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Abstract: Cancer therapy is a growing field, and annually, a high number of research is performed to
develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are
able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising
candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin
(NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological
activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective.
Among them, the antitumor activity of NOB has been under attention over recent years. In this review,
we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell
cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition
of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug,
and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on.
Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB
in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in
this review.
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1. Introduction

Recently, nutritionists have been interested in recommending plants and fruits in the treatment
of different illnesses [1,2]. This suggestion is due to the presence of beneficial natural chemicals
in plants and fruits and, also, their metabolites, which exert health-promoting effects after being
absorbed in the body [3–10]. It has been demonstrated that the identification, isolation, and purification
of these natural chemicals may be a milestone in the treatment of diseases, particularly in human
malignancies [11–20]. A high number of studies have focused on cancer therapy using plant-derived
natural compounds [6,13–20]. In this review, we demonstrate the potential of nobiletin (NOB) in cancer
therapy based on the newly published articles.

2. Sources of NOB

The NOB, as a polymethoxyflavone (PMF), was named after Citrus nobilis [21]. NOB is a ubiquitous
flavone extensively derived from the peel of Citrus fruits [22]. Interestingly, NOB can be isolated
from a variety of Citrus fruits, including mandarin oranges (Citrus reticulate), sweet oranges
or Valencia oranges (Citrus sinesis), Miaray mandarins (Citrus miaray), flat lemons or Hayata
(Citrus depressa), tangerines (Citrus tangerine), bitter oranges (Citrus aurantium), Unshu Mikans or
Satsuma mandarins (Citrus Unshiu arnicia indica), Cleopatra mandarins (Citrus reshni), mandarin oranges
(Citrus tachibana), Koji oranges (Citrus leiocarpa), Natsu Mikans (Citrus tardira), Jimikan (Citrus succosa),
kinokuni mandarins (Citrus kinokuni), Fukushu (Citrus erythrose), Supkat (Citrus sunki), and hybrids of
mandarin orange with pomelo (Citrus deliciosa) [22–28]. This shows that NOB is abundantly found in
nature, and using it in the treatment of diseases is a cost-effective approach. Among the aforementioned
plants, Citrus tangerine has the highest concentration of NOB, leading to its application in disease
therapy [29]. Several methods are applied to isolate PMF from orange peel, such as supercritical
fluid extraction, microwave-assisted extraction, and the Soxhlet method, enabling us to obtain high
contents of this extract [30]. At the final step of extraction, carbon dioxide and ethanol are used to
concentrate bioactive compounds [31]. The highest yield of NOB is observed at a temperature of 80 ◦C,
the pressure of 30 MPa, and an optimum sample particle size of 375 µm [32]. In addition to these
conventional methods, NOB can be isolated by total synthesis of over eleven steps [33]. The NOB has
a molecular weight of 402.39, and its chemical and molecular formula are 5,6,7,8,3/,4/-hexamethoxy
flavone, and C21H22O8, respectively [34]. Chromene and arene rings of NOB are at the same plane.
The C atoms of two methoxy groups in the arene ring are at the same plane. However, C atoms of four
methoxy groups linking to a chromene ring may not necessarily be in parallel [35].

3. Bioavailability of NOB

Although studies exhibit that NOB is exclusively found in nature and various Citrus plants,
some restrictions have reduced NOB potential. It has been demonstrated that NOB has poor
solubility in water (1–5 µg/mL) and minimal oral bioavailability (<1%), resulting in a decrease in its
therapeutic and biological activities [36]. It is worth mentioning that, after ingestion, NOB undergoes
many alterations to produce metabolites [37,38]. The kind of metabolite depends on the species
of Citrus plant [22]. Three common metabolites of NOB include 3/-demethylnobiletin (3/-DMN),
4/-DMN, and 3/,4/-DMN [39,40]. A study has investigated the amount of aforementioned metabolites
in mice after 20 weeks of daily feeding of 500 ppm NOB as 3.28 (3/-DMN), 24.13 (4/-DMN),
and 12.03 (3/,4/-DMN) nmol/g. Interestingly, the bioavailability of NOB was reported as 2.03 nmol/g,
which was lower compared to its metabolites [41]. This shows that NOB is immediately metabolized
in the body into its metabolites. The metabolism of NOB comprises two phases, including phase I
and phase II metabolism. The cytochrome P450 participates in phase I demethylation of NOB [42].
The CYP1A1, CYP1A2, CYP1B, and CYP3A5 are involved in the conversion of NOB into 3/DMN,
while only CYP1A1 and CYP1A2 contribute to the transformation of 3/-DMN into 3/,4/-DMN [43].
The phase II metabolism of NOB occurs in the small intestine by sulfation or glucuronidation [44].
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As a consequence of the rapid metabolism of NOB and its poor bioavailability, studies have focused on
improving NOB bioavailability using various methods. Recently, an ionic liquid containing choline
and geranic acid (CAGE) has been developed for promoting NOB bioavailability. The in vitro and
in vivo experiments have demonstrated the capability of CAGE in enhancing NOB bioavailability.
The enhanced bioavailability of NOB by CAGE is due to the multipoint hydrogen bonding between
NOB and CAGE. The CAGE not only elevates the transdermal absorption of NOB but also increases
the bioavailability of NOB after oral administration by 20 times [45]. The plant exine capsules can
also be considered as a potential strategy in improving NOB bioavailability, since plant exine capsules
have high loading capacity (770 ± 40 mg/g) and provide the prolonged release of NOB [46]. It is
worth mentioning that nanostrategies are also promising candidates in enhancing NOB bioavailability.
It is said that NOB-loaded nanoemulsions are able to enhance the therapeutic capacity of NOB [47].
Micelles are other nanoparticles that have been used in the delivery of NOB for bone loss treatment
with excellent features such as low particle size (124 nm), high loading capacity (7.6%), and great
entrapment efficiency (76.34%) [48]. However, we are at the beginning point of NOB delivery, and more
studies are required to develop novel carriers for the delivery of NOB.

4. Therapeutic and Biological Activities of NOB

The interest directed towards NOB emanates from its efficacy in the treatment of different
diseases. Studies have demonstrated that NOB has a variety of therapeutic and biological
activities, including antidiabetic [49], antioxidant [50], osteoprotective [51], anti-inflammatory [52],
hepatoprotective [53], cardioprotective [54,55], and neuroprotective [56], as well as improving metabolic
disorders [57]. Notably, recent studies have shown the role of molecular signaling pathways involved
in the protective effects of NOB in various diseases. Diabetes mellitus (DM) is a chronic metabolic
disorder that glucose uptake undergoes impairment [58]. It is held that inflammatory factors participate
in glucose uptake interference [59]. The administration of NOB (50 mg/kg) remarkably improves
glucose resistance by inhibition of the NF-κB signaling pathway, as a factor involved in inflammation
to suppress tumor necrosis factor (TNF)-mediated glucose uptake disruption [60]. Although iron is
a vital element for physiological processes such as hemoglobin synthesis and DNA replication [61],
increasing evidence shows that iron overload is associated with the elevated generation of reactive
oxygen species (ROS) that, in turn, induce cell and tissue damages [62–68]. The NOB is suggested
to be a potential agent in fighting against iron overload. The administration of NOB inhibits
mitochondrial-mediated apoptosis via reducing ROS generation to attenuate vascular endothelium
injury caused by iron overload [69]. Interleukin-21 (IL-21), produced by stimulated CD4+ T immune
cells [70], plays a significant role in the progression of rheumatoid arthritis (RA) via induction of
inflammatory factors and matrix metalloproteinases (MMPs) such as MMP-3 and MMP-13 [71].
A newly published article (2020) has examined the efficacy of NOB in RA therapy. It seems that
IL-21 binds to its receptor to elevate ROS generation. On one hand, ROS induces mitochondrial
dysfunction, and on the other hand, ROS stimulates the JAK1/STAT3 axis to stimulate MMP-3 and
-13 and inflammatory factors including TNF-α and IL-6. The NOB disrupts the IL-6 attachment into
its receptor to interfere with the aforementioned axis, leading to the alleviation of RA [72]. The NOB
not only is beneficial in the management and treatment of DM, but also, it can be recommended
for the prevention of DM, since it is capable of decreasing insulin resistance, obesity, dyslipidemia,
and hepatic steatosis [73]. Nowadays, a high number of people are searching for promoting their
longevity. The NOB is suggested to be beneficial in this case. An experiment on Caenorhabditis elegans
exhibits that NOB has great antitumor activity and can enhance the lifespan by attenuation of heat
shock and ultraviolet radiation [74]. We earlier mentioned that NOB is advantageous in suppressing
iron overload-mediated oxidative stress. It is said that the high antioxidant activity of NOB results
from improving the antioxidant defense system by targeting nuclear factor erythroid 2-related factor
2 (Nrf2) [75]. The activation of Nrf2 reduces ROS generation and oxidative stress via stimulation of
superoxide dismutase, heme oxygenase-1, and NADPH quinone oxidoreductase 1 [75]. By induction
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of Nrf2, NOB decreases ROS levels to ameliorate hepatorenal toxicity [75]. Another pathological
condition that can be alleviated by NOB is ischemic/reperfusion (I/R) injury, a condition involved
in enhancing oxidative stress and inflammation [76]. Notably, NOB dually enhances the activity of
antioxidant enzymes such as catalase and glutathione peroxidase (GSH-PX), whereas it diminishes the
concentration of IL-6 and TNF-α, leading to amelioration of I/R-mediated inflammation and oxidative
stress [77]. It has been demonstrated that antioxidant and anti-inflammatory activities of NOB during
I/R is mediated by mitogen-activated protein kinase (MAPK) induction [78]. It is said that NOB is
capable of the treatment of metabolic disorders and recovering cholesterol balance via the stimulation
of bile acid synthesis [79]. In Table 1, we have summarized the therapeutic and biological activities
of NOB. These studies highlight the potential of NOB in disease treatment and its protective effects.
The newly published articles have shed some light on the capability of NOB in cancer therapy [80,81].
In the present review, we attempt to mechanistically examine the efficiency of NOB in cancer therapy
by focusing on molecular pathways and mechanisms.

Table 1. Therapeutic and biological activities of nobiletin (NOB).

Disease/
Protective Effect

In Vitro/
In Vivo Dose Duration of

Experiment
Administration

Route Results References

Cardioprotective In vivo (rat) 15 mg/kg Before coronary
microembolization Tail vein

Downregulation of
apoptosis and

protecting against
myocardial injury

by induction
of PI3K/Akt

signaling pathway.

[82]

Cardioprotective In vitro (human
aortic valves)

10, 20,
and 50 µM 24 and 48 h -

By activation of
ABCG2 and

AKR1B1, NOB
suppresses tumor

necrosis factor
(TNF)-mediated

calcification of the
human aortic valve.

[83]

Cardioprotective In vitro (H9c2
cardiomyocytes)

12.5, 25, 50,
and 100 µM 24 h -

Reducing apoptosis
and oxidative

stress after
ischemic/reperfusion
(I/R) injury via the

stimulation of
Akt/GSK-3β.

[84]

Neuroprotective In vivo (mice) 100 mg/kg/day 6 weeks Oral gavage

Decreasing the
levels of

anti-inflammatory
cytokines such as

TNF-α and
interleukin (IL)-1β
by downregulation

of the NF-κB
signaling pathway

and, also, inhibition
of microglial
activation.

[85]

Osteoarthritis

In vitro
(primary human

chondrocytes)
In vivo (mice

model of
osteoarthritis)

20, 40,
and 80 µM
20 mg/kg

2 h
8 weeks Gavage

Alleviation of
osteoarthritis by

downregulation of
PI3K/Akt/NF-κB

pathway and
reducing

inflammatory
factors.

[86]
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Table 1. Cont.

Disease/
Protective Effect

In Vitro/
In Vivo Dose Duration of

Experiment
Administration

Route Results References

Antihypertensive In vivo (rat) 20 and
40 mg/kg 2 weeks -

Attenuation of
vascular changes,

induction of
antihypertensive
effect, inhibition

of matrix
metalloproteinases

(MMP)-2 and -9,
and reducing

oxidative stress
through Nrf2

activation.

[87]

Anti-inflammation
In vitro
(human

mesangial cells)

5, 10, 20,
and 30 µM 24 h -

By inhibition of
STAT3, NOB

downregulates the
expression of NF-κB

to decrease the
levels of TNF-α,
IL-6, and IL-1β.

[88]

Anti-inflammation In vitro
(macrophages)

0, 10, 20, 40,
and 80 µM 24 h -

NOB enhances the
expression of

miR-590 to decrease
the levels of

proinflammatory
cytokines.

[89]

I/R injury In vivo (mice) 5 mg/kg At the start of
reperfusion Intraperitoneal

Alleviation of
hepatic I/R injury by

stimulation of
autophagy and
mitochondrial

biogenesis via the
SIRT1/FOXO3a axis.

[90]

5. Potential Role of NOB in Human Malignancies

5.1. Nobiletin and Chemotherapy

The estimates demonstrate that finding effective treatments for cancer is of importance due
to the enhanced incidence rate of this life-threatening disorder. Chemotherapy is one of the most
common ways in cancer therapy, and due to its minimally invasive nature, scientists have focused
on cancer therapy using chemotherapeutic agents. However, a high number of patients with cancer
are directed towards death due to chemotherapy failure caused by multidrug resistance (MDR) [91].
The transport-based classical and nonclassical MDR phenotypes are responsible for the cellular
mechanisms of drug resistance [92]. The P-glycoprotein (P-gp) is a member of the ATP-binding cassette
(ABC)-family efflux transporters encoded by the MDR1 gene. A variety of studies have evaluated
the role of P-gp in different cancers. It is said that enhanced expression of P-gp elevates malignant
behavior and the progression of cancer cells via the stimulation of epithelial-to-mesenchymal transition
(EMT) [93]. The antitumor drugs exert their inhibitory effect on the proliferation and viability of MDR
cancer cells via the inhibition of P-gp [94]. Consequently, scientists in the field of medicinal chemistry
have attempted to develop novel drugs targeting and suppressing P-gp activity in cancer cells [95].
It has been demonstrated that NOB targets P-gp in cancer therapy. A newly published experiment
developed a derivative of NOB to enhance its solubility and antitumor activity. This agent, known as
compound 29d, can increase the accumulation of paclitaxel (PTX) in tumor cells (lung cancer, A549 cells)
via reducing the P-gp activity [96]. On the other hand, increasing evidence demonstrates that the
Nrf2/PI3K/Akt and the extracellular signal-regulated kinase (ERK) pathway pathways can stimulate
chemoresistance [97]. The compound 29d administration is associated with the downregulation of ERK.
Besides, NOB can inhibit the PI3K/Akt signaling pathway via Nrf2 downregulation [96]. This study
highlights the fact that NOB and its derivatives target different pathways to sensitize cancer cells into
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chemotherapy. Similarly, another study evaluates the efficacy of NOB in enhancing the antitumor
activity of PTX. The same molecular pathways were investigated. It is held that, by downregulation of
Nrf2 and Akt and ERK phosphorylation, NOB sensitizes MDR lung cancer cells into PTX-mediated
apoptosis [96]. Although these two studies showed similar findings of the Akt and Nrf2 pathways,
the latter study exhibits that, in increasing PTX efficacy for the elimination of lung cancer cells, NOB does
not affect P-gp activity. This difference is because compound 29d is a derivative of NOB with higher
antitumor activity. However, more studies are required to examine this controversy. An experiment
reveals that NOB can significantly decrease the viability and survival of cancer cells in a dose-dependent
manner, but it does not affect the cell cycle. It is said that a combination of NOB and cisplatin has
a more inhibitory effect on the viability of thyroid cancer cells compared to NOB or cisplatin alone. It is
worth mentioning that, in reducing the viability of cancer cells, NOB does not negatively affect normal
cells [98], making it a suitable option in chemotherapy. Sorafenib is a receptor tyrosine kinase (RTK)
inhibitor approved by the Food and Drug Administration (FDA). The sorafenib is extensively applied
in the treatment of different cancers with high efficacy [99,100]. The NOB can be co-administered
with sorafenib to elevate its antitumor activity. A combination of NOB and sorafenib remarkably
diminishes the proliferation and viability of prostate cancer cells by the stimulation of apoptosis
and cell cycle arrest via enhancing the expression of Bax, Rb1, and CDKN1A [101]. The multidrug
resistance-associated protein 1 (MRP1), known as ABCC1, was first recognized in lung cancer cells
that had no expression of ABCB1 (MDR1 or P-gp) [102]. It has been reported that MRP1 stimulates
chemoresistance via neuroblastoma-derived MYC (MYCN) [103–105]. The fibrous sheath-interacting
protein 1 (FSIP1) is able to stimulate chemoresistance via MRP1 induction [106]. Notably, miR-7
functions as an onco-suppressor miR to sensitize breast cancer cells into chemotherapy via MRP1
inhibition [107]. The NOB follows the same route in sensitizing lung cancer cells into adriamycin
chemotherapy. NOB enhances adriamycin accumulation in cancer cells via downregulation of MRP1,
leading to the induction of apoptosis [108]. On the other hand, the Wnt/β-catenin signaling pathway
plays a significant role in cancer development [109–111]. Antitumor drugs such as echinacoside diminish
the malignancy and proliferation of cancer cells via Wnt inhibition [112]. Besides, miR-455-3p inhibits
EMT and the invasion of cancer cells via downregulation of Wnt/β-catenin [112]. The Akt can reduce
the activity of GSK-3β via its phosphorylation at serine9 to ensure the nuclear translocation of β-catenin
and activation of the Wnt signaling pathway, whereas active GSK-3β inhibits the nuclear translocation
of β-catenin via ubiquitination [113]. In enhancing the antitumor activity of adriamycin, NOB inhibits
Akt to suppress the Wnt/β-catenin signaling pathway via elevating GSK-3β activity, leading to the
reduced viability and proliferation of lung cancer cells [108]. One of the most well-known and studied
signaling pathways is the PI3K/Akt/mTOR signaling pathway [114–118]. This axis participates in
cell proliferation and metabolism. Consequently, tumor cells prefer to activate the PI3K/Akt/mTOR
signaling pathway in enhancing their survival and growth [119]. The antitumor drugs negatively
affect the PI3K/Akt/mTOR signaling pathway to suppress proliferation. For instance, sanggenol
triggers apoptosis and cell cycle arrest in cancer cells via inhibition of the PI3K/Akt/mTOR axis [120].
Pitavastatin limits the migration and proliferation of cancer cells by the inhibition of angiogenesis
via PI3K/Akt/mTOR downregulation [121]. In sensitizing cancer cells with oxaliplatin and reducing
the viability and proliferation of colorectal cancer (CRC) cells, NOB inhibits the PI3K/Akt/mTOR
signaling pathway, resulting in the induction of apoptosis via reducing the expression of Bcl-2 and
enhancing the expression of Bax and caspase-3. The PI3K induces the mTOR signaling pathway via
Akt phosphorylation. This axis results in cell proliferation and the growth of cancer cells. Targeting this
pathway by NOB mediates its antitumor activity [122]. Overall, the studies exhibit that NOB not
only can enhance chemosensitivity via the inhibition of P-gp, but also, it can suppress oncogene
signaling pathways such as Nrf2 and Akt/ERK to inhibit cancer progression and sensitize them into
chemotherapy [123]. It is worth mentioning that colonic metabolites of NOB such as 3/-DMN, 4/-DMN,
and 3/,4/-DMN have chemo-preventive effects. In respect to the higher bioavailability of 3/-DMN,
4/-DMN, and 3/,4/-DMN compared to NOB, they can considerably suppress the invasion, proliferation,
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and survival of colon cancer cells via the stimulation of apoptosis and cell cycle arrest [41], making
them suitable options in chemotherapy.

5.2. Relation between NOB and Metastasis

Metastasis is an increasing challenge in enhancing the overall survival rate of patients with cancer
and associated with poor prognosis [124]. Earlier, we had described that EMT is a factor that enhances
the metastasis and migration of cancer cells. MMPs are also able to provide the metastasis and invasion
of tumor cells via the degradation of the extracellular matrix (ECM) [125,126]. Among MMPs, MMP-2
and MMP-9 are important due to their ability in the degradation of major components of the ECM,
including gelatin, collagen, and laminin [127]. The overexpressions of MMP-2 and MMP-9 are related
to the undesirable prognosis of patients with cancer [128]. Noteworthy, several molecular signaling
pathways such as NF-κB, specificity protein-1 (SP-1), cAMP response element-binding protein (CREB),
ERK, and JNK can regulate MMP expression [129–131]. The NOB suppresses the motility and invasion
of cancer cells via the downregulation of MMP-2 and MMP-9. The investigation of molecular signaling
pathways exhibits that NOB reduces MMP-2 and MMP-9 expressions through the inhibition of ERK
and JNK pathways and downstream targets such as NF-κB, CREB, and SP-1. Overall, CREB and SP-1
interactions are necessary for MMP-2 expression, while NF-κB and SP-1 interactions are responsible
for MMP-9 expression. In this way, JNK and ERK act as upstream mediators in the stimulation of
CREB/SP-1/MMP-2 and NF-κB/SP-1/MMP-9 signaling pathways. In the inhibition of osteosarcoma
migration, NOB negatively affects the aforementioned signaling pathways. NOB indirectly affects the
target involved in the metastasis of osteosarcoma (MMP-2 and MMP-9) and, by downregulation of their
upstream modulators, paves the way for the inhibition of metastasis and improving prognosis [132].

5.3. Head and Neck Cancers

The poly (ADP-ribose) polymerases (PARPs) are enzymes involved in catalyzing the poly
(ADP-ribosylation (PARylation) [133]. Among the 18 members of PARPs, PARP-1/2 contribute to
the repair of DNA injury [134]. The sirtuin 1 (SIRT1) is suggested to be a downstream target of
PARP [135]. The implication of PARP/SIRT1 in cancer has been explored [134]. Inhibition of PARP2
by onco-suppressor miR-383 diminishes the progression of cancer cells and sensitizes them into
cell death [136]. Interestingly, the administration of NOB is correlated with the downregulation of
PARP2. As a downstream target of PARP2, SIRT1 undergoes upregulation that, in turn, induces the
AMPK signaling pathway to stimulate apoptosis in nasopharyngeal carcinoma cells and to suppress
their proliferation [137]. It is well-understood that EMT enhances the migration and metastasis
of cancer cells. During this process, epithelial cells are transformed into mesenchymal ones that
have high migratory and metastatic capabilities. In this way, E-cadherin as an epithelial protein
undergoes downregulation, while an increase occurs in mesenchymal markers such as N-cadherin and
vimentin [138–141]. Consequently, targeting this mechanism remarkably reduces the invasion of cancer
cells. The administration of NOB is related to the downregulation of TGF-β and Slug, as upstream
mediators involved in EMT induction, resulting in increasing E-cadherin and occluding levels and
decreasing N-cadherin and fibronectin levels. The examination of molecular pathways demonstrates
that TGF-β induces the nuclear translocation of β-catenin in EMT induction, and by the inhibition of
TGF-β, NOB suppresses the EMT of glioma cells [142].

5.4. Thoracic Cancers

As we mentioned in the introduction section, NOB undergoes a transformation in the body and
produces three common metabolites, including 3/-DMN, 4/-DMN, and 3/,4/-DMN. Interestingly, a newly
published study has investigated the efficacy of NOB and its common metabolites in the treatment
of lung cancer. This study displays that NOB and its metabolites have a great potential to suppress
lung cancer tumorigenesis, but 4/-DMN and 3/,4/-DMN possess higher antitumor activity compared to
NOB. The antitumor activity of NOB and its metabolites is mediated by their effect on the stimulation
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of apoptosis and cell cycle arrest via the overexpression of p21, CDK1, cyclin D1, CDK6, CDK4, Bax,
and caspase, as well as PARP [143]. The accumulating data demonstrates that MMPs play a pivotal role
in the migration and metastasis of cancer cells via degradation of the base membrane [144]. To suppress
the migration and invasion of breast cancer cells, NOB downregulates the expression of MMP-2
and MMP-9 [145]. In respect to the role of MAPK in cell proliferation and apoptosis [146], targeting
this pathway is of importance in cancer therapy. It seems that the stimulation of MAPK can inhibit
both the migration and growth of cancer cells [147]. In breast cancer cells, NOB enhances p38 MAPK
expression and its phosphorylation to inhibit breast cancer progression [145]. In the introduction
section, we mentioned that the antioxidant activity of NOB relies on Nrf2 activation. However, the story
is completely different in cancer cells. It is held that Nrf2 activation can ensure the proliferation
of tumor cells and induces chemoresistance [148]. In breast cancer cells, NOB supplementation
reduces the expression of Nrf2 and inhibits the nuclear translocation of Nrf2 to suppress breast
cancer proliferation [145]. This study highlights the fact that NOB is able to simultaneously target
different molecular pathways that make it an appropriate option in cancer therapy. It seems that
CD36 participates in tumor metastasis via the regulation of lipid metabolism. The interaction between
CD36 and TGF-β stimulates EMT mechanisms to enhance the migration and metastasis of cancer
cells [149]. CD36 overexpression is associated with the poor prognosis and resistance of cancer cells into
chemotherapy-mediated apoptosis [147]. The effect of CD36 on the migration and invasion of cancer
cells is due to the downregulation of E-cadherin and β-catenin [150]. On the other hand, stimulation of
the STAT3 and NF-κB signaling pathways mediates the angiogenesis of cancer cells, and the inhibition of
STAT3 can suppress migration [151]. Normally, CD36 stimulates the nuclear translocation of STAT3 and
NF-κB to induce angiogenesis. The activation of NF-κB occurs as a result of the nuclear translocation
of STAT3. The administration of NOB restricts the angiogenesis, migration, and proliferation of breast
cancer cells via inhibition of the CD36/STAT3/NF-κB axis [152]. Interestingly, studies have shown that
CYP1 enzymes contribute to the bioactivation of flavonoids and mediating their antitumor activity [153].
This story is also true for NOB. The cytochrome P450 CYP1 plays a significant role in the bioactivation
of NOB in breast cancer cells [154]. By bioactivation of NOB via CYP1, an increase occurs in its
capability in the induction of apoptosis and cell cycle arrest at the G1 phase. Using a CYP1 inhibitor
remarkably reduces antitumor activity against breast cancer cells [155], exhibiting that NOB metabolism
by cytochrome P450 CYP1 can be targeted in further studies. Aromatase is another enzyme involved
in estrogen biosynthesis [156]. The aromatase is a key member of cytochrome P450 CYP1 capable
of converting androstenedione into estrone (E1) [157]. The expressions and activities of aromatase
demonstrate an increase in patients with breast cancer [158,159]. So, aromatase is an oncogene factor
in breast cancer, and its activity should be inhibited. Notably, the administration of NOB at high
doses (10 µM) enhances the expression and activity of aromatase, while low doses (1 µM) inhibits the
aromatase activity. This study highlights the fact that, in targeting the metabolism of breast cancer
cells, low doses of NOB should be used [160]. In respect to the role of EMT in the migration and
malignant behavior of cancer cells, much attention has been directed towards identifying molecular
signaling pathways related to EMT induction [161–165]. The TGF-β1 is able to stimulate EMT by the
phosphorylation of Smad2 and Smad3 and the subsequent formation of a complex with Smad4. Then,
the Smad2/3/4 complex translocates into the nucleus to induce an EMT [166]. So, targeting Smads is
of importance in suppressing metastasis. In lung cancer cells that have high metastatic ability and
demonstrate migration into neighboring cells and tissues, reducing metastatic factors can alleviate
poor prognosis. In this way, NOB disrupts TGF-β1 and Smad3 in EMT induction. As a consequence,
the ability of cancer cells in migration undergoes downregulation [167]. The Notch1 is an oncogene
factor that its role in different cancers has been evaluated. It is said that tumor-educated B (TEB) cells
are able to enhance cancer progression via the activation of IL-1β/HIF-2α and subsequent induction
of Notch1 [168]. As a histone methyltransferase, G9a increases the malignant behavior of cancer
cells via Notch1 overexpression [169]. These studies show that Notch1 should be inhibited in cancer
therapy. The NOB supplementation suppresses hypoxia-mediated EMT in lung tumor cells via the
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downregulation of Notch1. In this way, NOB inhibits downstream targets of Notch1 such as Hey1 and
Hes1 and, also, Jagged1/2. It is worth mentioning that, by the downregulation of Notch1, EMT-related
factors including Twist1, Snail1, and ZEB1/2 undergo a decrease [170]. On the other hand, miR-200b is
an onco-suppressor factor that inhibits downstream targets such as laminin subunit alpha 4 (LAMA4)
to reduce the invasion and proliferation of cancer cells [171]. During the metastasis of cancer cells,
the expression of miR-200b undergoes downregulation [172]. So, antitumor drugs should elevate
miR-200b expression. NOB enhances the expression of miR-200b in hypoxic conditions to suppress the
EMT-mediated metastasis of lung cancer cells [170].

5.5. Gynecological Cancers

The programmed cell death (PCD) includes the apoptosis, pyroptosis, and autophagy that are made
by caspases, lysosomal proteases, and endonucleases [173–176]. During recent decades, much attention
has been directed towards targeting three major arms of PCD in cancer therapy. The pyroptosis
participates in cell death via the induction of DNA fragmentation. GSDMD and GSDME are members
of pyroptosis [177]. The NOB enhances ROS generation to stimulate mitochondrial dysfunction
via decreasing the mitochondrial membrane potential, leading to autophagy activation. It seems
that this pathway upregulates GSDMD/GSDME to trigger pyroptosis, resulting in a diminution
in the viability of ovarian cancer cells [178]. The molecular biologists who work in the field of
cancer believe that cancer cells can obtain resistance to chemotherapy and enhance their proliferation
using autophagy induction [179,180]. Accumulating data has investigated the role of autophagy
and its regulation in chemoresistance [181,182]. The TSPAN9 is a transmembrane protein that
can stimulate the chemoresistance of cancer cells through autophagy induction [183]. It seems
that there is a dual relationship between EMT and autophagy. By the inhibition of autophagy,
the malignant behavior of cancer cells undergoes downregulation to sensitize cancer cells into
chemotherapy [184]. Overall, studies are in agreement with the fact that autophagy activation may
mediate chemoresistance [185]. In ovarian cancer cells, NOB targets autophagy to stimulate cell
cycle arrest and apoptosis. Via upregulation of the Akt signaling pathway, NOB inhibits autophagy
to sensitize cancer cells into apoptosis. Autophagy functions as a pro-survival mechanism, and its
inhibition by NOB triggers the intrinsic pathway of apoptosis via the induction of caspase-9, caspase-3,
and PARP [186].

5.6. Urological Cancers

The Toll-like receptors (TLRs) are expressed in a variety of immune cells, including macrophages,
dendritic cells, and natural killer (NK) cells. There are 10 distinct types of TLRs (TLR1-10), and they
undergo induction by endogenous or exogenous ligands carrying pathogen-associated molecular
patterns (PAMPs) regions [187]. Although TLRs are involved in the immune response, TLR2,
TLR4, and TLR9 contribute to cancer proliferation and progression [188]. So, scientists should
consider the oncogene role of TLR4 and TLR9 in cancer cells. It seems that TLR4/MyD88/NF-κB and
TLR4/TRIF/IRF3 are involved in the production of inflammatory cytokines after the identification
of lipopolysaccharide (LPS) [189]. In prostate cancer cells, NOB exerts an inhibitory impact on
their growth and proliferation. The investigation of molecular pathways shows that NOB is able
to inhibit TLR9/IRF7 and TLR4/TRIF/IRF3 in suppressing the proliferation and growth of cancer
cells [190]. In respect to the role of inflammation in cancer growth and the involvement of TLRs
in the production of inflammatory factors such as interferon-γ (IFN-γ) and IFN-β, NOB inhibits
prostate cancer growth by its anti-inflammatory activity. In the intrinsic pathway of apoptosis,
the mitochondrion and endoplasmic reticulum (ER) play significant roles [191,192]. External stimuli
such as ROS are able to disrupt the mitochondrial membrane integrity via the upregulation of Bax
and downregulation of Bcl-2. Following cytochrome c release into the cytosol, the caspase-9 and
caspase-3 are activated to induce apoptotic cell death [193,194]. The main function of ER is to modulate
protein synthesis, protein folding, and calcium homeostasis [195]. The accumulation of unfolded
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proteins stimulates ER stress, leading to the activation of apoptosis, unfolded protein response (UPR),
and ER-associated degradation (ERAD). The PKR-like ER-associated kinase (PERK), inositol requiring
enzyme-1α (IRE1α), and activating transcription 6 (ATF6) are three major arms of the UPR that can
either stimulate autophagy or apoptosis [196–198]. On the other hand, the PI3K/Akt/mTOR signaling
pathway regulates apoptosis and cell proliferation [199]. The administration of NOB targets all of
these pathways and mechanisms. By downregulation of the PI3K/Akt/mTOR axis, NOB inhibits the
proliferation and growth of bladder cancer cells. NOB induces mitochondrial dysfunction to release
cytochrome C, resulting in stimulation of proapoptotic factors caspase-3, caspase-9, Bad, and Bax.
Besides, NOB triggers the PERK/elF2α/ATF4/CHOP axis through ER stress to activate apoptosis.
These molecular pathways and mechanisms targeted by NOB reduce the invasion and proliferation
of bladder cancer cells [200]. The signal transducer and activator of transcription 3 (STAT3) and
YY1-associated protein 1 (YY1AP1) are two oncogene factors in cancer cells [201–204]. The YYAP1
upregulation is associated with the poor prognosis of patients with cancer [205]. The STAT3 signaling
pathway accelerates the growth and proliferation of lung cancer cells via miR-33a-5p inhibition and the
subsequent activation of karyopherin subunit alpha 4 (KDNA4) [206]. Besides, G-protein alpha-subunit
(GNAS) as an upstream mediator can induce the STAT3 signaling pathway through IL-6 to enhance
the malignancy and proliferation of cancer cells [207]. So, targeting these two signaling pathways is of
importance in cancer therapy. The in vivo and in vitro experiments exhibit that NOB triggers apoptosis
and cell cycle arrest. The examination of molecular signaling pathways demonstrates that NOB
inhibits the phosphorylation of STAT3, YY1AP1, and SRC/Akt to exert its inhibitory impact on renal
carcinoma cells [208]. The tumor microenvironment plays a significant role in the malignant behavior
of cancer cells. Hypoxia is a feature of the tumor microenvironment that increases the metastasis of
renal carcinoma cells and is associated with recurrence [209,210]. One of the molecular mechanisms
involved in metastasis is the EMT [198]. Increasing evidence has shown that hypoxia can trigger
the EMT to enhance the migration and invasion of cancer cells [211]. On the other hand, it has been
demonstrated that hypoxia, in addition to other well-established inducers, can stimulate oncogenic
NF-κB and Wnt/β-catenin signaling pathways [212,213]. These two pathways can function as upstream
inducers of the EMT in cancer migration [214,215]. Noteworthy, NOB is capable of suppressing the
invasion and migration of renal carcinoma cells. The examination of molecular pathways reveals that
NOB downregulates the expression of Wnt and NF-κB to suppress the EMT in the hypoxic condition,
leading to decreased the migration and metastasis of cancer cells (Figure 1) [216].

Figure 1. The involvement of signaling pathways in the regulation of EMT by NOB. AMPK,
AMP-activated protein kinase; SIRT1, sirtuin 1; PARP2, poly (ADP-ribose) polymerase 2; NOB,
nobiletin; Wnt, Wingless-related integration site; TGF-β, transforming growth factor-β; NF-κB, nuclear
factor-kappa B; ZEB1, zinc finger E-box binding homeobox 1; MMP-2, matrix metalloproteinase-2;
MMP-9, matrix metalloproteinase-9; and EMT, epithelial-to-mesenchymal transition.
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5.7. Gastrointestinal Cancers

Colorectal cancer (CRC) is the most common cancer in males and females after lung and breast
cancers [217]. A variety of factors contribute to CRC development, such as gender, age, genetic
alterations, lifestyle, and inflammatory bowel disease (IBD). The incidence rate of CRC is higher in
men compared to women [218,219]. It seems that plant-derived natural compounds are potential
agents in CRC chemoprevention [220]. The efficacy of NOB in the treatment of colon cancer is related
to its impact on the viability and survival of cancer cells. A metabolite of NOB, known as 4-DMN,
and atorvastatin are able to suppress colon cancer malignancy via the stimulation of apoptosis and cell
cycle arrest [221]. In this way, NOB enhances the expression of p21, while it reduces the levels of CDK2,
CDK4, cyclin D, and cyclin E [222]. It is worth mentioning that inflammatory factors can lead to colon
cancer development [218]. During IBD, a number of proinflammatory cytokines such as TNF-α, IL-6,
and IL-1β are secreted [223]. These factors are suggested to be involved in colon cancer carcinogenesis,
since the downregulation of IL-6 reduced the colon cancer development [223]. The administration
of NOB and atorvastatin decreases the levels of proinflammatory cytokines and downregulates the
expression of COX-2 to inhibit inflammation-mediated colon cancer development [222]. In fact, in this
case, the antitumor activity of NOB results from its anti-inflammatory activity. The epidermal growth
factor receptor (EGFR) is a transmembrane glycoprotein that begins several intracellular molecular
signaling pathways, leading to cell proliferation and cell growth. β-elemene as an antitumor agent
diminishes the migration and invasion of cancer cells by the inhibition of EGFR signaling [224].
The onco-suppressor upstream factors are able to inhibit cancer malignancy via the inhibition of
EGFR [225]. These studies exhibit that EGFR signaling is a positive factor for the growth and
proliferation of cancer cells, and its targeting is a potential strategy in cancer therapy. A combination
of NOB and atorvastatin synergistically suppresses the proliferation and metastasis of colon cancer
cells via EGFR downregulation [222]. The Ras homolog gene family member A (RhoA) is a key player
of the Ras/Rho superfamily with involvement in different aspects of cells such as proliferation and
migration. The abnormal expression of RhoA occurs in different cancers. It is said that the migration
and survival of melanoma cells undergo inhibition via RhoA inhibition [226]. The great antitumor
activity of lupeol depends on RhoA inhibition to suppress colon cancer capacity in proliferation and
growth [227]. In the treatment of colon cancer, NOB negatively affects RhoA expression. The NOB
supplementation along with atorvastatin suppresses the invasion and migration of colon cancer cells
via RhoA downregulation [222]. In previous sections, we demonstrated that NOB was reported to
induce apoptosis in cancer cells through both mitochondrial and ER pathways. The NOB enhances
the expressions of ER stress-related proteins such as IRE-1α, ATF4, CHOP, and GRP78. This leads to
the stimulation of apoptosis via caspase-4 activation. However, an interesting point is the induction
of autophagy by NOB. It seems that the inhibition of autophagy in cancer cells may enhance the
number of cells undergoing apoptosis [228]. In gastric cancer cells exposed to NOB, the inhibition of
autophagy elevates the capability of NOB in the stimulation of apoptosis [229]. So, in order to enhance
the antitumor activity of NOB, autophagy inhibitors such as rapamycin and chloroquine can be used
to inhibit protective autophagy and maximize the efficacy of NOB in the elimination of cancer cells.

5.8. Hematological Cancers

The c-kit, known as CD117, encoded by the kit gene, is considered as an oncogene factor. The c-kit
phosphorylates plasma membrane prohibitin (PHB) at tyrosine259 to ensure the invasion and migration
of cancer cells and induces their resistance into chemotherapeutic agents [230,231]. The combination
of irinotecan and tankyrase inhibitors diminishes the proliferation and growth of cancer cells via
downregulation of the c-kit [232]. The microRNA (miR)-664, as an onco-suppressor, reduces the
expression of the c-kit to suppress the proliferation and invasion of cancer cells [233]. In acute myeloid
leukemia (AML) cells, NOB targets the c-kit. It appears that the viability and survival of AML cells
undergo a decrease by NOB via reducing expression of the c-kit. Notably, a combination of NOB and
cytarabine, a chemotherapeutic agent, remarkably decreases c-kit expression in AML therapy [234].
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5.9. Anti-angiogenesis Effect

The process of sprouting new blood vessels from pre-existing ones is defined as angiogenesis [235].
This process is active during embryogenesis, and in adulthood, angiogenesis is transiently activated,
for instance, during the reproductive cycle in females. Although angiogenesis seems to be vital
for physiological conditions, its activation occurs in a variety of disorders, particularly cancer [236].
Molecularly, vascular endothelial growth factor (VEGF) plays a major role during angiogenesis,
and in this way, it interacts with the epidermal growth factor (EGF) and basic fibroblast growth
factor (bFGF) [237]. Upstream mediators target these molecular pathways to regulate angiogenesis.
The steroid receptor coactivator (Src) and focal adhesion kinase (FAK) are tyrosine kinases capable of
controlling angiogenesis. The EGFR effect on migration relies on FAK [238]. Src has been displayed to
induce angiogenesis to elevate the growth and migration of cancer cells [239]. Src and EGFR regulate
VEGF in angiogenesis by targeting STAT3 [240–245]. So, complicated signaling pathways are involved
in the regulation of angiogenesis. The administration of NOB inhibits EGFR to downregulate the
expression of its downstream targets, including Scr, FAK, and STAT3 (the Src/FAK/STAT3 signaling
pathway). As a consequence, the nuclear translocation of STAT3 is inhibited, and its attachment into
paxillin is suppressed, leading to the downregulation of angiogenesis and invasion and migration of
breast cancer cells (Figure 2, Table 2) [246].

Figure 2. The capability of NOB in targeting various molecular pathways and mechanisms, making it
an appropriate option in cancer therapy. P-gp, P-glycoprotein; NOB, nobiletin; miR, microRNA; MRP1,
multidrug-resistance-associated protein 1; GSK-3β, glycogen synthase kinase 3 beta; Nrf2, nuclear
factor erythroid 2-related factor 2; Akt, protein kinase B; PI3K, phosphatidylinositide-3 kinase; and EMT,
epithelial-to-mesenchymal transition.
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Table 2. The antitumor activity of nobiletin in different cancers.

Cancer Type Cell Line In Vitro/In Vivo Dose Duration of
Experiment

Administration
Route Results References

Breast cancer Human breast carcinoma
MDA-MB-231 cells In vitro 0, 10, 30,

and 50 µM 24 h -

Significantly decreasing the
expressions of genes related
to the malignant behavior of
cancer cells such as CXCR4,
MMP-9, NF-κB, and MAPK.

[247]

Breast cancer
Colon cancer

MDA-MB-435, MCF-7
(human ductal breast

carcinoma and
adenocarcinoma,

respectively), and HT-29
(human colorectal

adenocarcinoma) cell lines

In vitro 0, 50, 100, 150,
and 200 µM 12, 24, 48, 72, and 96 h -

Induction of the G1 cell
cycle arrest not apoptosis in

cancer cells.
[248]

Breast cancer MCF7 cells In vitro 0, 1, 5, and 10 µM 0, 3, 6, 9, and 24 h -

The CYP1A1 induces the
bioactivation of NOB in

breast cancer cells, resulting
in cell cycle arrest at the

G1 phase.

[154]

Breast cancer

Three subtypes of breast
cancer cell lines, including

hormone receptor
(ER/PR)-positive MCF-7,

hormone receptor-negative
but HER2-positive SK-BR-3,

and triple-negative
MDA-MB-468

In vitro 100 µM 0, 2, 6, 12, and 24 h -

The stimulation of apoptosis
and cell cycle arrest via the
downregulation of Bcl-XL,

ERK1/2, cyclin D1, Akt,
and mTOR and

upregulation of p21
and Bax.

[249]

Hepatocellular
carcinoma SMMC-7721 cells In vitro

In vivo

2-128 mg/L
125, 250,

and 500 mg/kg

48 h
11 days

Intragastric
gavage

Stimulation of the G2 cell
cycle arrest,

downregulation of Bcl-2
and COX-2, upregulation of

Bax and caspase-3,
and triggering apoptosis.

[250]
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Table 2. Cont.

Cancer Type Cell Line In Vitro/In Vivo Dose Duration of
Experiment

Administration
Route Results References

Liver cancer HepG2 cells In vitro 0.5, 1, and 2.5 µM 12 h -

Suppressing the invasion
and migration of cancer

cells via the downregulation
of ERK and the PI3K/Akt

signaling pathway.

[251]

Hepatocellular
carcinoma

Neuroblastoma
cells

HuH-7 human
hepatocarcinoma cells and

SK-N-SH human
neuroblastoma cells

In vitro 100 µM 24 h -

Increasing the levels of
genes related to the

endoplasmic reticulum,
such as CHOP, Ddit3, Trib3,
and Asns, and decreasing

the levels of genes related to
cell cyclins, such as Ccna2,

Ccne2, and E2f8.

[252]

Gastric cancer

Four human gastric cancer
cell lines, including TMK-1,

MKN-74, KATO-III,
and MKN-45

In vitro 0, 50, 100, 150, 200,
and 250 µM 24 h -

Induction of apoptosis and
the cell cycle arrest and

enhancing the
chemotherapy efficacy

of cisplatin.

[253]

Gastric cancer AGS, MKN-45, SNU-1,
and SNU-16 cells In vitro 0, 12.5, 25, 50, 100,

and 200 µM 48 h -

Stimulation of the G1 cell
cycle arrest and apoptosis
via enhancing the levels of

the Bax/Bcl-2 ratio,
caspase-3, caspase-9,

and PARP.

[254]

Gastric
carcinoma

Human AGS gastric
adenocarcinoma cell line In vitro 0, 1, 1.5, and 2 µM 24 and 48 h -

Stimulation of a diminution
in the invasion and

migration of gastric cancer
cells via the inhibition of

a small GTPase signal
and FAK/PI3K/Akt.

[255]
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Table 2. Cont.

Cancer Type Cell Line In Vitro/In Vivo Dose Duration of
Experiment

Administration
Route Results References

Glioma Human U87 and Hs683
glioma cell lines In vitro 20, 50, and 100 µM 24 and 48 h -

Suppressing the migration,
invasion, and proliferation
of cancer cells by induction

of the cell cycle arrest
(downregulation of cyclin
D1 and cyclin-dependent
kinase-2) and inhibition of

the MAPK and Akt
signaling pathways.

[256]

Lung cancer A549 and H460 cell lines In vitro
In vivo

20, 40, and 80 µM
600 µg

24 h
30 days Intraperitoneal

Induction of the G1 cell
cycle arrest and subsequent
sensitivity of cancer cells to
paclitaxel and carboplatin.

[257]

Nasopharyngeal
carcinoma

HONE-1 and NPC-BM,
human NPC cells lines In vitro 0, 10, 20, and 40

µM 12 and 24 h -

Reducing the expression of
MMP-2 and suppressing the
phosphorylation of ERK1/2

mediate the antitumor
activity of NOB against

cancer cells.

[258]

Ovarian cancer
Human ovarian cancer cell

lines, OVCAR-3 and
A2780/CP70

In vitro 0, 5, 10, 20, 40, 80,
and 160 µM 16 h -

Simultaneously reducing
the levels of HIF-1α, Akt,
and NF-κB, leading to the
downregulation of VEGF

and the subsequent
inhibition of angiogenesis.

[259]

Prostate cancer PC-3 cells In vitro 0, 5, 10, 20, 40, 80,
and 160 µM 24 h -

The downregulation of Akt
by NOB impairs the

proliferation and growth of
cancer cells. By the
inhibition of Akt,

the expression of HIF-1α as
a downstream target

undergoes a decrease.

[260]
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Table 2. Cont.

Cancer Type Cell Line In Vitro/In Vivo Dose Duration of
Experiment

Administration
Route Results References

Fibrosarcoma Human fibrosarcoma
HT-1080 cells In vitro 16, 34, and 64 µM 24 h -

Inhibiting the metastasis
and migration of cancer

cells through the
downregulation of MEK.

[261]

Fibrosarcoma Human fibrosarcoma
HT-1080 cells In vitro 64 µmol/L 12 h -

Reducing the expression of
pro-MMPs and enhancing
the expression of the tissue

inhibitor of
metalloproteinase 1.

Suppressing the activity of
MEK1/2 and inducting the
phosphorylation of JNK.

[262]
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6. Conclusion and Remarks

NOB is a naturally occurring compound with potential therapeutic effects that are shown in
Table 1. However, we allotted this review to the antitumor activity of NOB. NOB can be used as
a chemosensitizer. To date, studies have revealed that NOB can reduce the resistance of cancer cells
into chemotherapeutic agents such as cisplatin, PTX, and OX. The chemoprevention impact of NOB
is related to its effect on five distinct molecular pathways and mechanisms. The first molecular
mechanism is P-gp, which, by inhibition of its activity, NOB paves the road into the penetration of
chemo-preventive agents into cancer cells. Second, NOB inhibits the Nrf2/PI3K/Akt pathway to inhibit
the growth of cancer cells. Third, NOB reduces the malignant behavior of cancer to sensitize them into
chemotherapy via EMT inhibition. Fourth, NOB inhibits the Wnt/β-catenin signaling pathway via
GSK-3β upregulation. Fifth, NOB enhances the expression of miR-7 to inhibit MRP1. In the induction
of apoptosis, NOB affects various molecular pathways. One of them is the PARP2/SIRT1/AMPK axis.
NOB inhibits PARP2 to stimulate the SIRT1/AMPK axis, leading to apoptotic cell death. One of the
most important effects of NOB is its capability in suppressing the migration and invasion of cancer cells.
In this way, NOB downregulates NF-κB, Wnt, TGF-β, Snail, Slug, and ZEB1 as upstream mediators of
EMT, resulting in the reduced metastasis of cancer cells. In addition to EMT, NOB can inhibit MMP-2
and MMP-9 expressions to suppress the metastasis of cancer cells. It is worth mentioning that NOB can
target the metabolism of cancer cells, so that it diminishes the aromatase activity, as a factor involved
in the growth of breast cancer cells. NOB supplementation induces pro-survival autophagy. It seems
that using autophagy inhibitors such as rapamycin and chloroquine enhances the efficacy of NOB in
the stimulation of apoptosis. In the induction of apoptosis, NOB targets both the mitochondrion and
ER. In inhibition of the migration of cancer cells during hypoxic conditions, NOB downregulates the
expressions of NF-κB and Wnt signaling pathways. In respect to the role of inflammation in colon
cancer carcinogenesis, NOB reduces the levels of inflammatory factors such as ILs and IFN to suppress
cancer development and progression. The interesting point is that NOB exerts an anti-angiogenesis
impact by the inhibition of STAT3 and VEGF. Several directions appear to be beneficial about NOB.
Based on the minimal side-effects of NOB, it can be applied in clinical trials, and until now, there has
been no research in this case. Besides, using different strategies such as nanocarriers seems to be
advantageous in enhancing the antitumor activity of NOB via promoting its bioavailability.
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