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ABSTRACT Here, we report the annotated genome sequence for a heterokont alga
from the class Xanthophyceae. This high-biomass-producing strain, Tribonema minus
UTEX B 3156, was isolated from a wastewater treatment plant in California. It is sta-
ble in outdoor raceway ponds and is a promising industrial feedstock for biofuels
and bioproducts.

Adraft haploid 158.35-Mb genome sequence for Tribonema minus strain UTEX B
3156 was assembled into 557 contigs containing 18,290 predicted protein-coding

genes. Tribonema species are common to many freshwater and wastewater ecosystems
and are distinguished by their filamentous, nonbranching, H-shaped bipartite walls (1).
Some species can be high lipid and carbohydrate producers (2–12), making these
organisms potential candidates for biodiesel production (2). In addition, these strains
can be harvested without chemical flocculants and have applications in bioremedia-
tion of toxic compounds (13, 14). T. minus strain UTEX B 3156 was originally isolated
from wastewater treatment ponds in San Luis Obispo, CA, and identified based on the
cell morphology as well as on the ribosomal DNA (rDNA) sequence identity (15).

T. minus was grown photoautotrophically in bubble columns in 800ml of BG11 medium
(16) under fluorescent lighting at 100mmol/m2 s1 at room temperature for 4 to 5days.
Genomic DNA was extracted by exposing agarose-embedded cells to cellulolytic enzymes
as previously described (17). Then, 50ml of culture was washed and resuspended in buffer
(200mM NaCl, 100mM EDTA, 10mM Tris [pH 7.2]), and 500ml of the resuspended culture
was mixed with premelted 1% low-melting-point agarose and distributed into plug molds
(Bio-Rad, Hercules, CA). The plugs were allowed to solidify at 4°C and incubated in 50ml of
protoplasting solution (4% hemicellulase, 2% drielase, 0.1mM sodium citrate, 1 M sorbitol,
240mM EDTA, 10mM b-mercaptoethanol) with shaking at 120 rpm, overnight at 37°C. The
plugs were drained from the solution and incubated in 5ml of lysis solution (2mg/ml of pro-
teinase K; 0.5 M EDTA, pH 9.5; 1% lauroyl sarcosine sodium salt) with shaking at 40 rpm,
overnight at 50°C. The plugs were drained from the lysis solution and washed 3 times with
Tris-EDTA (TE), pH 8.0 (10mM Tris-HCl [pH 7.5] plus 1 mM EDTA [pH 8.0]), under gentle rock-
ing. The plugs were warmed to 70°C for 7min, added to 200ml of prewarmed b-agarase so-
lution (192ml of TE [pH 8.0] plus 8ml of b-agarase) (New England BioLabs [NEB], Ipswich,
MA), and incubated for 16h at 42°C. The genomic DNA was quality checked by running on
a gel and using the Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA). Sequencing was
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performed by Genewiz (South San Francisco, CA, USA). A 20-kb PacBio (Menlo Park, CA,
USA) SMRTbell library was prepared using the BluePippin size selection system (Sage
Science, Beverly, MA, USA) per the manufacturer’s protocol. Two single-molecule real-time
(SMRT) cells were sequenced and collectively produced 912,479 subreads with a mean sub-
read length of 6,675bp. This result provided 24,273Mb of data, which was approximately
121� coverage of the assembled genome size (18). The PacBio reads were quality assessed
via the error-correction step of the Canu v2.1.1 assembler, and subreads greater than 5 kb
in length were assembled using Canu v2.1.1 (correctedErrorRate=0.085 corMinCoverage=0
corMhapSensitivity=high) (19). The Nextera XT DNA library preparation kit for Illumina was
used for target enrichment DNA library preparation following the manufacturer’s recom-
mendations (San Diego, CA, USA). The additional Illumina HiSeq X Ten platform sequenc-
ing (2� 150bp) produced 141,827,758 reads, totaling 42,548Mb, with a mean quality
score of 35.98 and 94.13% bases having quality scores of $30. The Illumina paired-end
sequencing reads were preprocessed using AfterQC v0.9.7 (20) and used to polish the
Canu assembly with Pilon v1.23 (21). Using BWA-MEM v0.7.17 (22), 92.2% of the Illumina
reads were mapped onto the assembled reference genome. The chloroplast and mito-
chondrial genome sequences were assembled using Fast-Plast v1.2.8 (23) and NOVOPlasty
v4.2 (24). Default parameters were used except where otherwise noted.

T. minus RNA was extracted from pooled cells grown under various growth condi-
tions in bubble columns (nitrogen depleted, low/high density, low/high light, early/
late growth phase), using the RNeasy extraction kit from Qiagen. The RNA library prep-
arations and sequencing reactions were conducted at Genewiz, LLC (South Plainfield,
NJ, USA). The RNA samples were quantified using the Qubit 2.0 fluorometer
(Invitrogen), and the RNA integrity was checked using the TapeStation 4200 platform
(Agilent Technologies, Palo Alto, CA, USA). RNA sequencing libraries were prepared
using the NEBNext Ultra RNA library prep kit for Illumina using the manufacturer’s
instructions (NEB). Briefly, mRNAs were initially enriched with oligo(dT) beads. The
enriched mRNAs were fragmented for 15min at 94°C. First-strand and second-strand
cDNAs were subsequently synthesized. cDNA fragments were end repaired and adeny-
lated at the 39 ends, and universal adapters were ligated to the cDNA fragments, fol-
lowed by index addition and library enrichment using PCR with limited cycles. The
sequencing library was validated on the Agilent TapeStation platform and quantified
using the Qubit 2.0 fluorometer (Invitrogen), as well as quantitative PCR (KAPA
Biosystems, Wilmington, MA, USA). rRNA depletion was performed using the Ribo-Zero
rRNA removal kit (Illumina). RNA sequencing libraries were prepared using the
NEBNext Ultra RNA library prep kit for Illumina following the manufacturer’s recom-
mendations (NEB). Briefly, enriched RNAs were fragmented for 15min at 94°C. First-
strand and second-strand cDNAs were subsequently synthesized. cDNA fragments
were end repaired and adenylated at the 39 ends, and universal adapters were ligated
to the cDNA fragments, followed by index addition and library enrichment with lim-
ited-cycle PCR. The sequencing libraries were validated using the Agilent TapeStation
4200 platform and quantified using the Qubit 2.0 fluorometer (Invitrogen) as well as
quantitative PCR (Applied Biosystems, Carlsbad, CA, USA).

The sequencing libraries were clustered on a single lane of a flow cell. After cluster-
ing, the flow cell was loaded onto the Illumina HiSeq instrument (4000 or equivalent)
according to the manufacturer’s instructions. The samples were sequenced using a 2� 150-
bp paired-end (PE) configuration. Image analysis and base calling were conducted using the
HiSeq control software (HCS). The raw sequence data (BCL files) generated using the
Illumina HiSeq instrument were converted into fastq files and demultiplexed using Illumina’s
bcl2fastq v2.17 software. One mismatch was allowed for index sequence identification.
Transcriptome sequencing (RNA-Seq) was carried out by Genewiz using the Illumina HiSeq
platform (2� 150bp), which produced 132.88Mb of reads with a mean quality score of
38.07 and 91.27% of bases having a quality score of $30. Sequencing yielded 39,864Mb.
The transcriptome was assembled using Trinity (25).

The assembled genome and transcriptome were used as inputs for the U.S. Department
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of Energy Joint Genome Institute (JGI) Annotation Pipeline, which produced the final struc-
tural and functional annotation for 18,290 predicted protein-coding genes (26). A
Benchmarking Universal Single-Copy Orthologs (BUSCO) v3.0.2 (27) analysis was used to
evaluate the completeness of the assembled genome based on the Stramenopile database
with the Augustus (28) training set (29). The percentage of identified complete BUSCOs was
90% (100 total BUSCO groups searched; 90 complete, 8 missing). The assembly and annota-
tion statistics are provided in Table 1. Noteworthy is that T. minus has a telomeric repeat
sequence of TTAGGG, which differs from that of TTTAGGG reported for the species of other
algal families within Xanthophyceae (30). This is the only published assembly of a yellow-
green alga from the class Xanthophyceae.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number JAFCMP000000000. The version
described in this paper is version JAFCMP010000000. The raw sequencing reads are de-
posited under the BioProject accession number PRJNA692219. The genome assembly,
transcriptome, and annotations are also available from the JGI algal genome portal
PhycoCosm (31) at https://phycocosm.jgi.doe.gov/Tribonema_minus/.
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