
RESEARCH ARTICLE

Fixation patterns in simple choice reflect

optimal information sampling

Frederick CallawayID
1*, Antonio Rangel2, Thomas L. Griffiths1,3

1 Department of Psychology, Princeton University, Princeton, New Jersey, United States of America,

2 Departments of Humanities and Social Sciences and Computation and Neural Systems, California Institute

of Technology, Pasadena, California, United States of America, 3 Department of Computer Science,

Princeton University, Princeton, New Jersey, United States of America

* fredcallaway@princeton.edu

Abstract

Simple choices (e.g., eating an apple vs. an orange) are made by integrating noisy evidence

that is sampled over time and influenced by visual attention; as a result, fluctuations in visual

attention can affect choices. But what determines what is fixated and when? To address this

question, we model the decision process for simple choice as an information sampling prob-

lem, and approximate the optimal sampling policy. We find that it is optimal to sample from

options whose value estimates are both high and uncertain. Furthermore, the optimal policy

provides a reasonable account of fixations and choices in binary and trinary simple choice,

as well as the differences between the two cases. Overall, the results show that the fixation

process during simple choice is influenced dynamically by the value estimates computed

during the decision process, in a manner consistent with optimal information sampling.

Author summary

Any supermarket shopper is familiar with the problem of choosing between a small num-

ber of items. Even these “simple choices” can be challenging because we have to think

about the options to determine which one we like most, and we can’t think about all of

them at once. This raises a question: what should we think about—and for how long

should we think—before making a decision? We formalize this question as an information

sampling problem, and identify an optimal solution. Observing what people look at while

making choices, we find that many of the key patterns in their eye fixations are consistent

with optimal information sampling.

Introduction

Consider the problems faced by a diner at a buffet table or a shopper at a supermarket shelf.

They are presented with a number of options and must evaluate them until they identify the

most desirable one. A central question in psychology and neuroscience is to understand the

algorithms, or computational processes, behind these canonical simple choices.
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Previous work has established two important features of the processes underlying simple

value-based choices. First, choices and reaction times are well explained by information sam-

pling models like the diffusion decision model (DDM) [1–3] and the leaky competing accumu-

lator model [4, 5]. In these models, individuals are initially uncertain about the desirability of

each option, but they receive noisy signals about the options’ values that they integrate over

time to form more accurate estimates. A central insight of these models is that sampling infor-

mation about unknown subjective values is a central feature of simple choice. Second, visual

attention affects the decision-making process. In particular, items that are fixated longer are

more likely to be chosen [6–13], unless they are aversive, in which case they are chosen less fre-

quently [7, 14]. These findings have been explained by the Attentional Drift Diffusion Model

(aDDM), in which the value samples of the fixated item are over-weighted relative to those of

unfixated ones (or equivalently in the binary case, discounting the influence of the unattended

item on the drift rate) [9, 10, 12, 13]. See [15, 16] for reviews.

These insights raise an important question: What determines what is fixated and when dur-

ing the decision process? Previous work has focused on two broad classes of theories. One

class suggests that decisions and fixations are driven by separate processes, so that fixations

affect how information about values is sampled and integrated, but not the other way around.

In this view, although fixations can be modulated by features like visual saliency or spatial loca-

tion, they are assumed to be independent of the state of the decision process. This is the frame-

work behind the aDDM [9, 10, 12] and related models [17–19].

Another class of theories explores the idea that the decision process affects fixations, espe-

cially after some information about the options’ values has been accumulated. Examples of this

class include the Gaze Cascade Model [6], an extension of the aDDM in which options with

more accumulated evidence in their favor are more likely to be fixated [20], and a Bayesian

sampling model in which options with less certain estimates are more likely to be fixated [21].

However, these models have not considered how uncertainty and value might interact, nor

have they considered the optimality of the posited fixation process (although see [22–24] for

such analyses in simplified settings).

Research on eye movements in the perceptual domain suggests a third possibility: that fixa-

tions are deployed to sample information optimally in order to make the best choice. Previous

work in vision has shown that fixations are guided to locations that provide useful information

for performing a task, and often in ways that are consistent with optimal sampling [25]. For

example, in visual search (e.g., finding an ‘M’ in a field of ‘Ns’) people fixate on areas most

likely to contain the target [26, 27]; in perceptual discrimination problems, people adapt their

relative fixation time to the targets’ noise levels [28, 29]; and in naturalistic task-free viewing,

fixations are drawn to areas that have high “Bayesian surprise”, i.e., areas where meaningful

information is most likely to be found [30]. The properties of fixations in these types of tasks

are captured by optimal sampling models that maximize expected information gain [25, 31].

However, these models have not been applied in the context of value-based decision making,

and thus the extent to which fixation patterns during simple choices are consistent with opti-

mal information sampling is an open question.

In this paper, we draw these threads together by defining a model of optimal information

sampling in canonical simple choice tasks and investigating the extent to which it accounts for

fixation patterns and their relation to choices. In a value-based choice, optimal information

sampling requires maximizing the difference between the value of the chosen item and the

cost of acquiring the information needed to make the choice. Our model thus falls into a broad

class of models that extend classical rational models of economic choice [32, 33] to additionally

account for constraints imposed by limited cognitive resources [34–39]. However, as is com-

mon in this approach, we stop short of specifying a full algorithmic model of simple choice.
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Instead, we ask to what extent people’s fixations are consistent with optimal information sam-

pling, without specifying how the brain actually implements an optimal sampling policy.

Exploring an optimal information sampling model of fixations in simple choice is useful for

several reasons. First, since fixations can affect choices, understanding what drives the fixation

process can provide critical insight into the sources of mistakes and biases in decision-making.

In particular, the extent to which behaviors can be characterized as mistakes depends on the

extent to which fixations sample information sub-optimally. Second, simple choice algorithms

like the DDM have been shown to implement optimal Bayesian information processing when

the decision-maker receives the same amount of information about all options at the same rate

[40–46], and this is often viewed as an explanation for why the brain uses these algorithms in

the first place. In contrast, the optimal algorithm when the decision-maker must sample infor-

mation selectively is unknown. Third, given the body of evidence showing that fixations are

deployed optimally in perceptual decision making, it is interesting to ask if the same holds for

value-based decisions. Given that such problems are characterized by both a different objective

function (maximizing a scalar value rather than accuracy) and a different source of informa-

tion (e.g., sampling from memory [47–49] rather than from a noisy visual stimulus), it is far

from clear that optimal information sampling models will still provide a good account of fixa-

tions in this setting.

Building on the previous literature, our model assumes that the decision maker estimates

the value of each item in the choice set based on a sequence of noisy samples of the items’ true

values. We additionally assume that these samples can only be obtained from the attended

item, and that it is costly to take samples and to switch fixation locations. This sets up a sequen-

tial decision problem: at each moment the decision maker must decide whether to keep sam-

pling, and if so, which item to sample from. Since the model does not have a tractable

analytical solution, in order to solve it and take it to the data, we approximate the optimal solu-

tion using tools from metareasoning in artificial intelligence [50–53].

We compare the optimal fixation policy to human fixation patterns in two influential

binary and trinary choice datasets [9, 10]. We find that the model captures many previously

identified patterns in the fixation data, including the effects of previous fixation time [21] and

item value [17, 20, 22]. In addition, the model makes several novel predictions about the differ-

ences in fixations between binary and trinary choices and about fixation durations, which are

consistent with the data. Finally, we identify a critical role of the prior distribution in produc-

ing the classic effects of attention on choice [7, 9, 10, 14]. Overall, the results show that the fixa-

tion process during simple choice is influenced by the value estimates computed during the

decision process, in a manner consistent with optimal information sampling.

Model

Sequential sampling model

We consider simple choice problems in which a decision maker (DM) is presented with a set

of items (e.g., snacks) and must choose one. Each item i is associated with some true but

unknown value, u(i), the utility that the DM would gain by choosing it. Following previous

work [1, 9, 40, 42–46, 54], we assume that the DM informs her choice by collecting noisy

samples of the items’ true values, each providing a small amount of information, but incur-

ring a small cost. The DM integrates the samples into posterior beliefs about each item’s

value, choosing the item with maximal posterior mean when she terminates the sampling

process.
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As illustrated in Fig 1, we model attention by assuming that the DM can only sample from

one item at each time point, the item she is fixating on. This sets up a fundamental problem:

How should she allocate fixations in order to make good decisions without incurring too

much cost? Specifically, at each time point, the DM must decide whether to select an option or

continue sampling, and in the latter case, she must also decide which item to sample from.

Importantly, she cannot simply allocate her attention to the item with the highest true value

because she does not know the true values. Rather, she must decide which item to attend to

based on her current value estimates and their uncertainty.

The DM’s belief about the item values at time t is described by a set of Gaussians, one for

each item, with means m
ðiÞ
t and precisions l

ðiÞ
t (the precision is the inverse of the variance).

These estimated value distributions are initialized to the DM’s prior belief about the distribu-

tion of values in the environment. That is, she assumes that uðiÞ � Gaussianð�m; �s2Þ and conse-

quently sets m
ðiÞ
0 ¼ �m and l

ðiÞ
0
¼ �s � 2 for all i. We further discuss the important role of the prior

below.

We model the control of attention as the selection of cognitive operations, ct, that specify

either an item to sample, or the termination of sampling. If the DM wishes to sample from

item c at time-step t, she selects ct = c and receives a signal

xt � GaussianðuðcÞ; s2
xÞ; ð1Þ

where u(c) is the unknown true value of the item being sampled, and s2
x is a free parameter spec-

ifying the amount of noise in each signal. The belief state is then updated in accordance with

Fig 1. Sampling and belief updating in the binary choice task. The top row shows the experimental display, with the fixated item denoted by the eye

symbol. The bottom two rows depict the first few steps of the sampling and belief updating process. The decision maker’s beliefs about the value of each

item are denoted by the Gaussian probability density curves. The true values of each item (dashed lines) are sampled from standard normal distributions;

this is captured in the decision maker’s initial belief state (first column). Every time step, t, the decision maker fixates one of the items and receives a noisy

sample about the true value of that item (xt marks). She then updates her belief about the value of the fixated item using Bayesian updating (shift from light

to dark curve). The beliefs for the unfixated item are not updated. The process repeats each time step until the decision maker terminates sampling, at

which point she chooses the item with maximal posterior mean.

https://doi.org/10.1371/journal.pcbi.1008863.g001
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Bayesian inference:

l
ðcÞ
tþ1

¼ l
ðcÞ
t þ s

� 2
x

m
ðcÞ
tþ1 ¼

s� 2
x xt þ l

ðcÞ
t m

ðcÞ
t

l
ðcÞ
tþ1

l
ðiÞ
tþ1

¼ l
ðiÞ
t and mðiÞtþ1 ¼ m

ðiÞ
t for i 6¼ c:

ð2Þ

The cognitive cost of each step of sampling and updating is given by a free parameter, γsample.

We additionally impose a switching cost, γswitch, that the DM incurs whenever she samples

from an item other than the one sampled on the last timestep (i.e., makes a saccade to a differ-

ent item). Thus, the cost of sampling is

costðctÞ ¼ gsample þ 1ðct 6¼ ct� 1Þ gswitch: ð3Þ

Note that the model includes the special case in which there are no switching costs

(γswitch = 0).

In addition to choosing an item to sample, the DM can also decide to stop sampling and

choose the item with the highest expected value. In this case, she selects ct =?. It follows that if

the choice is made at time step T (i.e., cT =?) the chosen item is i� ¼ argmaxi m
ðiÞ
T . The DM’s

total payoff on a single decision is given by:

payoff ¼ uði�Þ
|{z}
utility of

chosen item

�
XT� 1

t¼1

costðctÞ:
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

cognitive cost

ð4Þ

Optimal policy

We assume that the decisions about where to fixate and when to stop sampling are made opti-

mally, subject to the informational constraints described in the previous section. Formally, we

assume that the ct are selected by an optimal policy. A policy selects the next cognitive opera-

tion to execute, ct, given the current belief state, (μt, λt); it is optimal if it selects ct in a way that

maximizes the expectation of Eq 4. How can we identify such a policy? Problems of this kind

have been explored in the artificial intelligence literature on rational metareasoning [50, 51].

Thus, we cast the model described above as a metalevel Markov decision process [52], and

identify a near-optimal policy using a recently developed method that has been shown to

achieve strong performance on a related problem [53]. In accordance with past work modeling

people’s choices [55] and fixations [20, 21], we assume that people follow a softmax policy in

selecting each cognitive operation by sampling from a Boltzmann distribution based on their

estimated values. Thus, their choices of cognitive operations are guided by the optimal policy,

but subject to some noise. See Methods for details.

What does optimal attention allocation look like? In order to provide an intuitive under-

standing, we focus on two key properties of belief states: (1) uncertainty about the true values

and (2) differences in the value estimates. Fig 2A shows the probability of the optimal policy

(for a model with parameters fit to human data) sampling an item as a function of these two

dimensions (marginalizing over the other dimensions according to their probability of occur-

ring in simulated trials). We see that the optimal policy tends to fixate on items that are
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uncertain and have estimated values similar to the other items. In the case of trinary—but

not binary—choice, we additionally see a stark asymmetry in the effect of relative estimated

value. While the policy is likely to sample from an item whose value is substantially higher

than the competitors, it is unlikely to sample from an item with value well below. In

Fig 2. Optimal fixation policy. (A) Probability of fixating on item 1 as a function of the precision of its value estimate, λ(1), and the mean

of its relative value estimate, μ(1) − mean(μ(2), μ(3)). The heat map denotes the probability of fixating item 1 as opposed to fixating one of the

other items or terminating the sampling process. (B) Illustration of the value of sampling. Each panel shows a belief state for trinary choice.

The curves depict the estimated beliefs for each item’s value, and the shaded regions show the probability that the item’s true value is higher

than the current best value estimate. This probability correlates strongly with the value of sampling the item because sampling is only

valuable if it changes the choice (the full value of sampling additionally depends on the size of the potential gain in value, as well as the cost

of future samples and the possibility of sampling other items). In each case, it is more valuable to sample the orange item than the purple

item because either (top) its value is more uncertain, or (bottom) its value is closer to the leading value.

https://doi.org/10.1371/journal.pcbi.1008863.g002
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particular, the policy has a strong preference to sample from the items with best or second-

best value estimates.

To see why this is optimal, note that sampling is only valuable insofar as it affects choice,

and that the chosen item is the one with maximal estimated value when sampling stops. Thus,

the optimal policy generally fixates on the item for which gathering more evidence is most

likely to change which item has maximal expected value. There are two ways for this to hap-

pen: either the value of the current best item is reduced below the second-best item, or the

value of some alternative item is increased above the best item. The former can only happen by

sampling the best item, and the latter is ceteris paribus most likely to occur by sampling the sec-

ond-best item because it is closer to the top position than the third-best item is (Fig 2B bot-

tom). However, if uncertainty is much greater for the third-best item, this can outweigh the

larger difference in estimated value (Fig 2B top). See [22] for a more formal justification for

value-directed attention in a simplified non-dynamic case.

The prior distribution

Recall that the initial belief about each item’s value is set to the DM’s prior belief about the dis-

tribution of values in the environment; that is m
ðiÞ
0 ¼ �m and l

ðiÞ
0
¼ �s � 2. This corresponds to the

DM assuming that each item’s value is drawn from a prior distribution of true values given by

uðiÞ � Gaussianð�m; �s2Þ. This assumption is plausible if this is the actual distribution of items

that the DM encounters, and she is a Bayesian learner with sufficient experience in the context

under study. However, given that these models are typically used to study choices made in the

context of an experiment (as we do here), the DM might not have learned the exact prior dis-

tribution at work. As a result, we must consider the possibility that she has a biased prior.
In order to investigate the role of the prior on the model predictions, we assume that it

takes the form of a Gaussian distribution with a mean and standard deviation related to the

actual empirical distribution as follows:

�m ¼ a � mean ðratingsÞ

�s ¼ std ðratingsÞ:
ð5Þ

Here, mean(ratings) denotes the mean value ratings of all items, which provide independent

and unbiased measures of the true value of the items (computed across trials in both experi-

ments), and α is a free parameter that specifies the amount of bias in the prior (α = 0 corre-

sponds to a strong bias and α = 1 corresponds to no bias). As a result, the DM has correct

beliefs about the prior variance, but is allowed to have a biased belief about the prior mean.

This case could arise, for example, if the average true value of the items used in the experiment

differs from the average item that the DM encounters in her daily life.

Model fitting

We apply the model to two influential simple choice datasets: a binary food choice task [9] and

a trinary food choice task [10]. In each study, participants first provided liking-ratings for 70

snack items on a -10 to 10 scale, which are used as an independent measure of the items’ true

values. They then made 100 choices among items that they had rated positively, while the loca-

tion of their fixations was monitored at a rate of 50 Hz. See S1 Appendix for more details on

the experiments.

The model has five free parameters: the standard deviation of the sampling distribution σx,
the cost per sample γsample, the cost of switching attention γswitch, the prior bias α, and the

inverse temperature of the softmax policy used to select cognitive operations, β. This last
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parameter controls the amount of noise in the fixation decisions. In order to fit the model, we

need to make an assumption about the time that it takes to acquire each sample, which we take

to be 100 ms. Note, however, that this choice is not important: changing the assumed duration

leads to a change in the fitted parameters, but not in the qualitative model predictions.

We use an approximate maximum likelihood method to fit these parameters to choice and

fixation data, which is described in the Methods section. Importantly, since the same model

can be applied to N-item choices, we fit a common set of parameters jointly to the pooled data

in both datasets. Thus, any differences in model predictions between binary and trinary

choices are a priori predictions resulting from the structure of the model, and not differences

in the parameters used to explain the two types of choices. We estimate the parameters using

only the even trials, and then simulate the model in odd trials in order to compare the model

predictions with the observed patterns out-of-sample. Because the policy optimization and

likelihood estimation methods that we use are stochastic, we display simulations using the 30

top performing parameter configurations to give a sense of the uncertainty in the predictions.

The parameter estimates were (mean ± std) σx = 2.60 ± 0.216, α = 0.581 ± 0.118, γswitch =

0.00995 ± 0.001, γsample = 0.00373 ± 0.001, and β = 364 ± 81.2 As explained in the Methods, the

units of these parameter estimates are standard deviations of value (i.e., �s).

In order to explore the role of the prior, we also fit versions of the model in which the prior

bias term was fixed to α = 0 or α = 1. The former corresponds to a strongly biased prior and

the latter corresponds to a completely unbiased prior. For α = 0, the fitted parameters were

σx = 3.16 ± 0.409, γswitch = 0.00875 ± 0.002, γsample = 0.00319 ± 0.001, and β = 326 ± 81.2. For α
= 1, they were σx = 2.66 ± 0.272, γswitch = 0.0118 ± 0.002, γsample = 0.00506 ± 0.001, and β =

330.0 ± 97.9.

All the figures below are based on model fits estimated at the group level on the pooled

data. However, for completeness we also fit the model separately for each individual, and

report these fits in S2 Appendix. We also carry out a validation of our model fitting approach

in S1 Appendix.

Results

We now investigate the extent to which the predictions of the model, fitted on the even trials,

are able to account for observed choice, reaction time and fixation patterns in the out-of-sam-

ple odd trials.

Basic psychometrics

We begin by looking at basic psychometric patterns. Fig 3A compares the choice curves pre-

dicted by the model with the actual observed choices, separately for the case of binary and trin-

ary choice. It shows that the model captures well the influence of the items’ true values (as

measured by liking ratings) on choice.

Fig 3B plots the distribution of total fixation times. This measure is similar to reaction time

except that it excludes time not spent fixating on one of the items. We use total fixation time

instead of reaction time because the model does not account for the initial fixation latency nor

the time spent saccading between items (although it does account for the opportunity cost of

that time, through the γsample parameter). As shown in the figure, the model provides a reason-

able qualitative account of the distributions, although it underpredicts the mode in the case of

two items and the skew in both cases.

Fig 3C shows the relationship between total fixation time and trial difficulty, as measured

by the relative liking rating of the best item. We find that the model provides a reasonable

account of how total fixation time changes with difficulty. This prediction follows from the

PLOS COMPUTATIONAL BIOLOGY Fixation patterns in simple choice reflect optimal information sampling
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fact that fewer samples are necessary to detect a large difference than to either detect a small

difference or determine that the difference is small enough to be unimportant. However, the

model exhibits considerable variation in the predicted intercept and substantially overpredicts

total fixation time in difficult trinary choices.

Finally, Fig 3D shows the relationship between total fixation time and the average rating of

all the items in the choice set. This “overall value effect” has been emphasized in recent

research [13, 16] because it is consistent with multiplicative attention weighting (as in the

aDDM) but not an additive boosting model (e.g., [11]). Bayesian updating results in a form of

multiplicative weighting (specifically, a hyperbolic function, c.f. [14]), and thus our model also

predicts this pattern. Surprisingly, we do not see strong evidence for the overall value effect in

the datasets we consider, but we note that the effect has been found robustly in several other

datasets [13, 56–59]. Note that, in the binary case, the predicted overall value effect is symmet-

ric around the prior mean; that is, choices between two very bad items will also be made

quickly. Indeed, with an unbiased-prior, the model predicts an inverted-U relationship around

the prior mean.

Several additional patterns in Fig 3 are worth highlighting. First, all the models make similar

and reasonable predictions of the psychometric choice curve and fixation time distributions.

Second, the models with some prior bias provide a better account of the fixation time curves in

binary choice than the unbiased model, and qualitatively similar predictions to the aDDM.

Fig 3. Basic psychometrics. Each panel compares human data (black) and model predictions for binary choice (left, two dots) and trinary choice (right, three dots).

The main model predictions are shown in purple. The restricted model predictions for the case of a highly biased prior mean (α = 0) are shown in blue; the case of a

highly unbiased prior mean (α = 1) is shown in pink. These colors were chosen to illustrate that the main model falls between these two extremes. The aDDM

predictions are shown in dashed green. Error bars (human) and shaded regions (model) indicate 95% confidence intervals computed by 10,000 bootstrap samples (the

model confidence intervals are often too small to be visible). Note that the method used to compute and estimate the model parameters is noisy. To provide a sense of

the effect of this noise on the main model predictions, we depict the predictions of the thirty best-fitting parameter configurations. Each light purple line depicts the

predictions for one of those parameters, whereas the darker purple line shows the mean prediction. In order to keep the plot legible, only the mean predictions of the

biased priors models are shown. (A) Choice probability as a function of relative rating. (B) Kernel density estimation for the distribution of total fixation time.

Quartiles (25%, 50%, and 75% quantiles) for the data, aDDM and main model predictions are shown at the bottom. (C) Total fixation time as a function of the relative

rating of the highest rated item. (D) Total fixation time as a function of the mean of all the item ratings (overall value).

https://doi.org/10.1371/journal.pcbi.1008863.g003
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Finally, despite using a common set of parameters, all the models capture well the differences

between binary and trinary choice.

Basic fixation properties

We next compare the predicted and observed fixation patterns. An observed “fixation” refers

to a contiguous span of time during which a participant looks at the same item. A predicted

model fixation refers to a continuous sequence of samples taken from one item.

Fig 4A shows the distribution of the number of fixations across trials. The model-predicted

distribution is reasonably similar to the observed data. However, in the two-item case, the

model is more likely to make only one fixation, suggesting that people have a tendency to fixate

both items at least once that the model does not capture.

Fig 4B shows the relationship between the total number of fixations and decision difficulty.

We find that the model captures the relationship between difficulty and the number of fixa-

tions reasonably well, with the same caveats as for Fig 3B.

The original binary and trinary choice papers [9, 10] observed a systematic change in fixa-

tion durations over the course of the trial, as shown in Fig 4C. Although the model tends to

underpredict the duration of the first two fixations in the three-item case, it captures well three

key patterns: (a) the final fixation is shorter, (b) later (but non-final) fixations are longer and

(c) fixations are substantially longer in the two-item case. The final prediction is especially

striking given that the model uses the same set of fitted parameters for both datasets. The

model predicts shorter final fixations because they are cut off when a choice is made [9, 10].

The model predicts the other patterns because more evidence is needed to alter beliefs when

their precision is already high; this occurs late in the trial, especially in the two-item case where

samples are split between fewer items.

Fig 4 also shows that the main model provides a more accurate account than the aDDM of

how the number of fixations changes with trial difficulty, and of how fixation duration evolves

Fig 4. Basic fixation patterns. (A) Histogram of number of fixations in a trial. (B) Number of fixations as a function of decision difficulty, as measured by

the relative rating of the best item. (C) Duration of fixation by fixation number. Final fixations are excluded from all but the last bin. See Fig 3 for more

details.

https://doi.org/10.1371/journal.pcbi.1008863.g004
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over the course of a trial. One difficulty in making this comparison is that the aDDM assumes

that non-final fixation durations are sampled from the observed empirical distribution, condi-

tional on a number of observable variables, and thus the accuracy of its predictions regarding

fixation duration and fixation number depends on the details of this sampling. To maximize

comparability with the existing literature, here we use the same methods as in the original

implementations [9, 10].

Uncertainty-directed attention

As we have seen, one of the key drivers of fixations in the optimal policy is uncertainty about

the items’ values. Specifically, because the precision of the posteriors increases linearly with the

number of samples, the model predicts that, other things being equal, fixations should go to

items that have received less cumulative fixation time. However, the difference in precision

must be large enough to justify paying the switching cost. In this section we explore some of

the fixation patterns associated with this mechanism.

Fig 5A depicts the distribution of relative cumulative fixation time at the beginning of a

new fixation, starting with the second fixation. That is, at the onset of each fixation, we ask

how much time has already been spent fixating the newly fixated item, compared to the other

items. In both cases, the actual and predicted distributions are centered below zero, so that

items tend to be fixated when they have received less fixation time than the other items. Addi-

tionally, the model correctly predicts the lower mode and fatter left tail in the two-item case.

Note, however, that a purely mechanical effect can account for this basic pattern: the item

that is currently fixated will on average have received the most fixation time, but it cannot be

the target of a new fixation, which drives down the fixation advantage of newly fixated items.

For this reason, it is useful to look further at the three-item case, which affords a stronger test

of uncertainty-directed attention. In this case, the target of each new fixation (excluding the

first) must be one of the two items that are not currently fixated. Thus, comparing the cumula-

tive fixation times for these items avoids the previous confound. Fig 5B thus plots the distribu-

tion of fixation time for the fixated item minus that of the item which could have been fixated

but was not. We see a similar pattern to Fig 5A (right) in both the data and model predictions.

This suggests that uncertainty is not simply driving the decision to make a saccade, but is also

influencing the location of that saccade.

Fig 5C explores this further by looking at the location of new fixations in the three-item

case, as a function of the difference in cumulative fixation time between the two possible fixa-

tion targets. Although the more-previously-fixated item is always less likely to be fixated, the

Fig 5. Uncertainty-directed attention. (A) Distribution of fixation advantage of the fixated item, computed at the beginning of each new fixation. Fixation

advantage is defined as the cumulative fixation time to the item minus the mean cumulative fixation time to the other item(s). First fixations are excluded in

this plot. (B) Similar to A, except that we compare the fixation advantage between the fixated item and the other item that could have been fixated but was

not. First and second fixations are excluded in this plot. (C) The probability that the item with greater alternative fixation advantage is fixated, as a function

of that advantage. See Fig 3 for more details.

https://doi.org/10.1371/journal.pcbi.1008863.g005
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probability of such a fixation actually increases as its fixation advantage grows. This counterin-

tuitive model prediction results from the competing effects of value and uncertainty on atten-

tion. Since items with high estimated value are fixated more, an item that has been fixated

much less than the others is likely to have a lower estimated value, and is therefore less likely to

receive more fixations. However, we see that the predicted effect is much stronger than the

observed effect, and that the aDDM model provides a better account of this pattern than our

main model. However, note that the accuracy of this fit follows from the fact that the aDDM

samples fixation locations and durations from the empirical distribution, conditioned on the

previous three fixation locations and the item ratings.

Value-directed attention

A second key driver of attention in the optimal policy is estimated value, which directs fixa-

tions to the two items with the highest posterior means. As illustrated in Fig 2A, this implies

that fixation locations should be sensitive to relative estimated values in the trinary but not in

the binary case.

Although we cannot directly measure the participants’ evolving value estimates, we can use

the liking ratings as a proxy for them because higher-rated items will tend to result in higher

value estimates. Using this idea, Fig 6A shows the proportion of fixation time devoted to the

left item as a function of its relative rating. Focusing first on the three-item case, both the

model and data show a strong tendency to spend more time fixating on higher rated items

(which are therefore likely to have higher estimated values). In the two item case, the model

simulations show a smaller but also positive effect. This is counterintuitive since the model

predicts that in the two-item case fixation locations are insensitive to the sign of the relative

value estimates (Fig 2A). However, the pattern likely arises due to the tendency to fixate last on

the chosen item (see Fig 7A below).

Fig 6. Value-directed attention. (A) Proportion of time fixating the left item as a function of its relative rating. (B) First fixation duration as a function of

the rating of the first-fixated item. (C) Probability of fixating the lowest rated item as a function of the cumulative fixation time to any of the items. (D)

Probability that the fourth fixation is to the first-fixated item as a function of the difference in rating between that item and the second-fixated item. (E)

Probability that the third fixation is to the first fixated item as a function of its rating. See Fig 3 for more details.

https://doi.org/10.1371/journal.pcbi.1008863.g006
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Fig 6B provides an alternative test that avoids confounds associated with the final fixation.

It shows the duration of the first fixation, which is rarely final, as a function of the rating of the

first fixated item. In the three-item case, both the model and data show longer initial fixations

to high-rated items, although the model systematically underpredicts the mean first fixation

duration. This prediction follows from the fact that, under the optimal policy, fixations are ter-

minated when the fixated item’s estimated value falls out of the top two (below zero for the

first fixation); the higher the true value of the item, the less likely this is to happen. In the two-

item case, however, the model predicts that first fixation duration should be largely insensitive

to estimated value; highly valuable items actually receive slightly shorter fixations because these

items are more likely to generate extremely positive samples that result in terminating the first

fixation and immediately choosing the fixated item. Consistent with this prediction, humans

show little evidence for longer first fixations to high-rated items in the binary case.

Previous work has suggested that attention may be directly influenced by the true value of

the items [17, 18, 60]. In our model, however, attention is driven only by the internal value esti-

mates generated during the decision making process. To distinguish between these two

accounts, we need a way to dissociate estimated value from true value. One way to do this is by

looking at the time course of attention. Early in the decision making process, estimated values

will be only weakly related to true value. However, with time the value estimates become

increasingly accurate and thus more closely correlate with true value. Thus, if the decision

maker always attends to the items with high estimated value, she should be increasingly likely

to attend to items with high true value as the trial progresses. Fig 6C shows the probability of

fixating on the worst item as a function of the cumulative fixation time to any of the items. In

both the two- and three-item cases, the probability begins near chance. In the three-item case,

however, the probability quickly falls. This is consistent with a model in which attention is

driven by estimated value rather than value itself.

Fig 7. Choice biases. (A) Probability that the last fixated item is chosen as a function of its relative rating. (B) Probability that the left item is chosen as a

function of its final fixation advantage, given by total fixation time to the left item minus the mean total fixation time to the other item(s). (C) Probability of

choosing the first-seen item as a function of the first-fixation duration. See Fig 3 for more details.

https://doi.org/10.1371/journal.pcbi.1008863.g007

PLOS COMPUTATIONAL BIOLOGY Fixation patterns in simple choice reflect optimal information sampling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008863 March 26, 2021 13 / 29

https://doi.org/10.1371/journal.pcbi.1008863.g007
https://doi.org/10.1371/journal.pcbi.1008863


The model makes even starker predictions in the three-item case. First, take all trials in

which the decision-maker samples from different items during the first three fixations. Con-

sider the choice of where to deploy the fourth fixation. The model predicts that this fixation

should be to the first-fixated item if its posterior mean is larger than that of the second-fixated

item, and vice versa. As a result, the probability that the fourth fixation is a refixation to the

first-fixated item should increase with the difference in ratings between the first- and second-

fixated items. As shown in Fig 6D, the observed pattern follows the model prediction.

Finally, the model makes a striking prediction regarding the location of the third fixation in

the three-item case. Consider the choice of where to fixate after the first two fixations. The

decision maker can choose to fixate on the item that she has not seen yet, or to refixate the

first-fixated item. The model predicts a refixation to the first-seen item if both that item and

the second-seen item already have high value estimates (leaving the unfixated item with the

lowest value estimate). Consistent with this prediction, Fig 6E shows that the probability of the

third fixation being a refixation to the first-seen item increases with that item’s rating. Note

that the model with α fixed to zero (corresponding to a strong prior bias), dramatically over-

predicts the intercept. This is because this model greatly underestimates the value of the not-

yet-fixated item.

Fig 6 shows that our main model provides a better prediction of some fixation patterns,

whereas the aDDM provides a better fit of others. However, it is important to keep in mind

that whereas our model provides predictions for these fixation patterns based on first princi-

ples, the predictions of the aDDM for these patterns are largely mechanistic since that model

samples fixation locations and durations from the observed empirical distribution. As a result,

it is not surprising that Fig 6B shows a better match between the aDDM and the data since the

predicted durations are, literally, sampled from the observed data conditional on the first item

rating.

Choice biases

Previous work has found a systematic positive correlation between relative fixation time and

choice for appetitive (i.e., positively valenced) items [6, 7, 9, 10, 14, 20]. In particular, models

like the aDDM propose that an exogenous or random increase in fixations towards an appeti-

tive item increase the probability that it will be chosen, which leads to attention driven choice

biases. Here we investigate whether the optimal model can account for these types of effects.

Importantly, in the type of optimal fixation model proposed here, there are two potential

mechanisms through which such correlations can emerge. The first is driven by the prior. If

the prior mean is negatively biased, then sampling from an item will on average increase its

estimated value. This follows from the fact that sampling will generally move the estimated

value towards the item’s true value, and a negatively biased prior implies that the initial value

estimate is generally less than the true value. The second mechanism, which is only present in

trinary choice, is the result of value-directed attention. Here, the causal direction is flipped,

with value estimates driving fixations rather than fixations driving value estimates. In particu-

lar, items with higher estimated value are both more likely to be fixated, and more likely to be

chosen. Thus, fixations and choice are correlated through a common cause structure. Impor-

tantly, the two mechanisms are not mutually exclusive; in fact, our model predicts that both

will be in effect for choice between more than two items.

Fig 7A shows that there is a sizable choice bias towards the last-seen item in both datasets,

as evidenced by the greater-than-chance probability of choosing an item whose value is equal

to the mean of the other items. Our model provides a strong quantitative account of the pat-

tern in trinary choice, but substantially underpredicts the effect in binary choice. Interestingly,
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it predicts a weaker effect than the aDDM in the binary case, but a stronger effect in the trinary

case.

To understand this result, it is important to think about the prior beliefs implicit in the

aDDM and related models [9, 10, 20]. Since these are not Bayesian models, they do not posit

an explicit prior that is then modified by evidence. However, the aDDM can be viewed as an

approximation to a Bayesian model with a prior centered on zero, as reflected by the initial

point of the accumulator (zero) and the multiplicative discounting (the evidence for the non-

attended item is discounted towards zero). The latter roughly corresponds to the Bayesian reg-

ularization effect, wherein the posterior mean falls closer to the prior mean when the likeli-

hood is weak (low precision). Given this, our model predicts a weaker effect in the binary case

because it has a weaker prior bias (α = 0.58) than the one implicit in the aDDM (α = 0). Our

model predicts a stronger effect in the trinary case due to the value-directed attention mecha-

nism. Critically, although the aDDM accounts for the effect of true value on fixations (by sam-

pling from the empirical fixation distribution), only the optimal model accounts for the effects

of estimated value. Thus, conditioning on true value (as we do in Fig 7A) breaks the value-

based attention mechanism in the aDDM but not in the optimal model. Finally, note that the

optimal model with α = 0 provides a good account of the bias in the binary case, but dramati-

cally overpredicts it in the trinary case.

Fig 7B shows that the average probability of choosing the left item increases substantially

with its overall relative fixation time. As before, in comparison with the aDDM, the optimal

model provides better captures the full strength of the bias in the trinary case, but underpre-

dicts the effect in the binary case. The optimal model with α fixed to zero performs best in

both cases. Note that the fit of the aDDM is not as close as for similar figures in the original

papers because we simulate all models with the observed ratings (rather than all possible com-

bination of item ratings) and we consider a larger range of final time advantage. We replicate

the original aDDM figures in S1 Appendix.

Finally, Fig 7C shows that the probability of choosing the first fixated item increases with

the duration of the first fixation. Importantly, this figure shows that the attention-choice corre-

lation cannot be explained solely by the tendency to choose the last-fixated item. Again, all

four models qualitatively capture the effect, with varying degrees of quantitative fit.

Discussion

We have built a model of optimal information sampling during simple choice in order to

investigate the extent to which it can provide a quantitative account of fixation patterns, and

their relationship with choices, during binary and trinary decisions. The model is based on

previous work showing that simple choices are based on the sequential accumulation of noisy

value samples [1, 44, 61–64] and that the process is modulated by visual attention [7, 9, 10, 17,

20, 21, 65]. However, instead of proposing a specific algorithmic model of the fixation and

choice process, as is common in the literature, our focus has been on characterizing the opti-

mal fixation policy and its implications. We build on previous work on optimal economic

decision-making in which samples are acquired for all options at the same rate [40, 44–46],

and extend it to the case of endogenous attention, where the decision maker can control the

rate of information acquired about each option. We formalized the selection of fixations as a

problem of dynamically allocating a costly cognitive resource in order to gain information

about the values of the available options. Leveraging tools from metareasoning in artificial

intelligence [50–53], we approximated the optimal solution to this problem, which takes the

form of a policy that selects which item to fixate at each moment and when to terminate the

decision-making process.

PLOS COMPUTATIONAL BIOLOGY Fixation patterns in simple choice reflect optimal information sampling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008863 March 26, 2021 15 / 29

https://doi.org/10.1371/journal.pcbi.1008863


We found that, despite its simplicity, the optimal model accounts for many key fixation and

choice patterns in two influential binary and trinary choice datasets [9, 10]. The model was

also able to account for striking differences between the two- and three-item cases using a

common set of parameters fitted out of sample. More importantly, the results provide evidence

in favor of the hypothesis that the fixation process is influenced by the evolving value estimates,

at least to some extent. Consider, for example, the increase in fixation duration over the course

of the trial shown in Fig 4C, the tendency to equate fixation time across items (Fig 5B), and the

relationship between the rating of the first fixated item and the probability of re-fixating it (Fig

6D and 6E). These effects are explained by our model, but are hard to explain with exogenous

fixations, or with fixations that are correlated with the true value of the items, but not with the

evolving value estimates (e.g., as in [17, 18, 66]).

Optimal information sampling models may appear inappropriate for value-based decision-

making problems, in which perceptual uncertainty about the identity of the different choice

items (often highly familiar junk foods) is likely resolved long before a choice is made. Two

features of the model ameliorate this concern. First, the samples underlying value-based deci-

sions are not taken from the external display (as in perceptual decisions), but are instead gen-

erated internally, perhaps by some combination of mental simulation and memory recall [47–

49]. Second, the model makes the eye-mind assumption [15, 67]: what a person is looking at is

a good indicator of what they are thinking about. Importantly, these assumptions implicitly

underlie all sequential sampling models of value-based decision-making.

Our model is not the first to propose that the fixation and value-estimation processes might

interact reciprocally. However, no previous models fully capture the key characteristics of opti-

mal attention allocation, which appear to be at least approximated in human fixation behavior.

For example, the Gaze Cascade Model [6] proposes that late in a trial subjects lock-in fixations

on the favored option until a choice is made, [20] propose an aDDM in which the probability

of fixating an item is given by a softmax over the estimated values, and [21] propose a Bayesian

model of binary choice in which fixations are driven by relative uncertainty. In contrast to

these models, the optimal model predicts that fixations are driven by a combination of the esti-

mated uncertainty and relative values throughout the trial, and that attention is devoted specif-

ically to the items with the top two value estimates. Although the data presented here strongly

support the first prediction, further data are necessary to distinguish between the top-two rule

and the softmax rule of [20].

Our results shed further light on the mechanisms underlying the classic attention-choice

correlation that has motivated previous models of attention-modulated simple choice. First,

our results highlight an important role of prior beliefs in sequential sampling models of simple

choice (c.f. [68]). All previous models have assumed a prior mean of zero, either explicitly [21,

68] or implicitly [9, 10, 20]. Such a prior is negatively biased when all or most items have posi-

tive value, as is often the case in experimental settings. This bias is critical in explaining the

classic attention-choice correlation effects because it creates a net-positive effect of attention

on choice: if one begins with an underestimate, attending to an item will on average increase

its estimated value. However, we found that the best characterization of the full behavior was

achieved with a moderately biased prior, both in terms of our approximate likelihood and in

the full set of behavioral patterns in the plots.

Our results also suggest another (not mutually exclusive) mechanism by which the atten-

tion-choice correlation can emerge: value-directed attention. We found that the optimal

model with no prior bias (α = 1) predicts an attention-choice correlation in the trinary choice

case. This is because, controlling for true values, an increase in estimated value (e.g., due to

sample noise) makes the model more likely to both fixate and choose an item. This could

potentially help to resolve the debate over additive vs. multiplicative effects of attention on
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choice [11, 13]. While the prior-bias mechanism predicts a multiplicative effect, the value-

directed attention mechanism predicts that fixation time and choice will be directly related (as

predicted by the additive model). Although we did not see strong evidence for value-directed

attention in the binary dataset, such a bias has been shown in explicit information gathering

settings [69] and could be at work in other binary choice settings.

Our work most closely relates to two recent lines of work on optimal information sampling

for simple choice. First, Hébert and Woodford [70, 71] consider sequential sampling models

based on rational inattention. They derive optimal sampling strategies under highly general

information-theoretic constraints, and establish several interesting properties of optimal sam-

pling, such as the conditions under which the evidence accumulation will resemble a jump or

a diffusion process. In their framework, the decision maker chooses, at each time point, an

arbitrary information structure, the probability of producing each possible signal under differ-

ent true states of the world. In contrast, we specify a very small set of information structures,

each of which corresponds to sampling a noisy estimate of one item’s value (Eq 1). This natu-

rally associates each information structure with fixating on one of the items, allowing us to

compare model predictions to human fixation patterns. Whether human attention more

closely resembles flexible construction of dynamic information structures, or selection from a

small set of fixed information structures is an interesting question for future research.

In a second line of work, concurrent to our own, Jang, Sharma, and Drugowitsch [68]

develop a model of optimal information sampling for binary choice with the same Bayesian

structure as our model and compare their predictions to human behavior in the same binary

choice dataset that we use [9]. There are three important differences between the studies. First,

they consider the possibility that samples can also be drawn in parallel for the unattended

item, but with higher variance. However, they find that a model in which almost no informa-

tion is acquired for the unattended item fits the data best, consistent with the assumptions of

our model. Second, they use dynamic programming to identify the optimal attention policy

almost exactly. This allows them to more accurately characterize truly optimal attention alloca-

tion. However, dynamic programming is intractable for more than two items, due to the curse

of dimensionality. Thus, they could not consider trinary choice, which is of special interest

because only this case makes value-directed attention optimal, and forces the decision-maker

to decide which of the unattended items to fixate next, rather than simply when to switch to

the other item. Third, they assumed (following previous work) that the prior mean is zero. In

contrast, by varying the prior, we show that although a biased prior is needed to account for

the attention-choice correlation in binary choice, the data is best explained by a model with

only a moderately biased prior mean, about halfway between zero and the empirical mean.

We can also draw insights from the empirical patterns that the model fails to capture. These

mismatches suggest that the model, which was designed to be as simple as possible, is missing

critical components that should be explored in future work. For example, the underprediction

of fixation durations early in the trial could be addressed by more realistic constraints on the

fixation process such as inhibition of return, and the overprediction of the proportion of sin-

gle-fixation trials in the two-item case could be explained with uncertainty aversion. Although

not illustrated here, the model’s accuracy could be further improved by including bottom-up

influences on fixations (e.g., spatial or saliency biases [18, 72]).

While we have focused on attention in simple choice, other studies have explored the role

of attention in more complicated multi-attribute choices [5, 73–82]. None of these studies

have carried out a full characterization of the optimal sampling process or how it compares to

observed fixation patterns, although see [83, 84] for some related results. Extending the meth-

ods in this paper to that important case is a priority for future work. Finally, in contrast to

many sequential sampling models, our model is not intended as a biologically plausible process
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model of how the brain actually makes decisions. Exploring how the brain might approximate

the optimal sampling policy presented here, and also how optimal sampling might change

under accumulation mechanisms such as decay and inhibition is another priority for future

work.

Methods

The model was implemented in the Julia programming language [85]. The code can be found

at https://github.com/fredcallaway/optimal-fixations-simple-choice.

Attention allocation as a metalevel Markov decision process

To characterize optimal attention allocation in our model, we cast the model as a metalevel

Markov decision process (MDP) [52]. Like a standard MDP, a metalevel MDP is defined by a

set of states, a set of actions, a transition function giving the probability of moving to each state

by executing a given action in a given state, and a reward function giving the immediate utility

gained by executing a given action in a given state. In a metalevel MDP, the states, B, corre-

spond to beliefs (mental states), and the actions, C, correspond to computations (cognitive

operations). However, formally, it is identical to an MDP, and can be interpreted as such.

In our model, a belief state, b 2 B, corresponds to a set of posterior distributions over each

item’s value. Because the distributions are Gaussian, the belief can be represented by two vec-

tors, μ and λ, that specify the mean and precision of each distribution. That is

pðuðiÞ j bÞ ¼ Gaussian uðiÞ; mðiÞ; 1
lðiÞ= Þð

To model the switching cost, the belief state must also encode the currently attended item, i.e.,

the item sampled last (taking a null value,�, in the initial belief). Thus, a belief is a tuple bt =

(μt, λt, lastt). The dimensionality of the belief space is 2N + 1 where N is the number of items.

A computation, c 2 C, corresponds to sampling an item’s value and updating the corre-

sponding estimated value distribution. There are N such computations, one for each item.

Additionally, all metalevel MDPs have a special computation,? that terminates the computa-

tion process (in our case, sampling) and selects an optimal external action given the current

belief state (in our case, choosing the item with maximal posterior mean).

The metalevel transition function describes how computations update beliefs. In our

model, this corresponds to the sampling and Bayesian belief updating procedure specified in

Eq 2, which we reproduce here for the reader’s convenience. Note that we additionally make

explicit the variable that tracks the previously sampled item. Given the current belief, bt = (μt,
λt, lastt), and computation, c, the next belief state, bt+1 = (μt+1, λt+1, lastt+1), is sampled from

the following generative process:

xt � GaussianðuðcÞ; s2
xÞ

l
ðcÞ
tþ1

¼ l
ðcÞ
t þ s

� 2
x

m
ðcÞ
tþ1 ¼

s� 2
x xt þ l

ðcÞ
t m

ðcÞ
t

l
ðcÞ
tþ1

l
ðiÞ
tþ1

¼ l
ðiÞ
t and mðiÞtþ1 ¼ m

ðiÞ
t for i 6¼ c:

lasttþ1 ¼ c

ð6Þ
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Finally, the metalevel reward function incorporates both the cost of computation and the

utility of the chosen action. The metalevel reward for sampling is defined

Rðbt; ctÞ ¼ � costðbt; ctÞ ¼ � ðgsample þ 1ðlastt 6¼ � ^ ct 6¼ lasttÞ gswitchÞ:

That is, the cost of sampling includes a fixed cost, γsample, as well as an additional switching

cost, γswitch, that is paid when sampling from a different item than that sampled on the last

time step. We assume that this cost is not paid for the first fixation; however, this assumption

has no effect on the optimal policy for reasonable parameter values. The action utility is the

true value of the chosen item, i.e., uði�T Þ where i�T ¼ argmax
i

m
ðiÞ
T . The metalevel reward for the

termination computation,?, is the expectation of this value. Because we assume accurate pri-

ors and Bayesian belief updating, this expectation can be taken with respect to the agent’s own

beliefs [52], resulting in

Rðbt;?Þ ¼ E½uði�T Þ j bt� ¼ max
i
mðiÞt :

Optimal metalevel policy

The solution to a metalevel MDP takes the form of a Markov policy, π, that stochastically

selects which computation to take next given the current belief state. Formally, ct* π(bt). The

optimal metalevel policy, π�, is the one that maximizes expected total metalevel reward,

p� ¼ argmax
p

E
XT

t

Rðbt; ctÞ j ct � pðbtÞ

" #

:

Replacing R with its definition, we see that this requires striking a balance between the

expected value of the chosen item and the computational cost of the samples that informed the

choice,

p� ¼ argmax
p

E max
i
m
ðiÞ
T �

XT� 1

t

costðbt; ctÞ j ct � pðbtÞ

" #

:

That is, one wishes to acquire accurate beliefs that support selecting a high-value item, while at

the same time minimizing the cost of the samples necessary to attain those beliefs. This sug-

gests a strategy for selecting computations optimally. For each item, estimate how much one’s

decision would improve if one sampled from it (and then continued sampling optimally). Sub-

tract from this number the cost of taking the sample (and also the estimated cost of the future

samples). Now identify the item for which this value is maximal. If it is positive, it is optimal to

take another sample for this item; otherwise, it is optimal to stop sampling and make a

decision.

This basic logic is formalized in rational metareasoning as the value of computation (VOC)

[51]. Formally, VOC(b, c) is defined as the expected increase in total metalevel reward if one

executes a single computation, c, and continues optimally rather than making a choice imme-

diately (i.e., executing?):

VOCðbt; cÞ ¼ Rðbt; cÞ þ E
XT

t0¼tþ1

Rðbt0 ; ct0 Þ j ct0 � p
�ðbt0 Þ

" #

� Rðb;?Þ:
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In our model, this can be rewritten

VOCðbt; cÞ ¼ � costðbt; cÞ þ E max
i
m
ðiÞ
T �

XT� 1

t0¼tþ1

costðbt0 ; ct0 Þj ct0 � p
�ðbt0 Þ

" #

� max
i
mðiÞt :

That is, the VOC for sampling a given item in some belief state is the expected improvement in

the value of the chosen item (rather than making a choice based on the current belief) minus

the cost of sampling that item and the expected cost of all future samples.

We can then define the optimal policy as selecting computations with maximal VOC:

p�ðbÞ � Uniformðargmax
c

VOCðb; cÞÞ:

For those familiar with reinforcement learning, this recursive joint definition of π� and VOC is

exactly analogous to the joint definition of the optimal policy with the state-action value func-

tion, Q [86]. Indeed, VOC(b, c) = Q(b, c) − R(b,?).

Finally, by definition, VOC(b,?) = 0 for all b. Thus, the optimal policy terminates sampling

when no computation has a positive VOC.

Approximating the optimal policy

For small discrete belief spaces, the optimal metalevel policy can be computed exactly using

standard dynamic programming methods such as value iteration or backwards induction [87].

These methods can also be applied to low-dimensional, continuous belief spaces by first discre-

tizing the space on a grid [45], and this approach has recently been used to characterize the

optimal fixation policy in binary choice [68]. Unfortunately, these methods are infeasible in

the trinary choice case, since the belief space has six continuous dimensions. Instead, we

approximate the optimal policy by extending the method proposed in [53]. This method is

based on an approximation of the VOC as a linear combination of features,

dVOCðb; c;wÞ ¼ w1VOImyopicðb; cÞ þ w2VOIitemðb; cÞ þ w3VOIfullðbÞ � ðcostðcÞ þ w4Þ; ð7Þ

for all c 6¼ ?, with dVOCðb;?;wÞ ¼ VOCðb;?Þ ¼ 0.

We briefly define the features here, and provide full derivations in S1 Appendix. The VOI

terms quantify the value of information [88] that might be gained by different additional com-

putations. Note that the VOI is different from the VOC because the latter includes the costs of

computation as well as its benefits. In general, the VOI is defined as the expected improvement

in the utility of the action selected based on additional information rather than the current

belief state: E~bjb½Rð~b;?Þ � Rðb;?Þ�, where ~b is a hypothetical future belief in which the infor-

mation has been gained, the distribution of which depends on the current belief.

VOImyopic(b, c) denotes the expected improvement in choice utility from drawing one addi-

tional sample from item c before making a choice, as opposed to making a choice immediately

based on the current belief, b. VOIitem(b, c) denotes the expected improvement from learning

the true value of item c, and then choosing the best item based on that information. Finally,

VOIfull(b) denotes the improvement from learning the true value of every item and then mak-

ing an optimal choice based on that complete information.

Together, these three features approximate the expected value of information that could be

gained by the (unknown) sequence of future samples. Importantly, this true value of informa-

tion always lies between the lower bound of VOImyopic and the upper bound of VOIfull (see Fig

D in S1 Appendix), implying that the true VOI is a convex combination of these two terms.

Note, however, that the weights on this combination are not constant across beliefs, as
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assumed in our approximation. Thus, including the VOIitem term, improves the accuracy of

the approximation, by providing an intermediate value between the two extremes. Finally, the

last two terms in Eq 7 approximate the cost of computation: cost(c) is the cost of carrying out

computation c and w4 approximates the expected future costs incurred under the optimal pol-

icy. Although maximizing dVOCðb; c;wÞ identifies the policy with the best performance, it is

unlikely that humans make attentional decisions using such perfect and noiseless maximiza-

tion. Thus, we assume that computations are chosen using a Boltzmann (softmax) distribution

[55] given by

pðc j b;w; bÞ / expfbdVOCðb; c;wÞg;

where the inverse temperature, β, is a free parameter that controls the degree of noise. Note

that computation selection is fully random when β = 0 and becomes deterministic as β!1.

To identify the weights used in the approximation, we first assume that wi� 0 and w1 + w2

+ w3 = 1, since w1:3 features form a convex combination and w4 captures the non-negative

future cost. Previous work [53] used Bayesian optimization to identify the weights within this

space that maximize total expected metalevel reward. However, we found that often a large

area of weight space resulted in extremely similar performance, despite inducing behaviorally

distinct policies. Practically, this makes identifying a unique optimal policy challenging, and

theoretically we would not expect all participants to follow a single unique policy when there is

a wide plateau of high-performing policies. To address this, we instead identify a set of near-

optimal policies and assume that human behavior will conform to the aggregate behavior of

this set.

To identify this set of near-optimal policies, we apply a method based on Upper Confidence

Bound (UCB) bandit algorithms [89]. We begin by sampling 8000 weight vectors to roughly

uniformly tile the space of possible weights. Concretely, we divide a three-dimensional hyper-

cube into 800 = 203 equal-size boxes and sample a point uniformly from each box. The first

two dimensions are bounded in (0, 1) and are used to produce w1:3 using the following trick:

Let x1 and x2 be the lower and higher of the two sampled values. We then define w1:3 = [x1,

x2 − x1, 1 − x2]. If x1 and x2 are uniformly sampled from (0, 1), and indeed they are, then this

produces w1:3 uniformly sampled from the 3-simplex. The third dimension produces the

future cost weight; we set w4 = x3 �maxcost where maxcost is the lowest cost for which no com-

putation has positive dVOC in the initial belief state. We then simulate 100 decision trials for

each of the resulting policies, providing a baseline level of performance. Using these simula-

tions, we compute an upper confidence bound of each policy’s performance equal to m̂ i þ 3ŝi,

where m̂ i and ŝi are the empirical mean and standard deviations of the metalevel returns sam-

pled for policy i. A standard UCB algorithm would then simulate from the policy maximizing

this value. However, because we are interested in identifying a set of policies, we instead select

the top 80 (i.e. 1% of) policies and simulate 10 additional trials for each, updating m̂ i and ŝi for

each one. We iterate this step 5000 times. Finally, we select the 80 policies with the highest

expected performance as our characterization of optimal behavior in the metalevel MDP. To

eliminate the possibility of fitting noise in the optimization procedure, we use one set of poli-

cies to compute the likelihood on the training data and re-optimize a new set of policies to gen-

erate plots and compute the likelihood of the test data. Note that we use the box sampling

method described in the previous paragraph rather than a deterministic low discrepancy sam-

pling strategy [90] so that the set of policies considered are not exactly the same in the fitting

and evaluation stages.

How good is the approximation method? Previous work found that this approach generates

near-optimal policies on a related problem, with Bernoulli-distributed samples and no
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switching costs [53]. Note that in the case of Bernoulli samples, the belief space is discrete and

thus the optimal policy can be computed exactly if an upper bound is placed on the number of

computations that can be performed before making a decision. Although introducing switch-

ing costs makes the metareasoning problem more challenging to solve, in the Bernoulli case

we have found that they only induce a modest reduction in the performance of the approxima-

tion method relative to the full optimal policy, achieving 92% of optimal reward in the worst

case (see S1 Appendix for details). This suggests that this method is likely to provide a reason-

able approximation to the optimal policy in the model with Gaussian samples used here, but a

full verification of this fact is beyond the scope of the current study.

Implementation of the prior

In the main text, we specified the prior as a property of the initial belief state. However, for

technical reasons (in particular, to reuse the same set of optimized policies for multiple values

of α), it is preferable to perform policy optimization and simulation in a standardized space, in

which the initial belief state has μ0 = 0 and λ0 = 1. We then capture the prior over the ratings

of items in the experiment by transforming the ratings into this standardized space such that

the transformed values are in units defined by the prior. Concretely, given an item rating r(i),

we set the true value to

uðiÞ ¼
rðiÞ � �m

�s
; ð8Þ

where �m and �s denote the prior mean and standard deviation. Modulo the resultant change in

units (all parameter values are divided by �s), this produces the exact same behavior as the

naïve implementation, in which the initial belief itself varies.

There is one non-trivial consequence of using this approach when jointly fitting multiple

datasets: The jointly fit parameters are estimated in the standardized space, rather than the

space defined by the raw rating scale. As a result, if we transform the parameters back into the

raw rating space, the parameters will be slightly different for the two datasets (even though

they are identical in the transformed space). This was done intentionally because we expect

that the parameters will be consistent in the context-independent units (i.e., standard devia-

tions of an internal utility scale). However, this decision turns out to have negligible impact in

our case because the empirical rating distributions are very similar. Specifically, the empirical

rating distributions are (mean ± std) 3.492 ± 2.631 for the binary dataset and 4.295 ± 2.524 for

the trinary dataset. Due to the difference in standard deviations, all parameters (except α,

which is not affected) are 2.631/2.524 = 1.042 times larger in the raw rating space for the binary

dataset compared to the trinary dataset. The difference in empirical means affects �m, which is

3.492/4.295 = 0.813 times as large in the binary compared to trinary dataset. However, given

our interpretation of α as a degree of updating towards the empirical mean, this difference is

as intended.

Model simulation procedure

Given a metalevel MDP and policy, π, simulating a choice trial amounts to running a single

episode of the policy on the metalevel MDP. To run an episode, we first initialize the belief

state, b0 = (μ0 = 0, λ0 = 1, last0 =�). Note that last0 =� indicates that no item is fixated at the

onset of a trial.

The agent then selects an initial computation c0 * π(b0) and the belief is updated according

to the transition dynamics (Eq 6). Note that π(cjb0) assigns equal sampling probability to all of

the items, since the subject starts with symmetrical beliefs. This process repeats until some
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time step, T, when the agent selects the termination action,?. The predicted choice is the item

with maximal posterior value, i�T ¼ argmax
i

m
ðiÞ
T . In the event of a tie, the choice is sampled uni-

formly from the set of items with maximal expected value in the final belief state; in practice,

this never happens with well-fitting parameter values.

To translate the sequence of computations into a fixation sequence, we assume that each

sample takes 100 ms and concatenate multiple contiguous samples from the same item into

one fixation. The temporal duration of a sample is arbitrary; a lower value would result in finer

temporal predictions, but longer runtime when simulating the model. In this way, it is very

similar to the dt parameter used in simulating diffusion decision models. Importantly the qual-

itative predictions of the model are insensitive to this parameter because σx and γsample can be

adjusted to result in the same amount of information and cost per ms.

We simulate the model for two different purposes: (1) identifying the optimal policy and

(2) comparing model predictions to human behavior. In the former case, we randomly sample

the true utilities on each “trial” i.i.d. from Gaussian(0, 1). This corresponds to the assumption

that the fixation policy is optimized for an environment in which the DM’s prior is accurate.

When simulating a specific trial for comparison to human behavior, the true value of each

item is instead determined by the liking ratings for the items presented on that trial, as speci-

fied in Eq 8.

Model parameter estimation

The model has five free parameters: the standard deviation of the sampling distribution, σx, the

cost per sample, γsample, the cost of switching attention, γswitch, the degree of prior updating, α,

and the inverse temperature of the Boltzmann policy, β. We estimate a single set of parameters

at the group level using approximate maximum likelihood estimation in the combined two-

and three-item datasets, using only the even trials.

To briefly summarize the estimation procedure: given a candidate set of parameter values,

we construct the corresponding metalevel MDP and identify a set of 80 near-optimal policies

for that MDP. We then approximate the likelihood of the human fixation and choice data

using simulations from the optimized policies. Finally, we perform this full procedure for

70,000 quasi-randomly sampled parameter configurations and report the top thirty configura-

tions (those with the highest likelihood) to give a rough sense of the uncertainty in the model

predictions. A parameter recovery exercise (reported in S1 Appendix) suggests that this

method, though approximate, is sufficient to identify the parameters of the model with fairly

high accuracy. Below, we explain in detail how we estimate and then maximize the approxi-

mate likelihood.

The primary challenge in fitting the model is in estimating the likelihood function. In prin-

ciple, we could seek to maximize the joint likelihood of the observed fixation sequences and

choices. However, like most sequential sampling models, our model does not have an analytic

likelihood function. Additionally, the high dimensionality of the fixation data makes standard

methods for approximating the likelihood [91, 92] infeasible. Thus, taking inspiration from

Approximate Bayesian Computation methods [93, 94], we approximate the likelihood by col-

lapsing the high dimensional fixation data into four summary statistics: the identity of the cho-

sen item, the number of fixations, the total fixation time, and the proportion of fixation time

on each item. As described below, we estimate the joint likelihood of these summary statistics

as a smoothed histogram of the statistics in simulated trials, and then approximate the likeli-

hood of a trial by the likelihood of its summary statistics. We emphasize, however, that we do

not use this approximate likelihood to evaluate the performance of the model. Instead, we

intend it to be a maximally principled (and minimally researcher-specified) approach to
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choosing model parameters, given that computing a true likelihood is computationally

infeasible.

Given a set of near-optimal policies, we estimate the likelihood of the summary statistics for

each trial using a smoothed histogram of the summary statistics in simulated trials. Critically,

this likelihood is conditional on the ratings for the item in that trial. However, it depends only

on the (unordered) set of these ratings; thus, we estimate the conditional likelihood once for

each such set. Given a set of ratings, we simulate the model 625 times for each of the 80 poli-

cies, using the resulting 50,000 simulations to construct a histogram of the trial summary sta-

tistics. The continuous statistics (total and proportion fixation times) are binned into quintiles

(i.e., five bins containing equal amounts of the data) defined by the distribution in the experi-

mental data. For the fixation proportions, the quintiles are defined on the rating rank of the

item rather than the spatial location because we expect the distributions to depend on relative

rating in the three-item case. Values outside the experimental range are placed into the corre-

sponding tail bin. Similarly, trials with five or more fixations are all grouped into one bin

(including e.g., six and seven fixations) and cases in which the model predicts zero fixations

are grouped into the one-fixation bin. This latter case corresponds to choosing an item imme-

diately without ever sampling, and occurs rarely in well-fitting instantiations of the model, but

happens frequently when γsample is set too high. For each simulation, we compute the binned

summary statistics, identify the corresponding cell in the histogram, and increase its count by

one. Finally, we normalize this histogram, resulting in a likelihood over the summary statistics.

To compute the likelihood of a trial, Lðd j y), we compute the binned summary statistics for

the trial and look up the corresponding value in the normalized histogram for that trial’s rating

set.

To account for trials that are not well explained by our model, we use add-n smoothing,

where n was chosen independently for each θ to maximize the likelihood. This is equivalent to

assuming a mixture between the empirical distribution and a uniform distribution with mix-

ing weight �. Thus, the full approximate likelihood is

LðD j yÞ ¼ max
�2½0;0:5�

Y

d2D
�

1

C
þ ð1 � �ÞLðd j yÞ

� �

;

where C = N � 5N+1 is the total number of cells in the histogram. Importantly, this error model

is only used to approximate the likelihood; it is not used for generating the model predictions

in the figures—indeed, it could not be used in this way because the error model is defined over

the summary statistics, and cannot generate full sequences of fixations. Thus, the � parameter

should be interpreted in roughly the same way as the bandwidth parameter of a kernel density

estimate [91], rather than as an additional free parameter of the model.

We then use this approximate likelihood function to identify a maximum likelihood esti-

mate, ŷ ¼ argmaxLðD j yÞ. Based on manual inspection, we identified the promising region

of parameter space to be σx 2 (1, 5), γsample 2 (0.001, 0.01), γswitch 2 (0.003, 0.03), and β 2 (100,

500). We then ran an additional quasi-random search of 10,000 points within this space using

Sobol low-discrepancy sequences [90]. This approach has been shown to be more effective

than both grid search and random search, while still allowing for massive parallelization [95].

Note that the optimal policy does not depend on α because the DM believes her prior to be

unbiased (by definition) and makes her fixation decisions accordingly. The alternative, opti-

mizing the policy conditional on α, would imply that the DM is internally inconsistent,

accounting for the bias in her fixations but not in the prior itself. Thus, we optimize α sepa-

rately from the other parameters. Specifically, we consider 10,000 possible instantiations of all

the other parameters, find optimal policies once for each instantiation, and evaluate the
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likelihood for seven values of α; these seven values included the special cases of 0 and 1 as well

as five additional evenly-spaced values with a random offset (roughly capturing the low-dis-

crepancy property of the Sobol sequence).

We found that the stochasticity in the policy optimization and likelihood estimation cou-

pled with weak identifiability for some parameters resulted in slightly different results when

re-running the full procedure; thus, to give a rough sense of the uncertainty in the estimate, we

identify the top thirty parameters, giving us both mean and standard deviation for each param-

eter and the total likelihood.

Supporting information

S1 Appendix. Supplementary methods and results. Includes descriptions of the tasks for the

datasets we model, individual fitting methods and summary of results, parameter recovery

results, aDDM implementation and validation, derivations for the value of information fea-

tures, and a validation of the policy approximation method.

(PDF)

S2 Appendix. Individual fitting results. Includes versions of all plots in the main text with

separate panels for each participant (including model predictions with parameters fit to each

participant).

(PDF)
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