredicted outcomes, such as uncontrolled hypertension 

or cancer with EPO[78,79,84], or the onset of detrimental apoptotic programs with forkhead transcription 

factors[36]. A number of other pathways that occur in combination with a particular biomarker during 

oxidative stress may also influence outcome. In the case of breast cancer, studies suggest that the release 

of androgens, cytokines, or even changes in body mass and exercise can influence outcome as well as 

alter the predictability of a specific biomarker[85,86]. For these reasons, it becomes imperative to 

elucidate the components and function of the novel pathways for EPO and forkhead transcription factors 

during oxidative stress in order to understand their role not only as biomarkers, but also as therapeutic 

strategies to offer new insight for clinical care for a number of disease entities. 

THE GROWTH FACTOR AND CYTOKINE ERYTHROPOIETIN (EPO) 

Historical Perspective for EPO 

EPO was initially known as “hemopoietine”, which could stimulate new red blood cell development. In 

1906, Carnot and Deflandre demonstrated that plasma removed from rabbits following a bleeding 

stimulus that was later injected into control, untreated rabbits would lead to the development of immature 

red blood cells[78,79,87,88]. A number of other investigators followed these studies and found similar 

results demonstrating that plasma from bled animals would yield a significant reticulocytosis[89,90,91]. 

More elegant experiments eventually demonstrated that a rise in hemoglobin levels with reticulocytosis 

occurred in parabiotic rats when only one partner was exposed to hypoxia, illustrating that depressed 

oxygen tensions could stimulate EPO production[92]. Later, human EPO protein was purified, which led 

the way for the cloning of the EPO gene and the development of recombinant EPO for clinical use[93,94]. 

Structure and Chemical Properties for EPO 

The EPO gene is located on chromosome 7, exists as a single copy in a 5.4-kb region of the genomic 

DNA, and encodes a polypeptide chain containing 193 amino acids. During the production and secretion 

of EPO, a 166-amino-acid peptide is initially generated following the cleavage of a 27-amino-acid 
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hydrophobic secretory leader at the amino-terminal. In addition, a carboxy-terminal arginine in position 

166 is removed both in the mature human and recombinant human EPO (rhEPO), resulting in a 

circulatory mature protein of 165 amino acids[80,95]. Once a mature protein, EPO becomes a 30.4-kDa 

glycoprotein with approximately half of its molecular weight derived from carbohydrates that can vary 

among species[80]. EPO contains four glycosylated chains, including three N-linked and one O-linked 

acidic oligosaccharide side chains. The glycosylated chains are important for the biological activity of 

EPO and can protect EPO from oxygen radical degradation. EPO is stabilized by the carbohydrate 

chains[96]. The oligosaccharides in EPO may also protect the protein from oxygen radical activity[97]. 

The N-glycosylated chains are believed to contribute to the thermal stability of EPO[98]. In addition, the 

N- and O-linked chains may be necessary for the production and secretion of the mature EPO[99]. The 

presence of the carbohydrates is also important in the control of the metabolism of EPO, since EPO 

molecules with high sialic acid content can be easily cleared by the body through specific binding in the 

liver[100]. In addition, the biological activity of EPO also relies on two disulfide bonds formed between 

cysteines at positions 7 and 160, and at positions 29 and 33[95].  

Expression and Regulation of EPO and the EPO Receptor 

The principal organs of EPO production and secretion are the kidney, liver, brain, and uterus. EPO 

production and secretion occurs foremost in the kidney[101]. The kidney peritubular interstitial cells are 

responsible for the production and secretion of EPO[88]. With the use of cDNA probes derived from the 

EPO gene, peritubular ECs, tubular epithelial cells, and nephron segments in the kidney have also been 

demonstrated to be vital cells for the production and secretion of EPO[102,103]. During periods of acute 

renal failure, EPO may provide assistance for the protection of the kidneys and nephrons[104,105,106]. 

Other sites of EPO production and secretion occur in the liver and the uterus[107]. Hepatocytes, 

hepatoma cells, and Kupffer cells of the liver can produce EPO and, in turn, EPO may protect these cells 

from injury and assist with regeneration[108,109]. In regards to the uterine production of EPO, it is 

believed that the occurrence of neonatal anemia that can take place in the early weeks after birth may 

partly result from the loss of EPO production and secretion by placenta[110]. In addition, increased levels 

of EPO in the fetal plasma and amniotic fluid during gestation may function as a biomarker of intrauertine 

hypoxia[111]. 

Although EPO is approved by the U.S. Food and Drug Administration for the treatment of anemia, 

recent studies demonstrated that EPO is not only required for erythropoiesis, but also functions in other 

organs and tissues, such as the brain, heart, and vascular system[46,112,113,114,115,116]. EPO 

production is believed to occur throughout the body[3,80,117] and can be detected in the breath of healthy 

individuals[118]. In addition, it has been suggested that EPO may provide developmental cognitive 

support. In experimental animal models, EPO may reduce apoptotic pathways during periods of 

hyperoxia in the developing brain[119,120]. Furthermore, clinical disorders may have periods of 

hyperoxia followed by cerebral hypoperfusion and hypoxia that can lead to cerebral injury with associated 

oxidative stress[121]. In these circumstances, EPO may also be protective, since it can promote neurite 

outgrowth[122] and may also regulate hemoglobin levels that have recently been associated with 

cognitive decline[123]. In other work, elevated EPO concentrations during infant maturation were 

correlated with increased Mental Development Index scores[124] and EPO may prevent the toxic effects 

of agents used to control cognitive function, such as haloperidol[125]. 

However, new knowledge that EPO and its receptor are present in the nervous and vascular systems has 

generated great enthusiasm for the potential clinical applications of EPO, such as in Alzheimer’s disease, 

Parkinson’s disease[126], cardiac insufficiency[127,128,129,130], cardiac transplantation[131,132], and 

during coronary artery bypass surgery to prevent renal injury[133]. In the nervous system, primary sites of 

EPO production and secretion are in the hippocampus, internal capsule, cortex, midbrain, cerebral ECs, and 

astrocytes[80,95,134,135]. Further work has revealed several other organs as secretory tissues for EPO that 

include peripheral ECs[136], myoblasts[137], insulin-producing cells[138], and cardiac tissue[80,101]. 
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EPO controls erythroid cell proliferation, differentiation, and survival through its binding to a target 

cell surface receptor, the EPO receptor (EPOR)[139] (Fig. 1). The EPOR is also expressed in numerous 

nonerythroid blood lines that include neurons, microglia, astrocytes, and in cerebral 

ECs[80,95,101,135,136], as well as on myelin sheaths of radicular nerves in human peripheral 

nerves[140], suggesting both a developmental and potential protective role for EPO in the central and 

peripheral nervous systems. During gestation, EPO production is increased, but later becomes suppressed 

following birth to be regulated by the tissue oxygen supply[141]. The EPOR is also expressed in primary 

cerebral ECs[67,80] as well as in human umbilical veins, bovine adrenal capillaries, and rat brain 

capillaries[136,142].   

 

FIGURE 1. EPO and forkhead transcription factors (FoxOs) control cell survival and inflammatory cell activation. EPO through 

the EPOR and FoxOs can modulate cell survival and control inflammatory cell activation through pathways that involve hypoxia-

inducible factor 1 (HIF-1) activation (occurs through several stimuli, such as hypoxia, anemia, insulin release, and cytokine 

exposure), gene transcription, protein kinase B (Akt), mitochondrial membrane potential (∆Ψm), cytochrome c (Cyto-c), and 

caspases. These pathways can then regulate the onset of early apoptotic injury with PS exposure, late injury with nuclear DNA 

degradation, and inflammatory cell activation. 

Despite the fact that EPO is a critical modulator of erythropoiesis, the presence of a diminished 

oxygen tension is required, rather than a low concentration of red blood cells[3,78,79,143]. In most 

tissues, including the brain, hypoxia-dependent expression of EPO and the EPOR are controlled by 
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hypoxia-inducible factor 1 (HIF-1). HIF-1 is essential for the production and secretion of EPO in response 

to hypoxia. At the transcriptional level, the hypoxia-dependent gene transcription of EPO and the EPOR 

directly results from the activation of the HIF-1 pathway under hypoxic conditions. Gene transcription of 

EPO is mediated by the transcription enhancer located in the 3’-flanking region of the EPO gene that 

specifically binds to HIF-1[80,95]. Yet, hypoxia is not the only condition that can alter the expression of 

EPO and the EPOR. The production and secretion of EPO in female reproductive organs is estrogen 

dependent. During the cyclic development of the uterine endometrium, 17β-estradiol can lead to a rapid 

and transient increase in EPO mRNA in the uterus[144], oviducts, and ovaries[145]. Hypoxic-induced 

EPO mRNA expression in uterine tissue occurs only in the presence of 17β-estradiol. EPO mRNA 

expression by hypoxia in the uterus is less pronounced than the EPO expression that occurs in the kidney 

and the brain[146]. Interestingly, a variety of cellular disturbances may lead to either increased or 

decreased EPO expression through the control of HIF, such as hypoglycemia, cadmium exposure, raised 

intracellular calcium, or intense neuronal depolarizations generated by mitochondrial ROS[135,141,147]. 

Anemic stress, insulin release, and several cytokines, including insulin-like growth factor, tumor necrosis 

factor-α (TNF-α)[148], interleukin-1β (IL-1β), and interleukin-6 (IL-6)[149], can also lead to increased 

expression of EPO and the EPOR[80,95], and may provide a feedback loop that is regulated by EPO, 

such as TNF-α[150] (Fig. 1). 

FORKHEAD TRANSCRIPTION FACTORS OF THE “O” CLASS 

Background and Structure for FoxOs 

Mammalian forkhead transcription factors of the O class (FoxOs) function to either block or activate 

target gene expression[83]. These proteins must bind to DNA through the forkhead domain that relies on 

14 protein-DNA contacts. The forkhead domain in Fox proteins consists of three α-helices, three β-

sheets, and two loops that are referred to as the wings[151], but not all winged helix domains are 

considered to be Fox proteins[152]. The forkhead domain is described as a “winged helix” as a result of a 

butterfly-like appearance on X-ray crystallography[151] or nuclear magnetic resonance imaging[153]. 

High sequence homology is present in the α-helices and β-sheets, with variations described in either 

absent β-sheets and loops or additional α-helices. Although both the first and second loops make contact 

with DNA, it is the second loop that can influence the stability of DNA binding. In addition, post-

translational modification of FoxO proteins, such as phosphorylation or acetylation that block FoxO 

activity, alter the binding of the C-terminal basic region to DNA to prevent transcriptional activity[154]. 

Yet, other mechanisms may influence DNA binding of forkhead proteins, such as variations in the N-

terminal region of the DNA recognition helix, changes in electrostatic distribution, and the ability of 

forkhead proteins to be shuttled to the cell nucleus[81,155].  

In regards to the forkhead family, at least 100 forkhead genes and 19 human subgroups that range 

from FOXA to FOXS are now known to exist since the initial discovery of the fly Drosophila 

melanogaster gene forkhead[156]. The original nomenclature for these proteins, such as forkhead in 

rhabdomyosarcoma (FKHR), the Drosophila gene fork head (fkh), and Forkhead RElated ACtivator 

(FREAC)-1 and -2, has been replaced. The current nomenclature for human Fox proteins places all letters 

in uppercase, otherwise only the initial letter is listed as uppercase for the mouse, and for all other 

chordates, the initial and subclass letters are in uppercase[157]. FoxOs were first reported in fusion genes 

in human soft-tissue tumors and leukemias. FOXO1, termed forkhead in rhabdomyosarcoma (FKHR), 

and FOXO3a, also known as FKHRL1 (forkhead in rhabdomyosarcoma like protein 1), and their genes 

were identified through chromosomal translocations in alveolar rhabdomyosarcoma tumors[158]. The 

acute leukemia fusion gene located in chromosome X (AFX), also known as the FOXO4 gene, was 

demonstrated as a gene that fused to MLL transcription factor as a result of the t(X; 11) chromosomal 
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translocation in acute lymphoblastic leukemia[159]. A fusion between FOXO2 and MLL also occurs in 

some cases of acute myeloid leukemia that may be identical to FOXO3a[160].  

Expression and Regulation of FoxO Proteins 

FoxO proteins (FoxO1, FoxO3, FoxO4, and FoxO6) are present throughout the body and are expressed in 

tissues of the reproductive system of males and females, skeletal muscle, the cardiovascular system, lung, 

liver, pancreas, spleen, thymus, and the nervous system[81,82,83,143,161,162,163,164,165,166,167] (Fig. 

2). Interestingly, FoxO proteins are not equally expressed in all tissues, suggesting that individual FoxO 

proteins may have specificity in regards to cellular function[166]. For example, FoxO6 expression is 

found in several regions of the brain that play a significant role in cognitive function and emotion, such as 

the hippocampus, the amygdala, and the nucleus accumbens[164]. In contrast, FoxO1 may be more suited 

for the control of motor function and memory formation, since the expression of this protein is primarily 

in the striatum and subregions of the hippocampus[164]. In addition, FoxO3 is more diffusely represented 

in the hippocampus, cortex, and cerebellum, suggesting a complementary role for this FoxO protein to 

control cognitive and motor function. FoxO expression can be variable in other tissues[83]. Although 

studies in mice have shown that the mRNA distribution of Foxo1, Foxo3a, and Foxo4 is similar in the 

embryo and adult[162], Foxo1 expression was highest in adipose tissue, Foxo3a expression was greatest 

in the liver, and Foxo4 expression was strongest in muscle[162]. Subsequent work in mice has described 

Foxo1 expression in all tissues with high levels in the ovaries[168]. Foxo3a also is expressed in all tissues 

and Foxo4 expression was considered to be more tissue specific in skeletal muscle[168].  

Post-translational control of FoxO proteins employs pathways associated with ubiquitylation and 

acetylation[169,170]. IκB kinase (IKK) can phosphorylate and block the activity of FoxO proteins, such 

as FoxO3a[81,158]. This leads to the proteolysis of FoxO3a via the Ub-dependent proteasome 

pathway[81,158,171,172,173]. FoxO proteins are also acetylated by histone acetyltransferases that 

include p300, the CREB-binding protein (CBP), and the CBP-associated factor. In addition, FoxO 

proteins are deacetylated by histone deacetylases. These include Sirt1, a NAD
+
-dependent deacetylase, 

and the mammalian ortholog of the silent information regulator 2 (Sir2) protein[81], that can control 

multiple processes such as cell injury, life span, and metabolism[174,175]. Acetylation of FoxO proteins 

provides another avenue for the control of these proteins. Once acetylated such as by CBP, FoxO proteins 

may translocate to the cell nucleus, but have diminished activity, since acetylation of lysine residues on 

FoxO proteins has been shown to limit the ability of FoxO proteins to bind to DNA[176]. Acetylation 

also can increase phosphorylation of FoxO proteins by the serine-threonine kinase protein kinase B 

(Akt)[176]. 

In addition to acetylation and ubiquitylation, post-translational modulation of FoxO proteins also 

involves pathways associated with phosphorylation[81,158,171,172,173]. Protein phosphorylation is a 

critical pathway in the scheme for protein regulation[177]. Akt is a primary mediator of phosphorylation 

of FoxO1, FoxO3a, and FoxO4 that can block activity of these proteins[158,178] (Fig. 1). Akt 

phosphorylation of FoxO proteins not only retains these transcription factors in the cytoplasm, but also 

leads to ubiquitination and degradation through the 26S proteasome[170,171]. The serum- and 

glucocorticoid-inducible protein kinase (Sgk), a member of a family of kinases termed AGC (protein 

kinase A/protein kinase G/protein kinase C) kinases that includes Akt, can also phosphorylate and retain 

FoxO3a in the cytoplasm[179]. Knowledge that Sgk and Akt can phosphorylate FoxO3a at different sites 

suggests other avenues to prevent more effectively apoptotic cell injury that may be mediated by FoxO3a 

activity. Yet, phosphorylation of FoxO proteins does not always lead to negative regulation. The protein 

kinase mammalian sterile 20-like kinase-1 can also phosphorylate FoxO proteins directly and lead to their 

activation[180]. The ability of sterile 20-like kinase-1 to activate FoxO proteins may be linked to c-Jun N-

terminal kinase (JNK), since sterile 20-like kinase-1 can increase JNK activation[181]. 
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FIGURE 2. FoxO proteins govern a broad range of functions in the body. As transcription factors, FoxO 

proteins modulate multiple systems in the body. These include the initiation and development of stem cells, 

proliferation of the cardiovascular system, control of fertility and reproduction, modulation of metabolic 

pathways during homeostasis and disorders such as diabetes, immune system activation and surveillance, 

and the ultimate control of cell survival through early and late programs of apoptosis that can limit cancer 

progression. 

Interestingly, activation of Akt in pathways that involve EPO or FoxOs is usually cytoprotective, but 

may mediate other processes. For example, Akt either alone or through EPO can lead to cell 

proliferation[182], blood-brain barrier permeability[183], cell protection during inflammation[184,185], 

neurodegeneration[186], hyperglycemia[187,188], hypoxia[112], Aβ toxicity[49,189,190,191,192], 

excitotoxicity[193], cardiomyopathy[194], cellular aging[195], and oxidative stress[30,32,42]. In 

addition, Akt can prevent cellular apoptosis through the phosphorylation of FoxO proteins[3]. Post-

translational phosphorylation of FoxO proteins, such as during EPO administration, will maintain FoxO 

transcription factors in the cytoplasm by association with 14-3-3 proteins and prevent the transcription of 

proapoptotic target genes[80,113]. An exception to these observations involving the subcellular 

trafficking of FoxO proteins involves FoxO6. This FoxO protein usually resides in the nucleus of cells 

and is phosphorylated by Akt in the nucleus. FoxO6 does not contain a conserved C-terminal Akt motif, 

which limits nuclear shuttling of this protein, but FoxO6 transcriptional activity can be blocked by growth 

factors independent of shuttling to the cytosol through a FoxO6 N-terminal Akt site[196]. 

Modulation of Akt activity also controls apoptotic pathways of caspases that may offer an alternative 

mechanism to regulate FoxO proteins[82]. Caspases are a family of cysteine proteases that are 

synthesized as inactive zymogens that are proteolytically cleaved into subunits at the onset of 

apoptosis[44,197,198]. The caspases 1 and 3 have been linked to the apoptotic pathways of genomic 

DNA cleavage, cellular membrane PS exposure, and activation of inflammatory cells[46,60,67] (Fig. 1). 

Caspase pathways may be tied to the forkhead transcription factor FoxO3a, since increased activity of 
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FoxO3a can result in cytochrome c release and caspase-induced apoptotic death[113,199,200,201]. 

Pathways that can inhibit caspase 3 appear to offer a unique regulatory mechanism. For example, studies 

suggest that cell death pathways that rely on FoxO3a also appear to involve caspase 3 activation[50]. 

FoxO3a activity promotes caspase-induced apoptotic death[113,199,200,201], but inhibition of caspase 3 

can also maintain the phosphorylated “inactive” state of FoxO3a to prevent cell injury[113,199,200]. 

Other work has shown that caspase 3 activity and cleavage is promoted during transfection of a triple 

mutant FoxO3a expression in which three phosphorylation sites have been altered to prevent inactivation 

of FoxO3a[202]. Furthermore, FoxO3a may control early activation and subsequent apoptotic injury in 

microglia during Aβ exposure through caspase 3[50]. Since Aβ exposure can facilitate the cellular 

trafficking of FoxO3a from the cytoplasm to the cell nucleus to lead potentially to “proapoptotic” 

programs by this transcription factor[50], one program in particular that may be vital for apoptotic injury 

appears to involve the activation of caspase 3. Aβ exposure leads to a rapid and significant increase in 

caspase 3 activity within 6 h following Aβ administration, but this induction of caspase 3 activity by Aβ 

requires FoxO3a, since loss of FoxO3a through gene silencing prevents the induction of caspase 3 activity 

by Aβ. 

EPO, FOXOS, AND CELLULAR METABOLISM 

Both EPO and FoxOs play a significant role during cellular metabolism and metabolic disorders such as 

diabetes mellitus (DM). DM is a significant health concern for both younger and older 

populations[203,204]. Almost 18–20 million individuals in the U.S. and more than 165 million 

individuals worldwide suffer from DM. By the year 2030, it is predicted that more than 360 million 

individuals will be afflicted with DM and its debilitating conditions. Type 2 DM represents at least 80% 

of all diabetics, and is dramatically increasing in incidence as a result of changes in human behavior and 

increased body mass index[203,205]. Type 1 insulin-dependent DM is present in 5–10% of all diabetics, 

but is increasing in adolescent minority groups[203,205]. Furthermore, the incidence of undiagnosed 

diabetes and impaired glucose tolerance in the population raises additional concerns.  

Patients with DM can develop immune dysfunction[206], cognitive disorders[206,207], hepatic 

dysfunction[208], renal disease[209], hematological disease[210], neurodegenerative disorders[2,143,205], 

and cardiovascular disease[205,211]. Interestingly, the development of insulin resistance and the 

complications of DM can be the result of cellular oxidative stress[203,205]. Hyperglycemia can lead to 

increased production of ROS in ECs, liver cells, and pancreatic β-cells[203,204,205]. Recent clinical 

correlates support these experimental studies to show that elevated levels of ceruloplasmin are suggestive of 

increased ROS[203,204,205]. Furthermore, acute glucose swings in addition to chronic hyperglycemia can 

trigger oxidative stress mechanisms, illustrating the importance for therapeutic interventions during acute 

and sustained hyperglycemic episodes[203,205].  

In regards to EPO during DM, plasma EPO is often low in diabetic patients with anemia[212] or 

without anemia[213]. The inability of these individuals to produce EPO in response to a declining 

hemoglobin level suggests an impaired EPO response in diabetic patients[214]. However, increased EPO 

secretion during diabetic pregnancies may represent the body’s attempt at endogenous protection against 

the complications of DM[215]. Similar to the potential protective role of insulin[216], EPO 

administration has been shown both in diabetics as well as nondiabetics with severe, resistant, congestive 

heart failure to decrease fatigue, increase left ventricular ejection fraction, and significantly decrease the 

number of hospitalization days[217]. In vitro studies with vascular cells exposed to elevated glucose have 

also demonstrated that EPO can significantly improve EC survival in a 1.0-ng/ml range[218]. EPO 

administration in patients can also significantly increase plasma levels of EPO well above this range of 

1.0 ng/ml that has been associated with potential EPO cellular protection in patients with cardiac or renal 

disease[219,220], suggesting that the effects of EPO observed during in vitro studies may parallel the 

cellular processes altered by EPO in patients with DM[124]. Furthermore, EPO during elevated glucose 
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and similar to other models of oxidative stress can block neuronal degeneration[221] and apoptotic DNA 

degradation in ECs in cardiac and vascular cell models[67,112,113,115,222]. Protection by EPO also is 

related to the maintenance of mitochondrial membrane potential (∆Ψm). Loss of ∆Ψm through the opening 

of the mitochondrial permeability transition pore represents a significant determinant for cell injury and 

the subsequent induction of apoptosis[28,69]. EPO has the capacity to prevent the depolarization of the 

mitochondrial membrane that also affects the release of cytochrome c[51,112,223]. 

Additional work suggests that proteins derived from the Drosophila Wingless (Wg) and the mouse 

Int-1 genes may be associated with the complications of DM[36]. The Wnt proteins are secreted cysteine-

rich glycosylated proteins that can control cell proliferation[224,225], differentiation, survival, and 

tumorigenesis[45,226]. These genes are present in several cellular populations[227], such as neurons, 

cardiomyocytes, ECs, cancer cells, and preadipocytes[2]. Abnormalities in the Wnt pathway, such as with 

transcription factor 7-like 2 gene, may impart increased risk for type 2 DM in some 

populations[228,229,230] as well as have increased association with obesity[231]. Yet, intact Wnt family 

members may offer glucose tolerance and increased insulin sensitivity[232] as well as protect glomerular 

mesangial cells from elevated glucose-induced apoptosis[233]. These observations suggest a potential 

protective cellular mechanism for EPO through Wnt signaling. Cell culture studies demonstrate that the 

Wnt1 protein is necessary and sufficient to impart cellular protection during elevated glucose 

exposure[218]. EPO maintains the expression of Wnt1 during elevated glucose exposure and prevents 

loss of Wnt1 expression that would occur in the absence of EPO during elevated glucose. In addition, 

blockade of Wnt1 with a Wnt1 antibody can neutralize the protective capacity of EPO, illustrating that 

Wnt1 is a critical component in the cytoprotection of EPO during elevated glucose exposure[218].  

Metabolic signaling with FoxOs is conserved among multiple species including Caenorhabditis 

elegans, D. melanogaster, and mammals (Fig. 2). FoxO proteins are homologous to the transcription 

factor DAuer Formation-16 (DAF-16) in the worm C. elegans that can determine metabolic insulin 

signaling and lead to life span extension[234,235], suggesting a significant role for FoxO proteins in 

relation to mammalian cell function[81,158]. FoxO proteins can stimulate the insulin-like growth factor 

binding protein-1 (IGFBP1) promoter by binding to the insulin-responsive sequence (IRS)[236]. Both 

insulin and insulin-like growth factor-1 (IGF-1) can suppress this activity through activation of 

Akt[236,237]. 

Analysis of the genetic variance in FOXO1a and FOXO3a on metabolic profiles, age-related diseases, 

fertility, fecundity, and mortality in patients has observed higher HbA1c levels and increased mortality risk 

associated with specific haplotypes of FOXO1a[238]. These clinical observations may coincide with the 

demonstration in human endothelial progenitor cells that elevated glucose levels can reduce post-

translational phosphorylation of FOXO1, FOXO3a, and FOXO4, and allow for the nuclear translocation 

of these proteins to initiate an apoptotic program in endothelial progenitor cells[239]. In experimental 

models, FoxO proteins may prevent the toxic effects of high serum glucose levels. Interferon-γ–driven 

expression of tryptophan catabolism by cytotoxic T-lymphocyte antigen 4 may activate Foxo3a to protect 

dendritic cells from injury in nonobese diabetic mice[240]. Additional studies demonstrated that adipose 

tissue-specific expression of Foxo1 in mice improved glucose tolerance and sensitivity to insulin during 

an elevated fat diet[241]. FoxO proteins may also protect against diminished mitochondrial energy levels 

known to occur during insulin resistance, such as in the elderly populations[203,204205]. In caloric-

restricted mice that have decreased energy reserves, Foxo1, Foxo3a, and Foxo4 mRNA levels were noted 

to increase progressively over a 2-year course[163]. These observations complement studies in 

Drosophila and mammalian cells that demonstrate an increase in insulin signaling to regulate cellular 

metabolism during the up-regulation of FoxO1 expression[242]. 

It should be noted that the ability for FoxO proteins to maintain proper physiologic controls over 

cellular metabolism may be limited and occur only during specific circumstances. For example, mice with 

a constitutively active Foxo1 transgene have increased microsomal triglyceride transfer protein and 

elevated plasma triglyceride levels[243]. Studies in cardiomyocytes also suggest detrimental results with 

enhanced FoxO activity. Increased transcriptional activity of FoxO1, such as by the Sirt1 activator 

resveratrol, can diminish insulin-mediated glucose uptake and result in insulin resistance[244]. 



Maiese et al.: EPO, Forkhead Proteins, and Oxidative Stress TheScientificWorldJOURNAL (2009) 9, 1072–1104 

 

 1082 

Overexpression of Foxo1 in skeletal muscles of mice also can lead to reduced skeletal muscle mass and 

poor glycemic control[245], illustrating that activation of FoxO proteins may also impair cellular energy 

reserves. Other studies that block the expression of Foxo1 in normal and cachectic mice[246], or reduce 

FoxO3 expression[247], show the reverse, with an increase in skeletal muscle mass or resistance to 

muscle atrophy. These results become especially relevant in patients with cancer and cachexia, since 

FoxO protein expression may further muscle wasting for these individuals. With this in mind, one 

potential agent to consider for the maintenance of cellular metabolism in patients is 

nicotinamide[11,44,248], an agent that can also inhibit FoxO protein activity[200]. In patients with DM, 

oral nicotinamide protects β-cell function, prevents clinical disease in islet-cell antibody-positive first-

degree relatives of type-1 DM, and can reduce HbA1c levels[11,44,203]. Nicotinamide, which is closely 

linked to cell longevity pathways[249,250], may derive its protective capacity through two separate 

mechanisms of post-translational modification of FoxO3a. Nicotinamide not only can maintain 

phosphorylation of FoxO3a and inhibit its activity, but can also preserve the integrity of the FoxO3a 

protein to block FoxO3a proteolysis that can yield proapoptotic amino-terminal fragments[200]. 

EPO, FOXOS, STEM CELL PROLIFERATION, AND VASCULOGENESIS 

The observation that EPO may promote tumor proliferation[84,251] and the initial identification of FoxO 

proteins in soft-tissue tumors and leukemias, neoplasms now believed to contain cancer stem cells for 

tumor self-renewal[252], suggests that EPO and FoxO proteins may be closely tied to stem cell 

proliferation and differentiation. In regards to cell development for EPO, it can promote 

angiogenesis[67,107,112]. EPO has both a mitogenic and chemotactic effect that can lead to matrix 

metalloproteinase-2 production, cell proliferation, and vessel formation in EC lines[80,95]. In cultured 

human and bovine ECs, EPO stimulates EC proliferation and fosters the migration of ECs[253]. In 

neonatal mesenteric microvascular ECs, EPO also leads to vasculogenesis[254]. Angiogenesis by EPO 

offers an additional level of cytoprotection in various cell systems. For example, in models of cerebral 

ischemia, EPO promotes factors for angiogenesis, such as Tie-2 and Angiopoietin-2, that may assist with 

the restoration of cerebral blood flow to preischemic levels[255]. EPO-controlled angiogenesis may also 

play a significant role during renal inflammation and prevention of allograft rejection[256]. In addition, 

EPO may promote the viability of transplanted marrow stromal cells and enhance capillary density during 

experimental cardiac ischemia[257]. Although EPO-induced angiogenesis may impart beneficial effects 

to ischemic cells of the nervous and cardiovascular systems for nutrient and oxygen supply, other 

scenarios that involve ocular neovascularization may also seek to block or limit angiogenesis by EPO to 

prevent disease progression[258]. In clinical studies, EPO serum levels are also significantly associated 

with the number and function of circulating endothelial progenitor cells, and EPO can stimulate postnatal 

neovascularization by increasing endothelial progenitor cell mobilization from the bone marrow[259]. 

Recently, EPO has been shown to increase the motility of human bone marrow multipotent stromal 

cells[260], suggesting that EPO may lead to increased cell viability during oxidative stress via progenitor 

cell recruitment[261,262,263]. Interestingly, the ability of EPO to foster eythroid progenitor cell 

development is dependent on the inhibition of FoxO3a activity[79,80], but may also require regulation of 

specific gene expression through an EPO-FoxO3a association to promote erythropoiesis in cultured 

cells[264]. In addition, a close association with EPO[80,117,265] may also be required to modulate FoxO 

protein activity, such as during erythroid progenitor cell development[78,79], further indicating that use 

of EPO in patients with combined anemia and cancer may have unexpected detrimental effects[79,80]. 

When one considers progenitor cell proliferation for FoxO proteins, either simultaneous deletion of 

Foxo1, Foxo3a, and Foxo4, or single deletion of Foxo3a in mice prevents the repopulation of 

hematopoietic stem cells and leads to apoptosis in these stem cell populations[266,267] (Fig. 2). In 

regards to the reproductive potential of an organism, deletion of the FoxO3a gene results in the depletion 

of oocytes and subsequent infertility[268]. Other work using a mouse model of FoxO3a overexpression in 

oocytes suggests that FoxO3a also may retard oocyte growth and follicular development, and leads to 
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anovulation and luteinization of unruptured follicles[269]. In clinical studies, a small percentage of 

women who suffer from premature ovarian failure have mutations in FOXO3a and FOXO1a[270]. In 

neuronal populations, FoxOs also may prevent stem cell proliferation, since the proliferation of human 

neural progenitor cells appears to require the inhibitory phosphorylation of FOXO3a[271]. 

Similar to EPO, FoxO proteins also play a significant role to modulate new vessel growth that can 

impact on cardiovascular development. FoxO proteins are intimately involved in EC development and 

angiogenesis. For example, Foxo3a
–/–

 and Foxo4
–/–

 mice develop without incidence and are 

indistinguishable from control littermates. However, mice that are singly deficient in Foxo1 die by 

embryonic day 11 and lack development of the vascular system[272]. Additional studies illustrate that EC 

colonies in Foxo1-deficient mice fail to respond to vascular endothelial growth factor in a manner similar 

to wild-type ECs[273], suggesting that FoxOs are necessary for the development of vascular cells as well 

as for the biological response to cellular mediators. 

During cardiac development, FoxO proteins also appear to be necessary to modulate cardiomyocyte 

proliferation. Both FoxO1 and FoxO3 are expressed during embryonic through prenatal stages in the 

developing myocardium. The expression of these FoxO proteins is believed to regulate cardiomyocyte 

growth negatively, since overexpression of FoxO1 blocks cardiomyocyte proliferation, but expression of 

dominant-negative FoxO1 leads to enhanced cardiomyocyte growth[274]. These observations may 

provide clues into the roles of FoxO proteins during cardiac hypertrophy. Atrogin-1, a protein that can 

block cardiac hypertrophy, may rely on the up-regulation of Foxo1 and Foxo3a to disrupt cardiac 

hypertrophy, since mice lacking atrogin-1 are susceptible to cardiac hypertrophy and do not yield 

increased expression of Foxo1 and Foxo3a[275]. In regards to smooth muscle cell growth, gene transfer 

of FoxO3a can inhibit neointimal hyperplasia through the prevention of vascular smooth muscle 

growth[276]. However, not all FoxO proteins may exert an inhibitory effect on vascular smooth muscle 

cells. FoxO4 may inhibit smooth muscle cell differentiation through the repression of the transcriptional 

coactivator of smooth muscle genes myocardin[277], but other work suggests that FoxO4 can also 

increase matrix metalloproteinase-9 expression to promote vascular smooth muscle migration and foster 

neointimal hyperplasia[278]. 

In consideration of the ability of FoxO proteins to regulate vascular smooth muscle cell proliferation, 

these transcription factors may have a significant clinical role in regards to disorders that involve 

hypertension and cardiac failure. Vascular smooth muscle cells are vital for the regulation of vascular 

tone and systemic arterial blood pressure. High flow states in vessels can reduce FoxO1 activity, resulting 

in the potential proliferation of vascular smooth muscle cells, vascular neointimal hyperplasia, and 

subsequent pathological states, such as hypertension[279]. Furthermore, α1-adrenergic agonists that 

increase systemic blood pressure can have the reverse effect and stimulate the expression of FoxO1 and 

its nuclear translocation that ultimately may lead to apoptotic EC injury[280]. More than moderate levels 

of vessel cyclic stretch that can occur during hypertension may lead to the phosphorylation and inhibition 

of Foxo1 and Foxo3a in smooth muscle cells to further contribute to pathological smooth muscle cell 

proliferation[281]. In human as well as murine models of cardiac failure, increased expression of Fox 

transcription factors, such as FoxO1a, have also been observed to suggest a potential association of FoxO 

proteins with imminent cardiac failure[282]. 

EPO, FOXOS, CELL SURVIVAL, AND THE IMMUNE SYSTEM 

During a number of scenarios, EPO and FoxO proteins directly govern cell survival. With EPO, it can 

prevent cell injury during hypoxia[46,112,283,284,285,286], excitotoxicity[287,288,289], parasitic 

disease[290,291,292], endotoxin shock[293,294], free radical exposure[51,67,288], cardiac 

disease[295,296], Aβ toxicity[192,297,298], pancreatic disease[299], and pulmonary disease[300,301]. 

EPO also represents a potential option for the prevention of retinal degeneration or 

neovascularization[302,303,304,305], as well as glaucoma[306]. Systemic application of EPO can also 
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improve functional outcome and reduce cell loss during spinal cord injury[307,308], traumatic cerebral 

edema[309], cortical trauma[310], and epileptic activity[114,311,312].  

In contrast to EPO cytoprotection, FoxO transcription factors more often lead to apoptosis during 

oxidative stress[3] (Fig.2). For example, forkhead transcription factors such as FoxO1 and FoxO3a must 

be present for oxidative stress to result in apoptotic cell injury[313]. FoxO3a in conjunction with JNK has 

also been shown to modulate an apoptotic ligand activating a Fas-mediated death pathway in cultured 

motoneurons[314], to lead to apoptosis through tumor-necrosis-factor–related apoptosis-inducing ligand 

(TRAIL) and BH3-only proteins Noxa and Bim in neuroblastoma cells[201], and to promote proapoptotic 

activity of p53[315]. In addition, loss of FoxO expression during oxidative stress is protective to cells. 

Protein inhibition or gene knockdown of FoxO1 or FoxO3a can lead to reduction in ischemic infarct size 

in the brain[316]. Removal of FoxO expression can also mediate protection of metabotropic glutamate 

receptors during vascular injury[199], enhance pancreatic β-cell or neuronal survival through NAD
+
 

precursors during oxidative stress[200], and provide trophic factor protection with EPO[113] and 

neurotrophins[317].  

Interestingly, FoxOs are associated with neurodegenerative pathways such as Alzheimer’s disease. 

The National Institute on Aging estimates that almost 5 million people have Alzheimer’s disease in the 

U.S. Furthermore, more than 24 million people suffer from AD, presenile dementia, and other disorders 

of cognitive loss worldwide. In Alzheimer’s disease[318], Aβ is toxic to cells[49,192,319,320,321] and 

can lead to oxidative stress[1,23,24]. Aβ is also associated with the phosphorylation of FoxO1 and 

FoxO3a that can be blocked with ROS scavengers[322]. A common denominator in the pathways linked 

to Aβ toxicity involves Wnt signaling[49,323] and β-catenin. The canonical Wnt pathway[324,325] 

involves β-catenin[45,226] and ties FoxO proteins and Wnt signaling together[36]. β-Catenin may 

increase FoxO transcriptional activity and competitively limit β-catenin interaction with members of the 

lymphoid enhancer factor/T-cell factor family[326]. This may lead to cell injury, since β-catenin has been 

demonstrated to be necessary for protection against Aβ toxicity in neuronal cells[49]. However, not all 

conditions with FoxOs may lead to cell injury. Some studies suggest that the loss of FoxO1, FoxO3a, and 

FoxO4 protein expression may actually lead to an increase in free radical release that can be responsible 

for oxidative stress[267]. Furthermore, FoxO proteins may be protective during aging and exercise, since 

FoxO3a activity may enhance vascular smooth muscle antioxidant properties in aged animals and be 

beneficial to the cardiovascular system during physical exertion[327].  

Given the significant roles that EPO and FoxOs play during cell survival, which is tightly linked to 

the immune system and allergic disorders[83,328], it may come as no surprise that these proteins are 

closely associated with modulation of the immune system, not only in the brain, but also throughout the 

body (Figs. 1 and 2). For example, in the brain, microglia lead to the phagocytic removal of both neurons 

and vascular cells[30,32,39]. During inflammation, microglial cells require the activation of intracellular 

cytoprotective pathways[31,40] in order to proliferate and remove injured cells[43,329]. Microglia can 

also form a barrier for the removal of foreign microorganisms from the central nervous system, and 

promote tissue repair during neuronal and vascular cell injury[31,330]. Yet, microglia may lead to cell 

injury through the generation of ROS[69,331] and through the production of cytokines[332,333].  

EPO can reduce cytokine gene expression in ECs exposed to tumor necrosis factor[222], prevent 

ulcer progression in cases of scleroderma[334], modulate inflammation during experimental autoimmune 

encephalomyelitis[335], reduce inflammation in murine arthritis models[336], and block primary 

microglial activation and proliferation during oxidative stress[46,192] to prevent phagocytosis of injured 

cells through pathways that involve cellular membrane PS exposure, Akt[30], and the regulation of 

caspases[46,67,337]. EPO can directly inhibit several proinflammatory cytokines, such as IL-6, TNF-α, 

and monocyte chemoattractant protein 1[80,338], and reduce leukocyte inflammation[339]. EPO may 

also foster the preservation of microglial cells for neuronal and vascular restructuring by preventing 

apoptotic injury in microglia[40,340].  

In general, forkhead transcription factors also have an important role in maintaining immune system 

function. The forkhead family member FoxP3 can control the development and function of thymic-
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derived CD4(+)CD25(+) regulatory T cells (Treg) that impart autoimmunity. Loss of FoxP3 can result in 

autoimmune disorders[341]. Additional studies demonstrate the expression of FoxP3 in tumor cells, such 

as melanoma[342], as well as in Tregs that may significantly affect patient mortality, since the increased 

presence of Tregs in cancer patients combined with FoxP3 expression in tumors may impair antitumor 

autoimmune responses and lead to high mortality[343].  

In regards to FoxO proteins, these transcription factors may also influence early apoptotic membrane 

PS externalization. The ability to regulate early apoptotic membrane PS exposure[46] and inflammatory 

cell activity[32] can ultimately affect cell survival, since activated immune cells can lead to the 

phagocytic removal of injured cells or tumor cells[39,63]. Recent work suggests a relationship between 

the regulation of immune system activity and the induction of apoptotic pathways that are dependent on 

FoxO proteins. Prevention of inflammatory activation and apoptosis in the nervous system, such as in 

systemic lupus erythematosus in animal models, may require the up-regulation of different Fox proteins, 

such as FoxJ1 and FoxO3a, that can block NF-κB activation and interferon-γ secretion[344]. FoxO 

proteins may also work in concert with Fas signaling to clear activated T cells following a decrease in 

cytokine stimulation in patients with autoimmune lymphoproliferative syndromes[345], suggesting that 

activation of specific FoxO proteins may be beneficial for autoimmune disorders, but may impair 

treatments designed to target tumor cells through immune mediated pathways. Furthermore, in mice 

deficient for Foxo3a, lymphoproliferation, organ inflammation of the salivary glands, lung, and kidney, 

and increased activity of helper T cells result, supporting an important role for FoxO3a in preventing T-

cell hyperactivity[346]. FoxO3a also appears to be necessary for neutrophil activity, since Foxo3a-null 

mice are resistant to models of neutrophilic inflammation that involve immune complex-mediated 

inflammatory arthritis[347]. Patients with rheumatoid arthritis and osteoarthritis show phosphorylation of 

FOXO3a in T lymphocytes as well as FOXO1 and FOXO4 in synovial macrophages, suggesting that loss 

of functional FOXO family members may lead to inflammatory cell activation in these disorders[348]. 

FOXO1 gene transcript levels also are down-regulated in peripheral blood mononuclear cells of patients 

with systemic lupus erythematosus and rheumatoid arthritis[349], illustrating a potential etiology through 

the loss of functional FOXO proteins for these disorders and possibly providing a biomarker of disease 

activity. Other studies show that FOXO1 protein controls L-selectin expression that can regulate human 

T-lymphocyte trafficking[350].  

THERAPEUTIC CONSIDERATIONS FOR CANCER 

The potential for the initiation or progression of cancer during EPO administration supports investigations 

that can elucidate the downstream mechanisms of this growth factor and cytokine in order to avoid 

unwanted clinical outcomes. In particular, the close association that EPO holds with FoxO proteins 

suggests potential avenues to limit or block tumor cell proliferation. FoxO proteins can control tumor 

growth through the induction of apoptosis and the blockade of cell cycle progression (Fig. 2). For 

example, FoxO3a and FoxO4 can promote cell cycle arrest in mouse myoblastic cell lines through 

modulation of growth-arrest and DNA-damage-response protein 45[78,81]. Treatment of chronic 

myelogenous leukemia cell lines with the Bcr-Abl tyrosine kinase inhibitor imatinib requires FoxO3a 

activation to antagonize cell proliferation and promote apoptotic cell death through increased TRAIL 

production[351]. In addition, the transcription factor E2F-1, which controls the induction of the cell cycle, 

has been reported in cell lines to increase the endogenous expression of FoxO1 and FoxO3a to lead to cell 

cycle arrest[352]. In contrast, the loss of FoxO3a activity in association with c-Myc, p27, and nuclear 

factor-κB (NF-κB) can result in cell cycle induction and malignant transformation of mouse cells in the 

presence of oncogene activation[81,158]. Other work suggests that FoxO proteins utilize the p53 

upstream regulator p19(Arf) through Myc to block cell cycle induction and lymphoma progression[353]. 

Studies with prostate cancer have shown that the tumor suppressor phosphatase and tensin homolog 

deleted on chromosome ten (PTEN) is mutated in approximately 80% of tumors with the loss of FOXO1 

and FOXO3a activity. In cell cultures, overexpression of FoxO1 and FoxO3a in prostrate tumor cell lines 



Maiese et al.: EPO, Forkhead Proteins, and Oxidative Stress TheScientificWorldJOURNAL (2009) 9, 1072–1104 

 

 1086 

also leads to apoptosis, suggesting that FoxO1 and FoxO3a are necessary for limiting prostate cell tumor 

growth[167]. Inhibition of FoxO3a activity can result in enhanced prostate tumor cell growth[354], while 

agents that increase FoxO3a activity in both androgen-sensitive and androgen-insensitive prostate cell 

lines prevent prostate cancer cell progression[355]. Therapeutic strategies that rely on the overexpression 

of a nonphosphorylatable form of FoxO3a that cannot be inactivated can also sensitize prostate cancer 

cells to androgen withdrawal–induced apoptosis[356]. However, in prostate cell lines, FoxO3a can be a 

positive regulator of androgen receptor expression and therefore may play a complex role in prostate 

cancer cell proliferation and growth inhibition[357]. Other factors that control FoxO protein function may 

also play a role during prostate tumor progression. In prostate cancer cells, cyclin-dependent kinase 1 

(CDK1) can become overexpressed and subsequently phosphorylate FOXO1 to block its transcriptional 

activity and contribute to prostate tumorigenesis[358]. In a similar manner, it has been shown that 

astrocyte-elevated gene-1 (AEG-1) can be up-regulated in clinical prostate cancer[359], possibly leading 

to activation of Akt that suppresses FOXO3a[360] and apoptosis in prostate tumor cells. 

Initial investigations of FOXO3a in clinical breast cancer suggested that activation of FOXO3a was 

associated with lymph nodal metastasis and a poor prognosis[361]. In contrast to these observations, other 

work has shown that FOXO3a was inactivated by IKK and that inactivation of FOXO3a was associated 

with a poor prognosis in breast cancer[362], suggesting that FOXO3a subcellular localization and 

pathways that enhance its activity could be used not only as a biomarker assay, but also as therapeutic 

targets. Other work in breast cancer cells demonstrated the tumor repressive ability of FoxOs by 

illustrating that increased activity of FoxO3a in association with JNK in breast cancer cell lines[363] or in 

association with cyclin-dependent kinase inhibitor p27 in isolated human breast cancer cells can prevent 

breast cancer growth[364]. In addition, FoxO proteins may be able to modulate estrogen function and 

indirectly block breast cancer growth. Overexpression of FoxO3a in breast cancer cell lines can decrease 

the expression of estrogen receptor–regulated genes and inhibits 17β-estradiol (E2)–dependent breast 

cancer growth[365]. 

FoxO proteins may also represent a viable option to control tumor progression in other tissues. FoxO 

proteins can function as redundant repressors of tumor growth. For example, somatic deletion in mice of 

Foxo1, Foxo3a, and Foxo4 results in the growth of thymic lymphomas and hemangiomas[366]. Other 

work illustrates that FoxO3a activation in colon carcinoma cell lines prevents tumor proliferation through 

Myc target genes that involve the Mad/Mxd family of transcriptional repressors[367]. In addition, the loss 

of FoxO3a activity may participate in oncogenic transformation in B-chronic lymphocytic leukemia[368] 

and in the progression of chronic myelogenous leukemia cell lines[351]. Furthermore, studies suggest that 

some proteins, such as the Kaposi’s sarcoma–associated herpes virus latent protein LANA2, may 

specifically block the transcriptional activity of FoxO3a to lead to tumor growth[369]. In cell models of 

endometrial cancer, presensitization of cells to block Akt activation and foster transcription activity of 

FoxO1 enhances the effect of chemotherapy to limit tumor growth[370]. 

CONCLUSIONS AND CONSIDERATIONS 

Both EPO and FoxO transcription factors hold great potential to yield new strategies for the treatment of 

neurovascular injury, immune mediated diseases, metabolic disease, and cancer-related disorders, as well 

as to offer the ability to follow disease onset and progression as biomarkers. In reference to EPO, U.S. 

annual sale revenues for EPO have recently been reported to approach 9 billion dollars[371] and over 100 

trials with the National Institutes of Health website (www.clinicaltrials.gov) presently exist that are either 

recruiting or in preparation to examine the role of EPO in patients with a variety of disorders that include 

anemia, cancer, cardiac ischemia, or spinal cord trauma. Although some cardiac injury studies do not 

always demonstrate a benefit with EPO[372,373], early studies in patients with anemia or who are on 

chronic hemodialysis have suggested a direct cardiac benefit from EPO administration[374,375]. In 

addition, EPO administration can improve exercise tolerance either during cardiac or renal insufficiency 

in patients with anemia and congestive heart failure[128,376], and that may be dependent on improved 
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pulmonary function[377]. Furthermore, a randomized, concealed, multicenter trial of 1460 patients who 

received 40,000 U of epoetin alfa up to a 3-week maximum following intensive care unit admission for 

trauma demonstrated a reduced mortality[378]. 

Yet, EPO is not well tolerated with comorbid conditions such as congestive heart failure, 

hypertension[379], and neoplasms[143]. Some studies suggest that elevated plasma levels of EPO 

independent of hemoglobin concentration can be associated with increased severity of disease in 

individuals with congestive heart failure[380] and that EPO may contribute to vascular stenosis with 

intima hyperplasia[381]. Adverse effects during treatment with EPO are not uncommon, such as an 

increased incidence of thrombotic vascular effects[378] or the use of EPO in cancer patients receiving 

chemotherapy that has been associated with nonfatal myocardial infarction, pyrexia, vomiting, shortness 

of breath, paresthesias, and upper respiratory tract infection[382]. In addition, both acute and long-term 

administration of EPO can significantly elevate mean arterial pressure that may place patients with 

hypertension at risk[383].  

Cancer progression has been another significant concern raised with EPO administration[84,384]. 

EPO and its receptor can be found in tumor specimens, may block tumor cell apoptosis through Akt[385], 

enhance metastatic disease[386], and complicate radiotherapy by assisting with tumor angiogenesis[387]. 

The potential for EPO to lead to neoplastic growth is not well defined or understood at this time[388]. A 

number of competing factors must be considered and weighed that include the possible benefits of EPO 

administration in patients with cancer, the synergistic effects of EPO with chemotherapeutic 

modalities[389,390], the potential protection against chemotherapy tissue injury[391], and the treatment 

of cancer-related anemia. 

Additional considerations for EPO exist other than those associated with EPO abuse and gene 

doping[392,393,394]. EPO has been correlated with the alteration of red cell membrane properties, 

leading to a cognitive decrement in rodent animal models[80,95,338]. Development of potentially 

detrimental side effects during EPO therapy, such as for cerebral ischemia with increased metabolic rate 

and blood viscosity[395], could also severely limit the use of EPO. As a result, alternate strategies have 

been suggested. New proposals examine the role of targeted bioavailability for EPO, such as in bone 

marrow stromal cells genetically engineered to secrete EPO[396] and controlled release of EPO from 

encapsulated cells[397,398]. The passage of EPO entry into the central nervous system continues to 

attract significant interest[399] as well as does the use of novel intranasal routes for EPO 

administration[286]. The development of derivations of EPO to reduce erythropoietic activity and the 

potential associated vascular complications[287] have also been put forth as new directions for treatment. 

Yet these lines of investigation are not without limitations, since chemical derivatives of EPO can become 

absent of clinical efficacy[80,95] as well as possibly lose the ability to promote sustainable cytoprotective 

effects, such as neurogenesis[400] and angiogenesis[255,256,258,401]. 

In contrast to the concerns of EPO to promote cancer, FoxO proteins offer the potential to target and 

prevent neoplastic progression. The ability of FoxO proteins to control cell cycle progression and promote 

apoptosis supports the premise that FoxOs may be an important component for new strategies directed 

against tumorigenesis. For example, the use of triple mutant FoxO1 or FoxO3a expression in which three 

phosphorylation sites have been altered to prevent inactivation of this protein has been proposed to block 

melanoma tumors[202] and endometrial cancer[402]. Other work also offers additional support for the 

use of FoxO proteins as biomarkers of cancer growth. Down-regulation of the phosphatidylinositol 3 

kinase and Akt pathways have been associated with increased transcript levels for FOXO1a and FOXO3a 

in clinical prostate cancer samples and may indicate the onset of precancerous changes or the progression 

of ongoing tumor growth[403]. Although loss of Akt activity in prostate cancer cells can result in 

enhanced FoxO3a activity and subsequent apoptosis of tumor cells[359], it is conceivable that early 

stages of cancer may lead to reduced Akt activity with insufficient levels of active forkhead transcription 

factors to limit tumor progression. In addition, the early and persistent expression of phosphorylated 

FOXO1a in gastric tumors may not only indicate the onset of cancer, but may also suggest an improved 

prognosis for patients[404]. 
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The known mutations in FoxO proteins that exist in several disease entities may provide novel 

insights for the treatment of other disorders. Future analysis in larger populations of patients with 

premature ovarian failure and diabetes could strengthen our understanding of the role of FoxO proteins in 

these disorders. In addition, targeting the activity of FoxO1, FoxO3a, or FoxO4 in cardiac and endothelial 

cells may prevent the onset of pathological cardiac hypertrophy and neointimal hyperplasia that may 

result in atherosclerosis. Recent studies also suggest that the utilization and combination of multiple 

biomarkers may improve risk assessment for patients suffering from cardiovascular disorders[405]. These 

studies illustrate that FoxO proteins may serve as biomarkers of disease activity, such as in individuals 

with imminent cardiac failure[282].  

However, similar to studies with EPO, FoxO transcription factors may have complex and sometimes 

detrimental clinical outcomes. For example, FoxO protein inhibition of cell cycle progression may not 

consistently lead to apoptotic cell death. Some investigations suggest that during oxidative stress, FoxO3a 

activation in association with Sirt1 can lead to cell cycle arrest, but not result in apoptotic cell injury[406]. 

Furthermore, during hypoxic stress, forkhead transcription factors, such as FOXO3a, may potentiate 

antiapoptotic pathways in breast cancer cells to further tumor growth[407]. FoxO proteins also have been 

linked to potential chemotherapy drug resistance with increased expression of MDR1 (P-glycoprotein) 

that has been associated with chemotherapy drug resistance in breast cancer cells. FoxO1 can stimulate 

the transcriptional activity of MDR1 that may promote increased tolerance of tumor cells[408]. In 

addition, the common pathways shared between Wnt and forkhead proteins may lead to other outcomes 

that alter the ability to control tumor growth[45,409]. FoxO proteins may assist with β-catenin activation 

in the Wnt pathway and lead to tumor cell proliferation[226]. In the presence of Wnt deregulation and 

increased β-catenin activity, tumorigenesis may ensue, such as with the proliferation of medulloblastoma 

tumors[252]. Therefore, the role of FoxO protein involvement in several disorders may not be 

consistently known and may be influenced by multiple parameters, such as tissue characteristics, cellular 

metabolic state, and the age of an individual.  
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