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Abstract

Background: In studies comparing different prosthetic treatment concepts the repeated loss of teeth was chosen as
the primary outcome. The resulting data appear to represent a data structure of recurrent events. However, the
application of an existing method for recurrent events is far from straightforward. Often only the first event or the final
state is analyzed using Kaplan–Meier survival statistics, thereby giving a great deal of information away.

Methods: The paper presents a strategy for the analysis of recurrent data using a previously published study on the
influence of different prosthetic treatment concepts for the shortened dental arch on tooth loss. A method based on
cumulative sample history functions of recurrent events was adjusted for tooth loss. The shapes of these cumulative
functions suggest a time dependency of the recurrence rate. To keep the model as simple as possible, a tripartite
Poisson process (which assumes piecewise time-independent rates) was fitted to the cumulative mean functions
stratified by treatment.

Results: Within the middle interval of the three-phasic process, the treatment effects differ significantly, which is
interpreted as a delay of tooth loss due to the use of one type of prosthesis (fixed) compared with the other
(removable).

Conclusions: An analysis based on cumulative history functions is based on process, therefore, temporally changing
characteristics are better captured than in methods for survival analyses. The presented approach offers useful new
insight into the temporal behavior of ongoing tooth loss after prosthetic treatment.

Trial registration: The trial has been registered at controlled-trials.com under ISRCTN97265367 (registration date 4
April 2008).
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Background
Repeated loss of teeth as recurrent events
The paper presents an adapted approach to recurrent data
analyses based on a previously published study on the
influence of different prosthetic treatment concepts for
the shortened dental arch. The primary outcome measure
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was tooth loss [1–3]. Over time within the study popu-
lation repeated tooth loss occurred. This repeated loss of
teeth appears to represent a data structure that matches
approaches for analysis of recurrent events. However,
there are intricacies that prevent easy implementation of
existing recurrent-event time models.
For example, in observations of multiple times to tumor

formation in the context of carcinogenesis experiments
(see the seminal paper by Gail et al. [4]), a legitimate ques-
tion is whether there has been a relapse of a removed
tumor or a further tumor at another location. Likewise,
it is arguable whether a subsequent loss of a tooth can
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be interpreted as a recurrent event. Of course, a class of
events for successive losses of teeth can be constructed,
yet there are striking differences compared to poten-
tially infinitelymany recurrent tumors. Firstly, the number
of teeth is finite. Secondly, unlike an assumed complete
recovery from a tumor, the previous state cannot be
restored after tooth loss.
A related question is how left-censored data should

be treated. Patients enter the study with a given num-
ber of teeth. The event times of precursive losses are, in
general, unknown, but the number of precursive events
shouldmostly be clear when taking themaximum number
of teeth into account. Thus, methodological adaptations
with respect to previously published methods are neces-
sary.
Tooth loss as described within this study is actually the

result of medically indicated extractions. Often more than
one tooth at a time has to be extracted. Many methods for
recurrent events assume non-simultaneous events, partic-
ularly, if the analysis is based on gap times. Although the
extractions were well founded, the extraction times are in
a sense artificial compared to natural loss. Both natural
and interventional losses may worsen the conditions for
the residual set of teeth.

Hazard rate vs recurrence rate
The analysis of multiple times to event data is a
rather young statistical field of study and still immature.
WB Nelson [5] offers an intelligible nonparametric access
and elaborates on the yet short history of recurrent-event
data analysis. RJ Cook and JF Lawless [6], in contrast,
focus more on parametric approaches.
A majority of recurrent-events models are based on

extensions of Cox’s survival model, focusing on hazard
rates [6, 7]. Thereby, models that are based on total time
to event as well as on gap time have been used. The for-
mer models assume incidences in a continuous manner
whereas the latter models assume a reset after each event
into a ground state paired with a reset of the stopwatch
for the next event. The gap time approach appears to be
improper for a description of the shortened dental arch
data since there is definitely no treatment leading to com-
plete recovery of the patient that allows a reset of the
waiting time for subsequent losses of teeth. Even more
contraindicative for the use of gap times is that, quite
often, several teeth have to be simultaneously extracted
for medical reasons. That would lead to zero gap times.
Therefore, survival models based on gap times cannot be
applied.
The continuous total time to event approachmay also be

misguided, since a loss of teeth may worsen the condition
for dental conservation with respect to the residual set of
teeth. Either an accelerated failure time model and/or a
model that accounts for the numbers of extracted, as well

as residual teeth, seems to be more appropriate. In any
case, there is no straightforward application of a proper
survival model with respect to the data at hand.
As Nelson emphatically points out, recurrence rates of

systems should be carefully distinguished from hazard
rates for the lives of non-recurrent items [5]. However,
the distinction loses its stringency for renewal processes,
where a failure of an item can be set back (repaired) to the
item’s original state. That is not the case for tooth losses.
From the perspective of tooth populations, a loss repre-
sents a death. From the patient’s perspective, a tooth loss
has the characteristic of a recurrence. However described,
recurrent events may be addressed within mixed survival
models (frailty analysis) or by clustering the recurrent
events of a unit (e.g., a patient). In contrast, the follow-
ing analysis is based on existing nonparametric methods
[5]. Attempts to perform frailty analyses produced uncon-
vincing results, which are not shown here. Features of the
available data that argue against mixed survival models
are addressed in subsequent sections. Most of the afore-
mentioned problems typically related to hazard-based
approaches can be circumvented when a process-oriented
stance based on an instantaneous event intensity function
is taken. A piecewise constant Poisson process is mod-
eled, rendering the method parametric. All calculations
and presentations have been performed using R [8].

Methods
Study design
The data set originates from a multicenter randomized
controlled clinical trial with two parallel groups and an
allocation ratio of 1. The intention-to-treat principle was
applied. The trial design has been published in detail [1].
The study jaw (mandible or maxilla) was determined by
the dentition present. All molars had to be missing with
at least the canine and one premolar present on each side
(a shortened dental arch). In one group, the patients were
provided with a partial removable dental prosthesis for
replacement of the missing posterior teeth (treatment 1
in the following). In the other group, they were treated
according to a concept that basically aimed at preserv-
ing the shortened dental arch without complete tooth
replacement using a fixed prosthesis (treatment 2 in the
following). The primary outcomewas tooth loss. All losses
were recorded for the whole dentition, for both the study
jaw (SJ) in which the study treatment was delivered and
the other jaw, the non-study jaw (NSJ). The required sam-
ple size was calculated a priori using a log-rank test based
on an expected tooth loss rate of 20 % for treatment 1
and 5 % for treatment 2 after 5 years applying a two-sided
primary significance test (α =5 %). Loss to follow-up of
patients over time was assumed to follow an exponen-
tial distribution, the dropout rate adding up to 10 % of
recruited patients after 5 years. Themaximum type I error
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of the applied two-sided significance test was set to 5 %.
The power was set to 75 % in terms of detecting treat-
ment differences of the abovemagnitude. If the differences
were not pronounced, the power of 75 % was expected
to be sufficient to at least demonstrate the equivalence
of the shortened dental arch. According to the presump-
tions and requirements, the calculated required number
was 70 patients per treatment group. After the occur-
rence of target events, the follow-up examinations were
continued and further tooth losses recorded. For the pri-
mary outcome, the 3-year and 5-year results have been
published based on Kaplan–Meier survival analyses [2, 3].
Although the 5-year analysis was planned to be final, the
study team agreed to extend the observation period to 10
years. During the prolongation of the observation period,
further tooth losses occurred, i.e., recurrent events. These
appear to be significant for describing the long-term out-
come of the treatments. The current paper is based on the
8-year data. Of the 215 randomized patients, 90 patients
attended the 8-year examination (Additional file 1). The
trial has been approved by a research ethics board (TU
Dresden, EK 260399). The informed consent of the partic-
ipants was obtained.

Data description
To get a surface impression of the recorded tooth extrac-
tion data, we follow the recommendation by Cook and
Lawless [6] to present an event plot. Figure 1a displays
the observed events (time resolution is one day) for the
two treatment groups in an event plot, whereby only the
events observed in the SJ are shown. The calendrical event
times with different start times have been transformed to
observational periods with a common zero start time dis-
played on the abscissa. The ID (consecutive numbering) of
the patients is displayed on the ordinate. The lower 78 IDs
belong to patients under treatment 1 (partial removable
prosthesis) and IDs 79 through 149 (71 patients) belong to
patients with fixed prostheses (treatment 2)1.
The onset of events seems to be more moderate for

treatment group 1 compared to treatment group 2. How-
ever, there are denser occurrences in the intermediate
time interval. Eventful and uneventful intervals alternate.
A histogram allows for a quick tentative visual assessment.
The obvious concentrations of primary events (tooth loss)
at roughly around half the total observation time and
at the end is confirmed by the event time distributions
shown in Fig. 1b. The empirical distributions of event
times exhibit bimodal shapes, whereby the second modes
are rather pronounced (temporally condensed). There
seems to be an enhanced frequency of extractions about 4
years after the onset of the study and an even more tem-
porally condensed second wave of extractions at about 8
years. Note that a large fraction of observations is cen-
sored roughly after the first half of the study (as can be

clearly seen in Fig. 1a), which gives the second wave addi-
tional emphasis once more. The high frequency of censor-
ing in the middle is because the corresponding patients
declined to participate further after 5 years [1–3].

Modeling cumulative sample history functions
Let Ni(t) represent the number of events over the time
interval [ 0, t] for the ith out ofm patients. The set of event
histories Ni(t) for the SJ of each of the m = 149 patients
are plotted in Fig. 2 together with the cumulative sample
mean function (CSMF) as well as the cumulative sample
variance function (CSVF) to be defined in the following.
Figure 2 supports an intuition of how the individual event
histories add up to shape the CSMF. The individual his-
tories each end at their censoring time. For non-censored
individual histories (subscript nc), the CSMF is defined as

μ̂nc(t) = 1
m

m∑
i=1

Ni(t). (1)

Similarly, the CSVF is defined as

σ̂nc{N(t)} = 1
m − 1

m∑
i=1

{
Ni(t) − μ̂nc(t)

}2. (2)

However, we have to account for the different censoring
times, which makes the calculation a bit more compli-
cated. The denominator to calculate the instantaneous
means decreases in time due to censoring. In this case, the
CSMF can be calculated iteratively as

μ̂(t) = μ̂(t − �t) + 1
r(t)

r(t)∑
i=1

(Ni(t) − Ni(t − �t)), (3)

with r(t) denoting the number of patients at risk (non-
censored) at time t. From Eq. 3 and from the correspond-
ing graphs in Figs. 2 and 3a it can be seen that the CSMF is
a monotonically increasing staircase function. Generally,
the choice of �t depends on the temporal resolution of
event data and should be sufficiently small to avoid skip-
ping events that are separated less than �t. We choose �t
to be the temporal resolution of the observations, i.e., 1
day. Including censoring times, the estimated variance for
asynchronously censored event data is given by

σ̂ {N(t)} = 1
r(t) − 1

r(t)∑
i=1

{
Ni(t) − μ̂(t)

}2. (4)

In contrast to the CSMF, the CSVF is not necessarily
monotonous (see Figs. 2 and 3b).
Figure 3 depicts the CSMFs and CSVFs of the tooth

extraction events stratified for SJ/NSJ and treatment (type
of prosthesis). These cumulative functions belong to the
class of cumulative history functions [5]. Nelson’s book
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Fig. 1 a Event plot for teeth extraction events in the study jaw. Each horizontal line represents the duration of observation of a patient. It ends either
with the eventual tooth extraction or with a right-censoring time given by a final examination. The start time (inclusion into the survey) of each
patient has been set to zero. IDs 1 through 78 are patients treated with a partial removable prosthesis (red lines with cross markers at the extraction
times). IDs 79 through 149 are patients treated with a fixed prosthesis (green lines andmarkers). Multiple events occurring on the same day are
slightly shifted for better visibility. b Histograms for the event times (only primary outcome, i.e., tooth loss) calculated separately for the study jaw
(left) and the non-study jaw (middle) as well as for the pooled data (right)
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Fig. 2 Individual and sample cumulative history functions for the SJ
data set containing both treatment groups. Gray lines: Individual
cumulative event counts (histories) with Ni(t) for i = 1, . . . , 149
(patient ID). All curves Ni(t) have a small vertical offset with respect to
Ni−1(t) so that overlays, particularly at zero, become visible. Red curve:
CSMF according to Eq. 3. Green curve: CSVF according to Eq. 4. CSMF
cumulative sample mean function, CSVF cumulative sample variance
function, SJ study jaw

[5] focuses on nonparametric methods based on CSMF
and CSVF and serves here as the main reference for
nonparametric approaches.
A preliminary rule to determine the censoring time for

a given patient is to use the final examination date. How-
ever, if a patient lost his/her last tooth before the final
examination, a censoring time equal to the last extraction
time is introduced since this patient is no longer at risk
with respect to the target variable. This does not occur
with the SJ. However, for the NSJ, a couple of patients lost
their last tooth before the final examination took place.
Some patients (26) even entered the study with no teeth
at all in the NSJ, leaving 123 patients that contribute to
the analysis of the NSJ. In such cases, the choice of the
SJ was predefined instead of random, thus ruling out the
NSJ as a control group in a rigorous sense (besides other
restrictions as, e.g., the dependency of the condition of
one jaw on the condition of the other). Eventually, two dis-
tinct censoring times have to be used separately for the SJ
and the NSJ.
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Fig. 3 a Cumulative sample mean functions (Eq. 3) for the teeth extraction events stratified for treatment. Left panel: Data from SJ. Right panel: Data
from NSJ. b Cumulative sample variance functions (Eq. 4) for the teeth extraction events stratified for treatment. Left panel: Data from SJ. Right
panel: Data from NSJ. NSJ non-study jaw, SJ study jaw, treat treatment

The CSMF, μ̂(t), is an estimate of the population cumu-
lative mean function, μ(t), and quantifies the mean of
the distribution of the number of events at any time t, as
shown in Fig. 3a for the stratified records. The time course

of the diversely stratified CSMFs once more confirms that
there is a considerable increase in the number of tooth
extractions towards the end of the observation period. At
the same time, the variance increases considerably, since
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the number of simultaneously extracted teeth for some
patients is rather high and the number of patients at risk
strongly decreases.
More important than μ(t) is the time derivative λ(t) =

dμ(t)/dt, which quantifies the instantaneous recurrence
rate or intensity function. Given that the presuppositions
discussed in section “Hazard rate vs recurrence rate” (con-
tinuous incidences or renewal) for an extension of Cox
survival modeling are satisfied, the instantaneous recur-
rence rate λ(t) resembles the hazard rate in univariate
survival processes, but there are also important differ-
ences. The cumulative mean function sums up the past
events, whereas the cumulative hazard takes the (known)
number of individuals at risk at a given instant of time into
account. Both the instantaneous recurrence rate and the
hazard rate are events per time unit per population unit. If
one assumes a given recurrent-event process with a poten-
tially open number of recurrences per individual, then the
instantaneous recurrence rate refers to the (mean) num-
ber of individual event recurrences. For the special case
of non-recurrent events, the analysis can be simplified to
a standard survival analysis and λ(t) is replaced by the
hazard rate for non-recurrent events. The instantaneous
recurrence rate is addressed in more detail below.
The cumulative functions allow for a heuristic assess-

ment. Regarding the SJ (left panel of Fig. 3a), for the first
roughly 1100 days (�3 years), treatment 1 (partial pros-
thesis) seems to be slightly superior compared to treat-
ment 2 (fixed prosthesis). With respect to the NSJ (right
panel of Fig. 3a), both treatments lead to approximately
the same CSMF within the first 1100 days. The afore-
mentioned slight advantage is not significant, though, as
shown later.
In contrast to the initial 3-year interval, from t =

1100 days onward the two curves stratified for treatment
clearly diverge and this effect is indeed significant, as
shown below. In other words, fixed prostheses seem to
pay off and outcompete partial prostheses in the long run.
In both study groups, extractions require adaptations of
the inserted prosthetic restorations. A group difference
regarding the timing of the extractions was, therefore, not
to be expected. For the following analysis, we refrain from
interval censoring or other debatable corrective actions
since we intended to capture the situations as they are.
This is justified by the assumption that the study has
been consistently performed and tests are assumed to be
conservative with respect to standard clinical settings.
Approaching a duration of roughly 8 years, the gained

advantage is again lost as the curves begin to converge,
confirming the impression from the event plot Fig. 1a.
The convergence towards the end of the 8-year time
course may be due to a saturation phenomenon, i.e., com-
plete loss of teeth. The ratio of the two stratified CSMFs
along with their pointwise confidence intervals provide

an objective quantification of the treatment effect as dis-
cussed in the following.

Results
Treatment effect based on cumulative mean ratio
The ratio of the cumulative population mean functions,
μ1(t) and μ2(t) for treatment 1 and 2, respectively,

ψ(t) = μ1(t)
μ2(t)

(5)

yields a measure of the treatment effect that can be eas-
ily estimated. Under a Poisson assumption for the event
occurrences (Poisson process), the random variable

log(ψ̂(t)) = log
(

μ̂1(t)
μ̂2(t)

)

is approximately normally distributed, i.e.,

N
(
log(ψ̂(t)),

1
r1(t)μ̂1

+ 1
r2(t)μ̂2

)
, (6)

where r1(t) and r2(t) are the numbers of patients at risk
at time t within the groups for treatment 1 and treat-
ment 2, respectively (see Cook and Lawless [6], section
2.2.4). The time courses of ψ̂(t) for the SJ and the NSJ are
shown in Fig. 4a along with the 95% confidence regions
estimated using Eqs. 5 and 6. The approximation given
by Eq. 6 might not be justified. However, following [6]
(section 2.2.4), μ̂i, i = 1, 2, and log(μ̂i), i = 1, 2, are
approximately normally distributed even if the counts are
not Poisson random variables. This leads to the follow-
ingmore robust estimation. The relatively small difference
between the results, however, justifies the use of Eq. 6 in
retrospect.
Under the Poisson assumption, the variances should be

roughly equal to the means, which is not fulfilled in the
case at hand. The given estimates suggest overdispersion,
so that the confidence region is more appropriately com-
puted based on the assumption that log(ψ̂(t)) is approxi-
mately normally distributed with corrected variances, i.e.,

N
(
log(ψ̂(t)),

σ̂1

r1(t)μ̂2
1

+ σ̂2

r2(t)μ̂2
2

)
. (7)

Thereby, σ̂i, i = 1, 2, are the sample variance estimates
according to Eq. 4 for the two treatment groups (see [6],
section 2.2.4). The time courses of ψ̂(t) taking overdis-
persion into account are shown in Fig. 4b along with the
95 % confidence regions estimated using Eqs. 5 and 7.
It turns out, however, that overdispersion is rather weak
in terms of the differing results from Eqs. 6 and 7, indi-
cating that the deviation from a pure Poisson most likely
stems from a time dependency of the recurrence rate
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Fig. 4 aMean ratio functions with 95 % confidence regions with pointwise bounds based on a Poisson assumption. Top panel: SJ. Bottom panel:
NSJ. bMean ratio functions with 95 % confidence regions based on corrections for overdispersion. Top panel: SJ. Bottom panel: NSJ. CI confidence
interval, NSJ non-study jaw, SJ study jaw

addressed in the following section. It indeed turns out that
the instantaneous recurrence rate is accelerated.
Under the presumption of equal treatment effects, the

ratio of the cumulative mean functions should be equal
to 1. It can be seen in the upper part of Fig. 4a that
under the Poisson assumption, the confidence region for
the SJ suggests there is a difference from the one-to-one
ratio at the edge of statistical significance from roughly
t = 3.5 years on. This confirms the earlier impression
gained from Fig. 3a. Taking the more accurate assump-
tion of overdispersion into account, the effect is somewhat
less pronounced but still clearly present. The advantage
of treatment 2 (fixed prosthesis), even if only at the edge
of statistical significance, is striking. The current scien-
tific consensus states that treatment 1 is preferable to
treatment 2. The replacement of lost molars is consid-
ered worthwhile, ignoring the well-known periodontal
setbacks initiated by removable dental prostheses. Tooth
loss is generally expected, but it is assumed that within a
tightly controlled setting it can be minimized. That does
not seem to be the case.
The effect of treatment seems to have a notable impact

onto the NSJ as well, as can be seen in the lower panels of
Fig. 4a and b. There is a tendency for the NSJs to follow
the recurrence rates of the SJs. A possible interpretation is
that an improved condition for the one jaw has a favorable
effect on the remaining jaw. The NSJ cannot be used as a
control group, i.e., to formulate a null hypothesis due to
this effect.

Three-phasic Poisson process
The Poisson density function for the probability of y
recurrences is

f (y) = 1
y!

(λt)y exp(−λt), (8)

where λ is the number of recurrences per time unit per
population unit (tooth extractions per day per patient).
Given a Poisson process, the CSMF is M(t) = λt (Nelson
[5], chap. 8). The nonlinear curves in Fig. 3a immedi-
ately tell us that we have to reject this oversimplification.
However, to keep themodel as simple as possible, yet plau-
sible, we introduce a three-phasic Poisson process, i.e., a
piecewise time-independent (linear) process:

M(t) =
⎧⎨
⎩

λ1t, t ≤ t1,
λ1t1 + λ2(t − t1), t1 < t ≤ t2,
λ1t1 + λ2(t2 − t1) + λ3(t − t2), t > t2.

(9)

This piecewise linear function is fitted to the stratified
CSMFs separately for the SJ and the NSJ using amaximum
likelihood approach. Both the instantaneous recurrence
rates, λ1, λ2, and λ3, as well as the interval boundaries,
t1 and t2, are estimated using a Gaussian likelihood. The
change points (t1, t2) for the two treatment strata are con-
strained to the same values to get pairwise comparable
intervals. The estimated recurrence rates and the change
points for the SJ as well as for the NSJ along with their
confidence intervals are compiled in Table 1. The fitted
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Table 1 Estimated recurrence rates (per year) and the change
points (in years) for the study jaw and the non-study jaw, based
on a tripartite Poisson process according to Eq. 9

Estimate 2.5 % 97.5 %

Study jaw

λ1, treatment 1 0.0284 −0.0586 0.06734

λ1, treatment 2 0.0497 0.0152 0.23034

λ2, treatment 1 0.1290 0.1167 0.1413

λ2, treatment 2 0.0709 0.0576 0.0855

λ3, treatment 1 1.3770 1.2665 1.5099

λ3, treatment 2 1.6490 1.4487 1.8816

t1 1.7350 −1.6202 2.7703

t2 7.9532 7.8942 8.0179

Non-study jaw

λ1, treatment 1 0.0717 0.0589 0.0837

λ1, treatment 2 0.0665 0.0508 0.0788

λ2, treatment 1 0.2516 0.2324 0.2712

λ2, treatment 2 0.1654 0.1438 0.1874

λ3, treatment 1 4.2861 3.4070 5.1868

λ3, treatment 2 9.9602 7.6880 12.6717

t1 4.0901 3.5693 4.4598

t2 8.4751 8.3927 8.5269

piecewise linear functions are depicted in Fig. 5. The esti-
mated change points are indicated by arrows. The bblme
package in R has been used [9] for the estimation. This
package also provides a rigorous estimation of confidence
intervals based on a profile likelihood. The following sig-
nificance evaluations are based on confidence in terms of
checking overlaps of confidence intervals.

Discussion
The recurrence rate for the SJ in treatment group 1 starts
with λ1 = 0.03 per year during the first time interval.
After an estimated duration of t1 = 1.74 years, the recur-
rence rate increases more than fourfold to λ2 = 0.13 per
year. At the estimated change point t2 = 7.95, the recur-
rence rate once more increases tenfold to λ3 = 1.38 per
year.
The same trend holds for treatment group 2 but at a

significantly lower recurrence rate of λ2 = 0.07 in the
long middle interval between change points t1 = 1.74 and
t2 = 7.95. In the beginning, until change point t1 = 1.74,
the difference between the recurrence rates for the two
treatment groups is insignificant. In other words, the two
types of prosthesis seem to make no difference in protect-
ing against loss of teeth during roughly the first 2 years.
However, for the following 6 years, the protection is twice
as good for prosthesis type 2.

From the estimated change point t2 = 7.95 years, the
recurrence rates of the two treatment groups converge
again and both rates are relatively high. During this last
phase, the patients under treatment 2 lose slightly more
teeth than the patients under treatment 1, on average. On
the one hand, this result for the short third interval has
to be taken with caution since the number of patients at
risk at these late observation times is rather small. On the
other hand, several patients lose a considerable number
of teeth at once in the third interval. One patient lost 12
teeth at once at time t = 8.73 years under treatment 2.
It seems as if with treatment 2, tooth loss is delayed for
some 7–8 years, but then catches up. The small number of
patients who contribute to the last interval, due either to
dropout from the study or to earlier complete loss of teeth,
is reflected in the rather wide confidence intervals of the
estimates for the recurrence rates. The increasing censor-
ing towards the end of the study is also reflected in the
increasing variance of the mean ratio function (see Fig. 4).
The largest instantaneous recurrence rate turns out to

be λ3 = 9.96 per year for the third interval of the
treatment 2 group of the NSJ. Note, however, that this
estimation is based on a multiple concurrent extraction
event of one patient only. The recurrence rates for the SJ
are smaller than those for the NSJ, which suggests that
both treatments are able to decrease the recurrence rates
for tooth loss. However, to conceive of the NSJs as a con-
trol group is questionable since the conditions of the SJ
impinge on the conditions of the NSJ, as can be seen from
the aligned estimations of the recurrence rates. In other
words, the conditions of the NSJ follow the conditions of
the SJ, albeit less pronounced. Thus, the comparison of the
SJ with the NSJ should be taken as qualitative evidence.
Due to this lack of strict comparability, we refrained from
constraining the estimations of the change points to the
same values for both jaws.
The results using instantaneous recurrence rates under

the assumption of a tripartite Poisson process confirm the
insights gained from the confidence intervals of the mean
ratios. Based on confidence, there is a significant differ-
ence between the effects of the two types of prosthesis in
the intermediate period after insertion, i.e., treatment 2 is
able to delay tooth loss for some 7–8 years. Specifically,
the fixed prosthesis reduces the tooth loss rate by a factor
of 1.82 from 0.13 per year to 0.07 per year compared to the
partial removable prosthesis in the second phase.

Conclusions
The approach based on cumulative history functions pro-
vides an appropriate method with an intuitively inter-
pretable output for similar recurrent-event processes as
given by the tooth extraction rate in this study. The main
advantage of this method is that it is based on process,
leading to an instantaneous intensity (recurrence rate)
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Fig. 5 Three-phasic Poisson process (three-step piecewise linear regression). It is fitted to the cumulative mean functions along with an estimation
of the two change points (indicated by arrows). The models are stratified for the treatment groups and fitted separately to the data of the SJ (left
panel) and the NSJ (right panel). The upper left figure legend applies to both panels. NSJ non-study jaw, SJ study jaw, trt treatment

function. Based on a piecewise constant Poisson process
assumption, a simple model function can be fitted to the
observed time-dependent intensity function. The effects
of predictors can be point- or interval-wise evaluated.
For the case at hand, the recurrent-event process approx-
imately underlies a tripartite Poisson process, whereby
only the middle phase is determined by significantly dif-
ferent recurrence rates for the two treatment groups.
Perhaps, the treatment effect is reversed in the long run,
which can be detected in following up the patients for a
further couple of years (the 10-year follow-up is under
way). Under this assumption, the overall effect is nil, how-
ever, losing an essential insight that treatment 2 is able to
delay tooth loss in the medium term.
Tooth loss appears to be an accelerated phenomenon, as

can be seen particularly clearly in the right panel of Fig. 3a.
The increase in tooth loss after roughly 3 years (visi-
ble through the step change in the CSMF) is somewhat
decelerated by the prostheses (left panel of Fig. 3a). The
strength of deceleration is different for the two treatment
types.
We hope that this approach will contribute to an

improved investigation of similar recurrent-event phe-
nomena. Thewaywe tackled the problem of a finite number
of possible recurrences can perhaps be improved further.
We hope that our work will stimulate further development
of process-based approaches, since the approach of our
study yielded relevant and interpretable results.

Endnote
1Patients initially recruited who never attended after

recruitment have been removed from the analysis leaving
149 patients who took the survey.

Additional file

Additional file 1: The flow chart of the clinical trial on which the article is
based. (PPTX 69.7 kb)
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