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Abstract

Coronaviruses (CoVs) have very large RNA viral genomes with a distinct genomic architecture of core and accessory open
reading frames (ORFs). It is of utmost importance to understand their patterns and limits of homologous and non-
homologous recombination, because such events may affect the emergence of novel CoV strains, alter their host range,
infection rate, tissue tropism pathogenicity, and their ability to escape vaccination programs. Intratypic recombination
among closely related CoVs of the same subgenus has often been reported; however, the patterns and limits of genomic
exchange between more distantly related CoV lineages (intertypic recombination) need further investigation. Here, we
report computational/evolutionary analyses that clearly demonstrate a substantial ability for CoVs of different subgenera
to recombine. Furthermore, we show that CoVs can obtain—through nonhomologous recombination—accessory ORFs
from core ORFs, exchange accessory ORFs with different CoV genera, with other viruses (i.e., toroviruses, influenza C/D,
reoviruses, rotaviruses, astroviruses) and even with hosts. Intriguingly, most of these radical events result from double
crossovers surrounding the Spike ORF, thus highlighting both the instability and mobile nature of this genomic region.
Although many such events have often occurred during the evolution of various CoVs, the genomic architecture of the
relatively young SARS-CoV/SARS-CoV-2 lineage so far appears to be stable.

Key words: coronavirus, recombination, genome evolution, horizontal gene transfer, bioinformatics, molecular
evolution.

Introduction
Genomic analyses of single-stranded RNA viruses, including
coronaviruses (CoVs), have repeatedly demonstrated how
recombination affects their emergence, host range, and path-
ogenicity (Decaro et al. 2009; Simon-Loriere and Holmes 2011;
Terada et al. 2014; Tian et al. 2014; Su et al. 2016; Lau et al.
2018). Given the current pandemic of SARS-CoV-2
(Coronaviridae Study Group of the International
Committee on Taxonomy of Viruses 2020; Wu et al. 2020),
it is of utmost importance to fully understand the patterns
and limits of homologous and nonhomologous genomic ex-
change of the entire CoV subfamily. This knowledge will allow
us to better evaluate any risks from cross-species transmission
and recombination with other closely or distantly related

viruses. It may also guide the development of future vaccines,
by allowing the selection of stable antigenic regions and
avoiding reversion (via recombination) of any future live-
attenuated vaccine strains (Guillot et al. 2000; Racaniello
2006; Pliaka et al. 2012; Burns et al. 2013; Graham et al.
2018; Nikolaidis et al. 2019).

According to the ICTV 2020 release, the CoV subfamily
(Orthocoronavirinae) harbors significant genomic diversity,
comprising 4 genera (a�d), further subdivided into 25 sub-
genera (Lauber and Gorbalenya 2012; Lauber et al. 2012; ICTV
Coronaviridae Study Group 2020). Various CoVs are found in
a wide range of animal species, causing respiratory, enteric,
hepatic, and nervous system disorders with mild to severe
symptoms (Rota et al. 2003; Weiss and Navas-Martin 2005;
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Woo et al. 2007; Bermingham et al. 2012; Wheeler et al. 2018;
Chen et al. 2020; Wu et al. 2020). Bats are reservoirs for the a-
and b-CoVs, whereas wild birds are reservoirs for the c- and d-
CoVs (Woo et al. 2009, 2012; Wong et al. 2019; Latinne et al.
2020; Wille and Holmes 2020). Human CoVs are found in the
a- and b-genera and have a zoonotic origin, with bats as the
key reservoir, but intermediate hosts may also be involved in
the cross-species transmission (Song et al. 2005; Reusken et al.
2013; Fan et al. 2019).

CoVs possess very large genomes among RNA viruses (25–
32 kb) and contain at least 6 core open reading frames (ORFs;
1a, 1b, Spike, Envelope, Membrane, and Nucleocapsid;
Gorbalenya et al. 2006; Cui et al. 2019; Chen et al. 2020).
Lineage-specific accessory ORFs are also present and may be
involved in host adaptation, including the modulation of in-
terferon signaling and the production of proinflammatory
cytokines (Gorbalenya et al. 2006; Liu et al. 2014; Cui et al.
2019; Hartenian et al. 2020). This large genome size and com-
plex architecture allow division of labor and flexibility for cross-
species adaptation (Lauber et al. 2013). Importantly, the Spike
protein facilitates binding to host receptors and so determines
host range, cell tropism, and even the transition from a mild
toward a highly pathogenic phenotype, via point mutations
and recombination (S�anchez et al. 1999; Kuo et al. 2000; Casais
et al. 2003; Rottier et al. 2005; Menachery et al. 2015).

Recombination events among closely related CoV strains/
genotypes/species of the same subgenus have been reported
frequently (Keck et al. 1988; Kottier et al. 1995; Herrewegh et al.
1998; Decaro et al. 2009; Tian et al. 2014; Dudas and Rambaut
2016; Forni et al. 2017; Bobay et al. 2020; Boni et al. 2020; Saeng-
Chuto et al. 2020; Goldstein et al. 2021; Yang et al. 2021); we
denote this category of events as intratypic recombination.
The corresponding recombination junctions are scattered
across the genome, although enrichment around transcrip-
tional regulatory sequences (TRS-B) has been reported (Yang
et al. 2021). These TRS are needed for template switching
during the transcription of the CoV ORFs (Sawicki et al.
2007; Sola et al. 2015), but they may also facilitate recombina-
tion via template switching among different CoVs (Graham et
al. 2018; Yang et al. 2021). The genomes of several CoVs are
mosaic, but many of their donors have yet to be sequenced
(Goldstein et al. 2021). Furthermore, recombination events
among more distantly related CoVs have also been observed.
Such radical evolutionary events probably result from the
presence of highly conserved TRS-B sequences (shared be-
tween the recombining CoVs) at the beginning of the various
ORFs (Sawicki et al. 2007; Sola et al. 2015; Boniotti et al. 2016;
Graham et al. 2018; Banerjee et al. 2020). Nevertheless, very
disparate TRS-B sequences between two CoVs cause incom-
patibility and thus may also present barriers to such recom-
bination events (Yount et al. 2006). In this study, we define as
intertypic any recombination event among members of differ-
ent CoV subgenera. In addition, nonhomologous recombina-
tion events may occur with other viruses or taxa, leading to the
acquisition of new genomic regions that appear as lineage-
specific accessory ORFs (Zeng et al. 2008; Woo et al. 2014; Forni
et al. 2017). The goal of this study is to understand the patterns
and limits of radical (intertypic) genomic exchange of CoVs

and to see whether any genomic regions emerge as hotspots of
recombination. The first part of this analysis focuses on ho-
mologous recombination of core ORFs among different CoV
subgenera, whereas the second part deals with nonhomolo-
gous recombination of accessory ORFs among CoV subge-
nera/genera and even with other taxa.

Results
Several computational methods exist for detecting and ana-
lyzing recombination events among closely related viruses
(Posada et al. 2002; Pond et al. 2005; Martin et al. 2011). In
this study, we have implemented phylogenetic tree incongru-
ence methods, which are best suited for macroevolutionary
analyses, as well as similarity plots (see Materials and
Methods). BioNJ, PhyMl, and Bayesian protein phylogenetic
trees and tanglegrams (or “cophylo plots,” a way of graphically
representing correspondence between two phylogenies with
the same tip labels) were generated for the nonstructural
peptides (nsps) of ORFs 1a/1b and the other core ORFs.
This was done both for all four genera together and for
each of the four genera individually. In addition, phylogenetic
trees (BioNJ and PhyML) of the various regions were com-
pared against each other for incongruence, using the normal-
ized Robinson–Foulds (RF) method for unrooted trees (see
Materials and Methods). We further validated the statistical
significance of detected incongruities with CONSEL, to ensure
the robustness of our conclusions. In this study, we only
consider highly confident phylogenetic incongruence events
that are supported by high bootstrap, aLRT, and posterior
probability values for all three tree methods and are also
statistically supported by the corresponding CONSEL analy-
ses. In all analyses, the neighborhood of the Spike ORF
emerges as an intertypic recombination hotspot.

The Spike ORF Displays Elevated Phylogenetic Tree
Incongruence
Phylogenetic trees based on the Spike ORF consistently dis-
play the highest or next-highest phylogenetic incongruence
compared with all other analyzed regions, in a-, c-, and d-
CoVs (fig. 1; supplementary file 1 and figs. 32, 33, 38, 39, 50, 51,
57, and 58, Supplementary Material online). In contrast, the
corresponding regions of b-CoVs display relatively low phy-
logenetic incongruence. The Spike sequence is one of the
most variable core genomic regions. However, other core
regions also have similar sequence variability but do not dis-
play such high levels of phylogenetic incongruence. Therefore,
this pattern (confirmed by subsequent phylogenetic tree tan-
glegram analyses) does not result from badly aligned regions,
rather, it may be attributed to divergence combined with
cassette-like intertypic recombination. If the majority of inter-
typic recombination events involved single crossovers, then
there should be high phylogenetic incongruence among the
regions flanking the Spike ORF, but this is not the case.
Furthermore, if most of the intertypic recombination (in var-
ious regions) involved single crossovers, then the incongru-
ence among the 50 terminal nsps and the 30 terminal ORFs,
such as Membrane and Nucleocapsid, should also be high,
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resembling linkage disequilibrium decay (Dudas and
Rambaut 2016), but it is not.

Tanglegram-Based Detection of Intertypic
Recombination Events in the Common Ancestors of
CoV Genera and Subgenera
a- and b-CoVs consistently cluster together as a major clade
for all core genomic regions except for Spike, for which most
of the a- and all the d-CoVs form a single group (fig. 2 and
supplementary fig. 1, Supplementary Material online, recom-
bination event 21). Moreover, cryo-electron microscopy has
demonstrated that the Spike proteins of a- and d-CoVs are
structurally more similar to each other (Shang et al. 2018).
Thus, at least one recombination event occurred in which the
common ancestor of all d-CoVs obtained a Spike ORF from
an a-CoV ancestor.

We also observed several cases of phylogenetic incongru-
ence involving entire subgenera (mostly in a-CoVs); they dis-
played a major shift in their phylogenetic position (for a
certain genomic region), as a monophyletic group. We inter-
pret this as a major event that occurred in the common

ancestor of the representative sequences of that subgenus.
Here, we only report cases well supported by BioNJ, PhyML,
and Bayesian tree tanglegrams and also statistically supported
(for their incongruence) by CONSEL. The regions that are
involved in such events are shown in figure 2 and are desig-
nated as SgM (Subgenus Movement).

More specifically, in a-CoVs, there exist 14 well-established
subgenera, with the Ozimops and Desmodus genomes possi-
bly forming two extra subgenera. The first 9 subgenera
(Decacovirus, Pedacovirus, Colacovirus, Nyctacovirus,
Minunacovirus, Duvinacovirus, Setracovirus, Myotacovirus,
and Rhinacovirus) together with Ozimops and Desmodus con-
stitute a major clade that we designate A1. Another two
subgenera (Tegacovirus and Minacovirus) constitute a major
clade that we designate A2 and is a sister group to A1.
Luchacovirus (found in rodents), Sunacovirus, and
Soracovirus (both found in shrews) constitute three very di-
verse additional clades that we designate A3, A4, and A5,
respectively. The tanglegrams reveal that Ozimops is a sister
group to Decacovirus, but for nsp16 it pairs with
Minunacovirus (recombination event 4, supplementary figs.
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FIG. 1. Matrices of incongruence among the core genomic regions of the four CoV genera (A–D) based on the normalized RF method, for unrooted
trees (calculated with the TreeCMP server). BioNJ phylogenetic trees were generated with the Poisson model of evolution and 500 bootstrap
replicates. In addition, branch lengths <0.02 were collapsed. The orange line above each matrix displays the average Poisson distance among
sequences of the same genomic region (calculated with the MegaX software). Blue bars above each matrix display the average RF value for that
particular region (against all other regions).

Modular Intertypic Homologous and Nonhomologous Coronavirus Recombination . doi:10.1093/molbev/msab292 MBE

3

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab292#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab292#supplementary-data


16–19, Supplementary Material online). The Rhinacovirus (A1
clade) nsp8 is no longer part of the A1 clade, but clusters with
the A3 Luchacovirus (recombination event 3, supplementary
figs. 12–15, Supplementary Material online). Luchacovirus (A3
clade) moves within the A1 clade for both nsp1 (recombina-
tion event 1, supplementary figs. 4–7, Supplementary
Material online) and nsp7 (recombination event 2,

supplementary figs. 8–11, Supplementary Material online).
Similarly, Sunacovirus (A4 clade) moves within the A1 clade
for Envelope (recombination event 11, supplementary figs.
28–31, Supplementary Material online). We observed many
other incongruities for most of the subgenera in various ge-
nomic regions, but their new positions (in the trees) were not
supported by both high bootstrap/aLRT values and different
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trees, thus they may actually represent cases of rapid
divergence.

Although a-CoVs form five distinct lineages, their Spike
ORFs are organized into two major evolutionary clusters.
The smaller cluster comprises Rhinacovirus (a member of
clade A1), Luchacovirus (clade A3), Sunacovirus (clade A4),
Soracovirus (clade A5), whereas the major cluster comprises
all the other members of clades A1 and A2 (see Spike tree in
fig. 2, recombination events 5, 8, 9, 10 in supplementary figs. 1,
2, and 20–23, Supplementary Material online). The Spike ORF
of this smaller cluster has been suggested to originate from b-
CoVs via an ancient recombination event (Tsoleridis et al.
2019).

Phylogenetic incongruence was also observed for the
Nucleocapsid region of b-CoV Merbecovirus (fig. 2 and recom-
bination event 12 in supplementary figs. 34–37,
Supplementary Material online). By taking Sarbecovirus as
the reference point, Hibecovirus is their closest subgenus,
followed by Nobecovirus, Merbecovirus, and finally
Embecovirus (most distant). The only exception to this pat-
tern is observed in the Nucleocapsid region, where
Merbecovirus seems to be the closest subgenus to the
Sarbecovirus–Hibecovirus group. An alternative explanation
is that the ancestral Nobecovirus Nucleocapsids underwent
recombination or significant sequence divergence. However,
manual inspection of the trees, their branch lengths, and the
Poisson distances leads us to favor the first explanation, whilst
acknowledging that the second cannot be excluded at
present.

Tanglegram-Based Detection of Intertypic
Recombination between Some Members of Different
Subgenera
We investigated instances where certain genomic regions of
the members of a particular subgenus did not form a mono-
phyletic group. These observations could be attributed to
rapid divergence or intertypic recombination events in
some, but not all, members. These events are more recent
than the ones (described above) that occurred in the com-
mon ancestor of a subgenus. Such regions are shown in figure
2 (designated as “P”: polyphyletic). We checked whether these
candidate recombinant sequences clustered within or next to
other subgenera with high bootstrap/aLRT/posterior proba-
bility values and also performed similarity plot and bootscan
analyses with RDP4 (Martin et al. 2015; see Materials and
Methods), whenever possible. We detected several events;
two in a-CoVs, five in c-CoVs, and three in d-CoVs.
Interestingly, nine of these ten events are located at the
Spike ORF.

The most striking and recent event has been documented
for Swine Enteric CoV (Boniotti et al. 2016), which is essen-
tially a swine Tegacovirus (A2 lineage) that obtained the Spike
ORF of a swine Pedacovirus (A1 lineage; recombination event
6, supplementary figs. 20–22 and 24–25, Supplementary
Material online). A second case (again in the Spike ORF)
concerns 5 of the 13 analyzed Tegacovirus sequences that
form a monophyletic sister group to Minacoviruses

(recombination event 7, supplementary figs. 20–22, 26, and
27, Supplementary Material online). An alternative sequence
of events is that the other seven Tegacovirus (from cats and
dogs) that form the second Spike monophyletic group
recombined with an as yet unknown donor from the A2
lineage. Inspection of the phylogenetic trees and their
branches leads us to favor the first option, whereas the
host range of the second group favors the second option.
Yet another instance concerns four c-CoV Igacovirus Spike
sequences (from birds) that form a monophyletic cluster out-
side of the Igacovirus (recombination events 13–16, supple-
mentary figs. 40–44, Supplementary Material online). This is a
case of three or most probably four independent events
where members from an as yet unknown c-CoV subgenus
repeatedly served as Spike donors to several Igacoviruses. A
further case involves a duck Igacovirus Membrane sequence
that clusters with the c�CoV Brangacovirus (recombination
event 17, supplementary figs. 45–49, Supplementary Material
online). A final example concerns five d-CoV Buldecovirus
Spike sequences forming a monophyletic cluster (that is out-
side of Buldecoviruses) and is a sister group to Herdecovirus
(recombination events 18–20, supplementary figs. 52–56,
Supplementary Material online). Our interpretation is that
this is a case of three independent events, where members
from an, as yet unknown, d-CoV subgenus (a close relative of
Herdecoviruses) repeatedly served as Spike donors to these
Buldecoviruses.

In addition, we detected several low-confidence intertypic
recombination events for a-CoV subgenera, where the incon-
gruent sequences cluster with other subgenera, but with low
bootstrap/aLRT/posterior probability support. Here, either
the donor is unknown or the incongruence is due to rapid
divergence; they were not considered further in our study.
Finally, we also observed previously reported intratypic re-
combination events, that is, within Sarbecovirus (supplemen-
tary figs. 60–68, Supplementary Material online). Although
such events are not the focus of this study, it should be
mentioned that, at the beginning of the COVID-19 pandemic,
several studies analyzed the available genomic data for evi-
dence of recombination that could have led to the emergence
of SARS-CoV-2 (Boni et al. 2020; Lam et al. 2020; Paraskevis et
al. 2020; Yang et al. 2021). Although the data show that SARS-
CoV-2 did not emerge via a recent recombination event, re-
combinant sequences (from other species) among the SARS-
CoV and SARS-CoV-2 lineages have been detected and were
also confirmed by our study.

Accessory ORF Evolution: Nonhomologous
Recombination of Accessory ORFs between Different
CoV Subgenera and Genera
Based on PSI-BLAST, we built position-specific scoring matri-
ces (PSSMs) for the various annotated accessory ORFs and
thus identified 73 nonredundant Accessory ORF Families
(AOFs; see Materials and Methods). The PSSMs allowed for
a very sensitive homology search and revealed very distinct
distributions in the various genera and subgenera (figs. 3 and
4 and supplementary file 2, Supplementary Material online).
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Although no AOF was present in all four genera, three AOFs
were present in some subgenera of both a- and b-CoVs and
three AOFs were present in subgenera of both c- and d-CoVs.
Interestingly, three of these intergenus AOFs are localized in
the neighborhood of the Spike ORF. Possibly, some AOFs with

restricted distributions may actually be distant homologs of
other AOFs that significantly diverged (Ouzounis 2020;
Neches et al. 2021) and lost their homology signal.

Intriguingly, we detected two AOFs with very restricted
distributions that originated either from gene duplication or
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horizontal gene transfer (HGT) of a Spike ORF fragment. The
first instance concerns a bat b-CoV Hibecovirus ORF2 that is
situated between ORF1ab and Spike, that is distantly homol-
ogous to the N-terminal region of its Spike (supplementary
file 2, Supplementary Material online: PSSM_TBlastN: 4e�39;
27% identity). This is either a case of nonhomologous
recombination/gene-fragment duplication within the same
genome (followed by rapid divergence) or horizontal transfer
from another related Hibecovirus Spike N-terminal region.
The second instance concerns a similar Spike gene-
fragment duplication event for ORF6 of some
Luchacoviruses (supplementary file 2, Supplementary
Material online: PSSM_TBlastN: 7e�63; 25% identity).

We also detected distant homology between the ORF3a of
b-CoV Sarbecovirus/Hibecovirus/Nobecovirus and the
Membrane ORF of a-CoV A2 Tegacovirus and A4
Sunacovirus (supplementary file 2, Supplementary Material
online: PSSM_TBlastN: 2.4e�4 and 3.9e�4, respectively).
Accordingly, a bioinformatics analysis (Ouzounis, 2020) re-
cently reported a very distant homology among the SARS-
CoV-2 ORF3a and Membrane ORFs. Based on our extended
genome sampling and the observed e-values of the ORF3a
PSSM against a�CoVs (best PSSM_TBlastN: 2.4e�4) and b-
CoVs (best PSSM_TBlastN: 2e�3), possibly a Membrane re-
gion from a-CoVs jumped via nonhomologous recombina-
tion to the common ancestor of Sarbecovirus/Hibecovirus/
Nobecovirus and rapidly diverged to an accessory ORF.

Nonhomologous Recombination of Accessory ORFs
between CoVs and Other Taxa
We detected seven AOFs that had homologs in other taxa,
outside of the Coronavirinae (supplementary file 2,
Supplementary Material online), with three of them situated
in the neighborhood of Spike. The most striking and well-
studied example is a hemagglutinin-esterase (MHV_HE) that
is present in all the members of b-CoV Embecovirus, situated
just before the Spike. It has homologs in toroviruses (porcine
torovirus PSI-BLAST e-value: 1.7e�55) and influenza C/D.
Most probably, it was acquired either indirectly (via a torovi-
rus intermediate step) or directly from an influenza C/D-like
virus, and subsequently adapted and coevolved with the
Spike (Snijder et al. 1991; Zeng et al. 2008; Caprari et al.
2015; Lang et al. 2020).

Another case is the b-CoV NS2 Embecovirus AOF
(MHV_NS2) that belongs to the 2H phosphoesterase super-
family (Mazumder et al. 2002). This AOF is observed in most
Embecoviruses, like HCoV-OC43, and is situated between
ORF1ab and the hemagglutinin-esterase (HE). Interestingly,
close homologs (NCBI-BlastP e-value: 6e�61) of this AOF
(from b-CoVs) are consistently found in several rodent a-
CoV Luchacoviruses as well (Tsoleridis et al. 2019), at the
same genomic location, but they do not have the neighboring
HE ORF. This AOF is also homologous to a region within the
central part of polyprotein 1ab of several toroviruses, includ-
ing porcine torovirus (PSI-BLAST e-value: 2e�28). Apparently,
nonhomologous genomic exchange among CoVs and toro-
viruses has happened more than once.

Next to the a-CoV Luchacovirus ORF2/NS2, there exists
another accessory ORF (instead of HE in Embecoviruses),
designated ORF2b. It is present in some, but not all a-CoV
Luchacoviruses. It is homologous to rodent C-type lectins
(PSI-BLAST e-value: 4e�34) found in natural killer cell recep-
tors as well as in many poxviruses and some herpesviruses.
This AOF probably originated from its hosts (Wang et al.
2020). Furthermore, both ORF2a and ORF2b are missing
from another closely related Luchacovirus genome
(MT820625.1), thus highlighting the dynamic nature of this
genomic region (Wang et al. 2020) and the potential for gene
loss (Forni et al. 2017).

We also identified four more interesting AOFs. p10, situ-
ated just after the nucleocapsid region of some b-CoV
Nobecoviruses in bats, is homologous (PSI-BLAST e-value:
3.9e�22) to p10 proteins from reoviruses (Huang et al.
2016). The Buldecovirus NS7a AOF (situated after the
Nucleocapsid) of several avian d-CoV Buldecoviruses is ho-
mologous (PSI-BLAST e-value: 1e�10) to NSP1-1 from avian
rotavirus-g. An uridine kinase (closest PSI-BLAST hit: fungi; e-
value: 2e�30) is found only in c-CoV Cegacoviruses
(Mihindukulasuriya et al. 2008). Finally, the same c-CoV
Cegacoviruses contain ORF6 that is distantly homologous
to the capsid protein of human astrovirus 5 (PSI-BLAST e-
value: 4.7e�7).

Discussion
The integration of our extensive phylogenetic and genome
architecture analyses has revealed intertypic homologous and
nonhomologous recombination events among the genomes
of different CoV subgenera/genera, and even with other taxa.
Intriguingly, many of these events are localized around the
Spike ORF and occur as double crossovers, where an entire
region is exchanged as a cassette/module and the rest of the
genome stays intact. It is unlikely that these observed and
statistically supported phylogenetic incongruities (especially
for Spike) are artifacts of rapid divergence or convergent evo-
lution, because the “incongruent” regions actually cluster
with regions from other genera/subgenera with high boot-
strap/aLRT/posterior probability support (among other evi-
dence, like site-wise likelihood of alternative hypotheses—
results not shown). The Spike recombination of Swine
Enteric CoV is the most recent and clear example. We have
applied stringent analysis criteria involving the phylogeny of
entire regions and it is possible that many genuine intertypic
recombination events may not have passed our filters, espe-
cially if they involved small segments of an ORF (Forni et al.
2017). Another major problem is genomic sampling, where
the donor has yet to be sequenced (Goldstein et al. 2021).

Our interpretation for the frequently observed modular
recombination events around the Spike ORF is that long-
range genetic interactions of various genomic regions may
actually block radical (intertypic) single-crossover recombina-
tion events (Sola et al. 2011, 2015) but allow for double-cross-
over events in certain genomic islands. This conclusion is
supported by various independent experimental observa-
tions. Nucleocapsid proteins (N-proteins) from different
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members of the same genus may only be partially compatible,
whereas N-proteins from different genera are completely in-
compatible (Schelle et al. 2005; Sungsuwan et al. 2020) and
may even have a suppressive effect (Masters 2019; Sungsuwan
et al. 2020). N-proteins are also involved in the circularization
of the genome (Lo et al. 2019). CoV RNA secondary structures
have been shown to form long-range interactions within a
CoV genome (Ziv et al. 2020) and to interact with cellular
components, to initiate transcription and replication (Sola et
al. 2011). Genetic interactions have been observed between
the nsp8, nsp9 peptide regions (from ORF1a), and the pseu-
doknot at the 30 end of the genome (Züst et al. 2008). Thus,
single-crossover recombination events among different sub-
genera may break such long-range interactions, whereas
double-crossover/modular events may allow their retention.

We also observed distinct subgenus-specific accessory ORF
genomic architectures. These may function as an additional
barrier to single-crossover intertypic recombination events
that would otherwise disrupt certain coevolved combinations
of ORFs. Several of these AOFs have been introduced from
other genera/subgenera. However, some of these AOFs do
not have homologs in any other subgenera and may have
emerged via 1) de novo gene birth, 2) rapid divergence of
existing ORFs and loss of the homology signal, or 3) via non-
homologous recombination with ORFs (followed by rapid
divergence) from other CoVs, other viruses, or even hosts
(Elhaik et al. 2006; McLysaght and Hurst 2016; Moyers and
Zhang 2016; Schmitz and Bornberg-Bauer 2017; Ouzounis
2020).

We observed the exchange of genomic regions between
CoVs and toroviruses, influenza C/D (directly or indirectly),
reoviruses, rotaviruses, astroviruses, and even with hosts. Such
events were frequent in the neighborhood of the Spike ORF.
Toroviruses are of particular interest, because they belong to
the same order (Nidovirales) as CoVs and can also act as gene
donors in other viral orders, for example, porcine Enterovirus-
G (Shang et al. 2017; Hu et al. 2019). Worryingly, porcine
toroviruses have both a worldwide distribution and a high
infection rate (Hu et al. 2019). Thus, future genomic sampling
of yet undiscovered CoVs may reveal an even more extensive
exchange between CoVs and toroviruses. Moreover, genomic
exchange between viruses (Flaviviridae, Hepeviridae,
Dicistroviridae, and Potyviridae) and their hosts has been ob-
served repeatedly (Gilbert and Cordaux 2017). It is conceiv-
able that some of the abovementioned CoV AOFs did not
move from one virus to the other, but independently from
similar hosts; however, the PSI-BLAST results show other viral
sequences, and not cellular proteins, to be the closest hits.

Importantly, members of the relatively young (Boni et al.
2020) SARS-CoV/SARS-CoV-2 lineages (within
Sarbecoviruses) do not yet appear to act as recipients in
radical intertypic recombination events. They also display a
very distinct AOF architecture. Thus, current evolutionary
data do not favor a scenario where SARS-CoV-2 may (homo-
logously) recombine with other currently circulating human
CoVs of other subgenera/genera. Furthermore, SARS-CoV/
SARS-CoV-2 do not seem to exchange accessory ORFs with
other CoV subgenera or other viruses/hosts, with the

exceptions of ORF3a that is an old and unresolved event
and ORF7a (with some Decacoviruses). It should be noted
that their closest relatives, Hibecoviruses, have a divergent
Spike-like accessory ORF that resulted from either gene du-
plication or horizontal transfer event. Nevertheless, SARS-like
viruses can recombine with SARS2-like viruses, as our and
other analyses have shown (Boni et al. 2020; Lam et al.
2020; Yang et al. 2021). This finding has very important impli-
cations, because, combined with the ability of Sarbecoviruses
to easily move from one host to another, it demonstrates a
potential for a future intratypic recombination event (within
Sarbecoviruses), where a highly infectious SARS-CoV-2 variant
(e.g., the Delta variant) could recombine with a SARS-like
sequence in another host species and give rise to a recombi-
nant that combines the high infectivity of SARS-CoV-2 with
the much higher mortality rate of SARS itself.

Many of the events that we have observed are very old;
nevertheless, our results suggest that researchers and those
responsible for public health should be vigilant. Certain key
taxa like bats and/or farmed animals (especially pigs) have the
potential to play a key role in any future emergence of a
recombinant SARS-CoV-2 strain or some other CoV epidemic
(from another genus/subgenus). SARS-CoV-2 spill-back from
humans to other animals (domesticated or wild) that also
harbor many and diverse CoVs has been reported (de Morais
et al. 2020; Olival et al. 2020; Sit et al. 2020). Ferrets, cats, and
dogs are susceptible to the currently circulating SARS-CoV-2
strains, whereas pigs, chicken, and ducks appear to have lesser,
or no susceptibility (Meekins et al. 2020; Shi et al. 2020; Sit et
al. 2020; Pickering et al. 2021). CoVs demonstrate a high ca-
pacity for cross-species infection, even from birds to mam-
mals, either directly or via a few evolutionary steps (Li et al.
2006; Graham and Baric 2010; Menachery et al. 2015, 2016; Li
et al. 2018; Boley et al. 2020). Furthermore, pigs are carriers of
very diverse a-, b-, as well as d-CoVs and have been shown to
function as “recombination bioreactors,” with the notable
example of Swine Enteric CoV (Boniotti et al. 2016). In addi-
tion, intensively farmed pigs are hosts for many other viruses,
such as toroviruses or influenza A (Hu et al. 2019; Henritzi et
al. 2020; Sun et al. 2020). Fortunately, genomics is a valuable
new tool for monitoring the emergence, spread, and ongoing
adaptations of SARS-CoV-2 (Boni et al. 2020; Neches et al.
2020; Worobey et al. 2020; Kemp et al. 2021; Volz et al. 2021).
It is conceivable that what we have observed is only the “tip of
the iceberg”; that past unknown recombination events of
various CoVs may have led to many unnoticed (or, perhaps,
readily contained) localized small-scale epidemics that died
out. However, given the observed genomic diversity and in-
herent genomic instability of CoVs, in this new era of urban-
ization, global transport, intensive farming, and habitat
destruction (Beyer et al. 2021), intratypic and intertypic re-
combination events may lead to new epidemic strains that
may prove much more difficult to contain (Bedford et al.
2019). As a final note, these results highlight the need to
further investigate the inclusion of other, and much more
stable, genomic regions (in addition to Spike) in the design
and development of the next generation of CoV vaccines.
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Materials and Methods

Phylogenetic Analyses
We obtained the taxonomy IDs for a-, b-, c-, and d-CoVs
from NCBI Taxonomy in order to search for available nucle-
otide sequences in GenBank (Benson et al. 2013), using (as
two extra criteria) the keyword “complete” and nucleotide
length higher than 24,000. We obtained 1,102, 14,769, 435,
and 154 genomic sequences from a-, b-, c-, and d-CoVs, re-
spectively, in August 2020. Redundancy with the set of re-
trieved sequences was removed with the UCLUST software
(Edgar 2010), using 90% nucleotide identity and 98% query
coverage at the whole-genome level, in order to filter out the
thousands of available genomes from the same virus that
have been involved in large outbreaks, like SARS-CoV-2,
Porcine Epidemic Diarrhea Virus (PEDV), and Infectious
Bronchitis Virus (IBV). From each nonredundant group, we
retained one representative sequence, or more if they were
obtained from different hosts. We designate these groups as
NRG90 (Nonredundant Group—90% nucleotide sequence
identity). In addition, within each NRG90 group, we ensured
that we retained the representative RefSeq sequences for
each species that were obtained from ICTV taxonomy
(ICTV Coronaviridae Study Group 2020). Sequences were
aligned with Muscle (Edgar 2004) and MAFTT (parameters:
–auto; Nakamura et al. 2018). Multiple alignment views and
manual editing were performed with the Seaview4 software
(Gouy et al. 2010). The boundaries of nsps within ORF1ab, as
well as those of Spike, Envelope, Membrane, Nucleocapsid, and
the accessory ORFs, were determined based on GenBank an-
notation and from manual inspection of the multiple align-
ments. Filtering of poorly aligned regions was performed with
the g-blocks software (Castresana 2000), where we retained
sites with less than 50% gaps and blocks of two consecutive
sites. Model selection for maximum likelihood (ML) and
Bayesian trees was performed with Prottest3 (Darriba et al.
2011). Subsequent ML tree reconstruction was performed
with PhyML (Guindon and Gascuel 2003; applying
Shimodaira-Hasegawa-like (SH-like) approximate likelihood
ratio test, Subtree-Prunning-Regrafting (SPR) algorithm for
tree search). Neighbor-Joining (BioNJ) trees were generated
with Seaview4 (Gouy et al. 2010), using the Kimura two-
parameter and Poisson models with 500 bootstraps, for nu-
cleotide and protein sequences, respectively. Bayesian phylo-
genetic trees were calculated using the BEAST software
v.1.10.4 (Drummond et al. 2012; Suchard et al. 2018) with
Markov chain Monte Carlo length of 1 million and a burn-
in value of 10,000 (all the other operators and priors were set
to default). Phylogenetic trees were visualized with Treedyn
(Chevenet et al. 2006), iTOL (Letunic and Bork 2019), and
Dendroscope (Huson and Scornavacca 2012). Phylogenetic
trees were generated for all regions (nsps, ORF1ab, Spike,
Envelope, Membrane, and Nucleocapsid) of each CoV genus
independently. In addition, phylogenetic trees that included
all sequences of all four CoV genera together were generated
for those regions (nsps 3–10, 12–16, ORF1ab, Spike,
Membrane, and Nucleocapsid) whose multiple alignments
had a sufficient number of columns, after g-blocks filtering.

Phylogenetic tree incongruence was estimated/quantified
with the RF method (Robinson and Foulds 1981) for
unrooted trees, within the Visual Treecmp server (Goluch
et al. 2020). A certain genomic region is considered incongru-
ent when its phylogeny is not in agreement with the phylog-
eny of the other regions (from the same genome).
Visualization of the triangular matrix of RF normalized values
among the various trees was performed with Python and R
pheatmap packages. This RF-matrix resembles the linkage
disequilibrium matrix, at the macroevolutionary level, but
for specified genomic regions. Since the goal was to investi-
gate incongruence at the macroevolutionary level and not
within the virus species level, for these type of analyses,
branches with length less than 0.02 were collapsed with the
TreeGraph v2 software (Stöver and Müller 2010). Otherwise,
the incongruence of strains of the same virus species would
artificially inflate the RF values. This would especially be the
case for c-CoVs, where many divergent strains of IBV
(Igacovirus) were available. Phylogenetic tree tanglegrams
were visualized with Dendroscope (Huson and Scornavacca
2012), using the ML, BioNJ, and Bayesian tree of ORF1ab as
the reference tree against each of the ML, BioNJ, and Bayesian
trees of the individual nsps and ORFs S, E, M, N, for each of the
four CoV genera separately. Estimation of evolutionary dis-
tance among homologous aligned sequence regions (for vi-
sualization in the RF matrices) was performed with the
Poisson distance method within the MEGA X software
(Kumar et al. 2018; parameters—gap missing data: pairwise
deletion; rates among sites: uniform). The statistical signifi-
cance of phylogenetic incongruence of specific suspected re-
combination events was further assessed with the
approximately unbiased (AU) test, using CONSEL
(Shimodaira and Hasegawa 2001). For a certain set of sequen-
ces, the reference PhyML tree was obtained from the sus-
pected recombined region and it was compared against the
PhyML tree of the corresponding ORF1ab regions.

Accessory ORF Analysis
In the first step of this analysis, all annotated accessory ORFs
from our nonredundant set of 196 CoV genomes were re-
trieved from GenBank. We only retained accessory ORFs with
a length of �50 amino acids, with the exception of human
CoVs (length� 30) that were situated in the regions among
the 6 core ORFs and not any accessory ORFs that were en-
tirely overlapping with any of the core ORFs. The selected
annotated accessory ORFs in all analyzed genomes were fur-
ther clustered in 88 homologous groups, using as cutoff, pair-
wise BLASTP e-values of 1e�10, followed by grouping with
mcl-clustering (Enright et al. 2002). Afterwards, a representa-
tive peptide sequence from each cluster was used to build a
corresponding PSSM with locally installed PSI-BLAST, against
the Coronaviridae proteins of the (locally installed) NCBI non-
redundant protein database, with an e-value cutoff 1e�3 and
as many iterations as needed, until convergence was achieved.
Next, 15 redundant PSSMs were removed and we ended up
with 73 annotated accessory ORF PSSMs. Accordingly, each
nonredundant PSSM corresponded to one homologous AOF.
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All 73 PSSMs are available in supplementary file 3,
Supplementary Material online.

Afterwards, each AOF PSSM was used to scan all the an-
alyzed CoV representative genomes for the presence of the
corresponding family with TBlastN (cutoff: 1e�3). Each
TBlastN hit was inspected to determine whether it encoded
a peptide of at least 30 amino acids, otherwise, it was con-
sidered to be pseudogenized (represented with orange color
in the matrices of figs. 3 and 4). The coordinates of the
detected homologous regions were visualized in each genome
with Biopython and the genomic architectures were manu-
ally inspected. Genomic regions from the representative CoV
genomes containing a certain AOF were aligned with Muscle.
Each multiple alignment is available within the zipped sup-
plementary file 4, Supplementary Material online. Next, the
annotated ORF PSSMs were used as queries to scan the entire
NCBI nonredundant protein database, in order to detect AOF
homologs in taxa outside of Coronavirinae and thus detect
potential nonhomologous recombination events (HGTs).
Intriguingly, bacterial draft genomes were found to include
CoV AOFs with very high sequence identity. These draft
genomes were reassembled with Spades (Bankevich et al.
2012) and the relevant contigs were manually investigated
for copresence of CoV and bacterial genes, but they eventu-
ally appeared to be contaminations and were not further
investigated.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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