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Summary The aim of the present study was to find out whether increasing malignancy of prostate carcinoma correlates with an overall
increase of loss of heterozygosity (LOH), and whether LOH typing of microdissected tumour areas can help to distinguish between multifocal
or clonal tumour development. In 47 carcinomas analysed at 25 chromosomal loci, the overall LOH rate was found to be significantly lower in
grade 1 areas (2.2%) compared with grade 2 (9.4%) and grade 3 areas (8.3%, P = 0.007). A similar tendency was found for the mean
fractional allele loss (FAL, 0.043 for grade 1, 0.2 for grade 2 and 0.23 for grade 3, P = 0.0004). Of 20 tumours (65%) with LOH in several
microdissected areas, 13 had identical losses at 1–4 loci within two or three areas, suggesting clonal development of these areas. Markers
near RB, DCC, BBC1, TP53 and at D13S325 (13q21–22) showed higher loss rates in grades 2 and 3 (between 25% and 44.4%) compared
with grade 1 (0–6.6%). Tumour-suppressor genes (TSGs) near these loci might, thus, be important for tumour progression. TP53 mutations
were detected in 27%, but BBC1 mutations in only 7%, of samples with LOH. Evaluation of all 25 loci in every tumour made evident that each
prostate cancer has its own pattern of allelic losses.
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The clinical outcome of prostate cancer is strongly related to its
differentiation and malignancy grade. Although well-differenti-
ated tumours do not significantly affect patientsÕ survival, less-
differentiated neoplasms have a major impact on prognosis
(Hanash et al, 1972; B�cking et al, 1982; Dhom, 1991). A signifi-
cant proportion of prostate carcinomas are heterogeneous and
pluriform neoplasms, which consist of several histological
patterns with different biological properties (Dhom, 1991).
Whether these patterns result from mulifocal or clonal tumour
development is still poorly understood.

Like other neoplasms, prostate carcinoma is probably the result
of a multistep carcinogenesis (Sandberg, 1992; Gao et al, 1995a).
An overexpression of c-ras, c-mycand c-sis oncogenes has been
reported (Fleming et al, 1986; Viola et al, 1986; Buttyan et al,
1987), but ras mutations are rare (Gumerlock et al, 1991; Moul et
al, 1992). A role of HER-2/neuis not certain (Kuhn et al, 1993;
Sadasivan et al, 1993). Recent evidence suggests that tumour-
suppressor genes (TSGs) might be more important for the devel-
opment of prostate carcinoma (Bookstein, 1994; Isaacs, 1995).
Mutations and allelic losses (loss of heterozygosity or LOH) have
been demonstrated for TSGs such as TP53 (Gao et al, 1995a),
DCC (deleted in colon carcinoma) (Gao et al, 1993), APC(adeno-
matous polyposis coli), MCC (mutated in colorectal cancer) (Gao
et al, 1995b), E-cadherin(Umbas et al, 1992) and BRCA1(breast
carcinoma-associated gene) (Gao et al, 1995c).

Few LOH studies have systematically analysed the relationship
between malignancy grade or clinical stage and the frequency of
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allelic losses (Isaacs and Carter, 1991; Trapman et al, 1994;
Macoska et al, 1995; Cunningham et al, 1996; Latil et al, 1996;
Vocke et al, 1996), or taken into account intratumoral hetero-
geneity of prostate carcinoma (Konishi et al, 1995; Mirchandani et
al, 1995). There is only one report of a significant increase of LOH
at a single chromosomal locus (8p12Ð21) in advanced tumour
stages (Trapman et al, 1994).

The aim of the present work was to evaluate whether increasing
malignancy of prostate carcinoma goes along with a general
increase in the frequency of LOH and the number of chromosomal
loci concerned, and whether LOH typing can help to distinguish
between multifocal or clonal tumour development. We analysed
47 carcinomas for LOH at 25 chromosomal loci near known or
putative TSGs, evaluating 1Ð7 areas per tumour by microdissec-
tion. Two TSGs, TP53and BBC1(the breast basic conserved gene)
(Adams et al, 1992; Cleton-Jansen et al, 1995), have been screened
for both LOH and mutations.

MATERIALS AND METHODS

Tissue samples

Tissues from 47 prostate cancers (16 grade 1, 14 grade 2 and 17
grade 3 carcinomas; grading according to B�cking and
Sommerkamp (1980); Helpap et al (1985); age of patients 55Ð87
years) were obtained from transurethral resections or radical
prostatectomy specimens. Thirty-seven tumours were uniform and
ten pluriform carcinomas with two or three different malignancy
grades. Tissues were formalin-fixed and routinely embedded into
paraffin. Representative samples of all malignancy grades of every
neoplasm (1Ð7 areas per tumour) were prepared for LOH analysis
by microdissection under microscopic control. In total, 19 grade 1,
45 grade 2 and 33 grade 3 areas were examined.
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Table 1 Allelic losses at 25 chromosomal loci in 97 areas of prostate carcinomas

Samples with LOH/informative samples

Marker Chromosomal All tumour areas Grade 1 Grade 2 Grade 3 Frequency of
location (%) informative samples

% (n/97)

D7S522 7q31.1–q31.2 1 (1.6) 0/11 1/28 0/22 62.8 (61)
D7S523 7q31 2 (2.6) 0/14 2/34 0/32 82.5 (80)
D8S87 8p21–p12 0 (0) 0/15 0/31 0/25 73.2 (71)
D8S264 8p21–pter 1 (1.3) 0/16 0/38 1/26 82.5 (80)
D8S265 8p23.1 3 (5.5) 0/15 2/24 1/22 63.8 (61)
D11S1392 11p13–p12 4 (9.1) 1/14 5/32 0/26 74.2 (72)
D11S904 11p15 4 (8.5) 1/14 3/24 9/14 53.6 (52)
D11S488 11q23–qter 4 (7.4) 0/15 1/28 3/16 60.8 (59)
D12S374 12pter–p12 5 (7.9) 1/13 3/33 0/22 70.1 (68)
D12S101 12q14 7 (11.3) 1/13 4/35 2/22 72.2 (70)
D12S270 12q 0 (0) 0/15 0/45 0/33 95.8 (93)
D12S375 12q 6 (7.8) 0/15 3/38 3/31 86.5 (84)
D13S317 13q22–q31 5 (6.4) 0/13 1/35 6/38 88.7 (86)
D13S318 13q14.1–q14.3 11 (23.9) 1/15 2/19 8/18 53.6 (52)
D13S325 13q21–q22 7 (12.5) 0/15 1/23 6/24 63.9 (62)
D16S398 16q22.1 5 (7.1) 0/15 2/34 3/26 78.4 (76)
D16S539 16q24–qter 14 (20.3) 0/16 8/41 6/21 80.4 (78)
TP53 17p13.1 11 (23.9) 0/16 7/28 4/18 63.9 (62)
D17S846 17q21 5 (9.4) 0/12 3/28 2/21 62.8 (61)
D17S855 17q21 0 (0) 0/15 0/37 0/30 84.5 (82)
D17S250 17q11–q12 8 (10.8) 0/16 4/35 4/29 82.5 (80)
D18S549 18q 1 (1.6) 1/16 0/28 0/23 69.1 (67)
D18S543 18q 0 (0) 0/14 0/30 0/17 62.8 (61)
D18S541 18q21.1–q21.3 12 (22.2) 0/12 9/24 3/24 61.9 (60)
D22S684 22q12 8 (12.7) 0/13 4/34 4/26 75.3 (73)
DNA extraction

DNA was extracted from selected tumour areas and normal
prostate control tissues after routine deparaffination and proteinase
K digestion for 12 h using the QIAamp tissue kit (Qiagen, Hilden,
Germany).

DNA amplification and LOH analysis

Twenty-five different loci on nine chromosomal arms were evalu-
ated for loss of heterozygosity (LOH) by polymerase chain reaction
(PCR) amplification of locus-specific polymorphic microsatellite
DNA using the following oligonucleotide primers (purchased from
Research Genetics, Huntsville, USA): D7S522 (7q31), D7S523
(7q31), D8S264 (8p23), D8S265 (8p23.1), D8S87 (8p12),
D11S1392 (11p13), D11S904 (11p14Ðp13), D11S488
(11q24.1Ðq25), D12S374 (12pterÐp12), D12S101 (12q14),
D12S270 (12q), D12S375 (12q), D13S317 (13q22), D13S325
(13q14.1Ð14.2), D13S318 (13q14.3Ðq21.1), D16S398 (16q22.1),
D16S539 (16q23.1Ðqter), TP53 (17p13.1), D17S846 (17q21),
D17S855 (17q21), D17S250 (17q11.2Ðq12), D18S549 (18q),
D18S543 (18q), D18S541 (18q21.1Ð21.3.1) and D22S684 (22q12).

PCR was performed in a final volume of 10 µl containing 10 ng
of template DNA, 50 mM potassium chloride, 10 mM tris-HCl,
pH 8.3, 200 mM of each dNTP, 0.1% gelatin and 10 pmol of each
primer. 0.25 units of Taq-DNA polymerase (Gibco BRL) were
used. Magnesium chloride concentrations ranged from 1.5 to
2.5 mM, depending upon primer pairs. PCR reactions were carried
out on a Biometra UNO-thermocycler. PCR mix in 0.5 ml tubes
was overlaid with paraffin oil. For PCR, initial denaturation at
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94°C for 3 min was followed by 30 cycles (94°C, 30 s; 52Ð61°C,
40 s; 72°C, 60 s) and a final elongation step of 10 min at 72°C.

Gel electrophoresis

PCR products were diluted 1.5:1 in loading buffer (formamide,
bromophenol blue and xyleneÐcyanol) and denatured at 95°C for
5 min. Twelve microlitres of this mixture were run on an 8% poly-
acrylamide urea sequencing gel at 70 W for 2.5 h in tris-borate
buffer. Amplification products were detected by a silverstaining
method developed for sequencing gels (von Deimling et al, 1993;
Bender et al, 1994).

Mutational analysis of TP53 and BBC1 genes by SSCP
and DNA sequencing

For single-strand conformational polymorphism (SSCP) analysis,
exons 5Ð8 of the TP53gene and the two exons of the BBC1gene
were amplified by PCR (magnesium chloride concentration
1.5 mM; 35 cycles: 94°C, 30 s; 60Ð61°C, 60 s; 72°C, 60 s). Gel
electrophoresis was carried out on non-denaturing polyacrylamide
gels (6% or 14%, acrylamide:bis-acrylamide 1:30 with glycerol or
1:99 without glycerol, running time 16 h at 8 W at room tempera-
ture). Single strands were detected by silverstaining (see above).

Shifted SSCP bands were excised and reamplified by PCR using
conditions described above. PCR products were purified with
QIAquick PCR Purification Kit (Quiagen). For cycle sequencing,
1 pmol µlÐ1 sense or antisense-primer (1.6 µl), 2 µl DNA
sequencing kit (Dye Terminator Cycle Sequencing Ready Reaction
Mix; Perkin Elmer) and 10Ð30 ng template DNA (2Ð3 µl) were
© Cancer Research Campaign 1999
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Table 2 Mutations within exons 5–8 of TP53 in 47 prostate carcinomas

Exon TP53 Mutated Nucleotide Amino acid change Patient number and tumour
codon sequence change area (from top to bottom)

of Figure 3 (bold numbers
indicate LOH at TP53)

Exon 5 134 TTT ⇒ GTT Phe ⇒ Val 33 (3), 15, 42 (1), 42 (2), 38 (2)
Exon 5 144 CAG ⇒ CTAG Insertion T 24(2)
Exon 5 165 CAG ⇒ CAT Gln ⇒ His 39 (2)
Exon 5 177 CCC ⇒ TCC Pro ⇒ Ser 12
Exon 5 184 GAT ⇒ AAT Asp ⇒ Asn 39 (1)
Exon 6 190 CCT ⇒ CGT Pro ⇒ Arg 1
Exon 6 193 CAT ⇒ AAT His ⇒ Asn 1
Exon 6 200 AAT ⇒ AAA Asn ⇒ Lys 19, 23 (2)
Exon 6 200 AAT ⇒ GAA Asn ⇒ Asp 19
Exon 6 218 GTG ⇒ GCG Val ⇒ Ala 19
Exon 7 239 AAC ⇒ ATC Asn ⇒ Ile 7
Exon 7 243 ATG ⇒ ATA Met ⇒ Ile 4
Exon 7 249 AGG ⇒ AAG Arg ⇒ Lys 3
Exon 8 296 CAC ⇒ CGC His ⇒ Arg 3
Exon 6 197 GTG ⇒ GTA Silent mutation (Val) 19
Exon 6 213 CGA ⇒ CGG Silent mutation (Arg) 19, 34 (1)
Exon 8 275 TGT ⇒ TGC Silent mutation (Cys) 4

A

C

B

D

Figure 1 Examples of allelic losses within four prostate carcinomas. The left (A–C) or right lanes (D) show allelic losses of the lower (A–C) or the upper allele.
The remaining bands are due to fibromuscular stromal cells always present between carcinoma formations. No losses are evident in the normal control DNA
(other lanes). (A) LOH at D11S904 (11p13) in a grade 2 tumour area (patient 30 of Figure 3, area 1); (B) grade 3 carcinoma (patient 36, LOH at D12S101,
12q14); (C) grade 3 carcinoma (patient 38, D16S398, 16q22.1); (D) grade 3 carcinoma (patient 34, D13S317, 13q22)
used in a final volume of 10 µl (PCR conditions: 96°C, 10 s; 50°C,
5 s; and 60°C, 4 min; 25 cycles). Reaction products were ethanol
precipitated, mixed with 4 µl of loading buffer (formamide/EDTA)
and denatured for 10 min at 95°C. Products were then elec-
trophoresed through 6% denaturing acrylamide gels using an auto-
matic sequencer (ABI Prism genetic analyser 373, Perkin Elmer).
All 97 tumour areas and normal prostate control tissues were exam-
ined by SSCP and, in case of shifts, by direct sequencing.
© Cancer Research Campaign 1999
Evaluation of LOH and statistical analysis

Allelic losses were evaluated by visually comparing alleles of
normal DNA with those of tumour DNA. Calculation of fractional
allele loss (FAL) was carried out by dividing the number of chro-
mosomal arms with LOH by the total number of informative
arms. The H-test of KruskalÐWallis was used to test for statistical
differences.
British Journal of Cancer (1999) 79(3/4), 551–557
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Table 3 Mutations within BBC1 in 47 prostate carcinomas

Mutated Nucleotide sequence Amino acid change Patient number and tumour
codon change area (from top to bottom) of

Figure 3 (bold numbers
indicate LOH near BBC1)

94 AGC ⇒ AAT Ser ⇒ Asn 24 (1)
129 ACC ⇒ GCG Thr ⇒ Ala 24(1), 46, 29(2), 21(1)
226 AAG ⇒ AAT Lys ⇒ Asn 41(2)
240 CAG ⇒ CGT Gln ⇒ Arg 41 (2)
279 AAG ⇒ CAG Lys ⇒ Gln 21 (2)
290 AGC ⇒ AAC Ser ⇒ Asn 40 (2)
RESULTS

LOH rates at the 25 chromosomal loci within all tumour
samples

The frequency of allelic losses at all 25 chromosomal loci within
the 97 tumour areas is given in column 3 of Table 1. No losses at all
were found at loci D8S87 (8p21Ðp12), D12S270 (12q), D17S855
(17q21, within BRCA1) and at D18S543 (18q, DCC-region).
Figure 1 AÐD shows examples of allelic losses. No microsatellite
instabilities were observed in the present series of tumours.

The overall LOH frequency and the fractional allele loss
(FAL) are related to malignancy grade

When calculating the mean frequency of allelic losses for all chro-
mosomal markers for the three malignancy grades, losses were
British Journal of Cancer (1999) 79(3/4), 551–557
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found in only 2.2% of grade 1 areas (s.d., 3.4%; minimum,
0%; maximum, 9.1%; median, 0%), but in 9.4% of grade 2
(s.d., 8.3%; minimum, 0%, maximum, 29.4%; median, 5.9%) and
in 8.3% of grade 3 areas (s.d., 6.3%; minimum, 0%; maximum,
23.5%; median, 7.8%). The difference between grade 1 on the one
hand and grades 2 and 3 on the other was statistically significant at
P = 0.007.

A similar tendency was found for the mean fractional allele loss
(FAL): 0.043 for grade 1 areas (s.d., 0.06; minimum, 0; maximum,
0.12; median, 0), 0.2 for grade 2 areas (s.d., 0.18; minimum, 0;
maximum, 0.57; median, 0.12) and 0.23 for grade 3 areas (s.d.,
0.18; minimum, 0; maximum, 0.57; median, 0.12). Again the
difference between grade 1 and grades 2 and 3 was statistically
significant at P = 0.0004. There also was a remarkable difference in
the number of chromosomal loci affected by LOH between grade 1
on the one hand and grades 2 and 3 on the other. Only six loci were
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affected in grade 1 compared with 19 in grade 2 and 16 in grade 3
areas (see also columns 4Ð6 of Table 1).

LOH rates at several loci differ in the three malignancy
grades

Considerable differences in LOH frequency between the three
histological grades were found at several loci (columns 4Ð6 of
Table 1 and Figure 2). In grade 2 and 3 areas, loss rates between
25% and 44.4% were seen for markers near RB, DCC, BBC1,
TP53and at D13S325(13q21Ð22). These markers showed losses
in only 0Ð6.6% (D13S318 near RB) in grade 1 areas.
© Cancer Research Campaign 1999
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Figure 3 Summary of LOH typing at 25 chromosomal loci within 47 prostate carc
heterozygosity without allelic losses by grey circles. White circles represent non-in
Intra- and intertumoral heterogeneity of LOH

Figure 3 is an overview of the LOH typing at the 25 loci within all
97 tumour areas. In 24 of the 47 tumours (tumours 20Ð43), 2Ð7
different areas have been separately evaluated for LOH at all loci.
Four of these 24 tumours (tumors 20, 21, 26 and 39) showed no
losses at all. Fourteen of the 20 resting cancers (tumours 23, 24,
27Ð33, 35Ð38 and 42) presented losses of the same allele at 1Ð4 loci
within two or three different areas. In 5 of these 14 tumours
(tumours 29, 31, 33, 35 and 36), these areas were of different grades.

It is also evident from Figure 3 that each individual cancer has
its own pattern of LOH. No identical patterns were seen among the
47 tumours.
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Mutations of TP53 and BBC1 genes

TP53
Using SSCP analysis and direct sequencing, 18 mutations of exons
5Ð8 of TP53 were found within the 97 tumour areas (Table 2),
which concerned 14 tumours. Twelve codons were affected by
missense mutations, three by silent mutations and one by a T-
insertion leading to a stop codon at position 144 (Table 2). Only
two carcinomas (tumour 39 and 42) had TP53 mutations within
two different areas (grade 3). These mutations were identical in
tumour 42 (codon 134) and different in tumour 39 (codon 165 and
184). Mutations were present in only 4 of the 11 samples with
LOH at TP53(36%) (Table 2). No correlation was found between
tumour grade and mutation frequency.

BBC1
Mutations within the BBC1gene were found in 7 of the 97 samples
(six tumours; Table 3). They affected six codons (Table 3). Only
carcinoma 21 had two mutations in two areas (grade 1 and 2)
which were different (codon 129 and codon 279). In only 1 of the
14 probes with LOH close to BBC1was a mutation at codon 290
found (tumour 40, area 2, Table 3). Again, no correlation was
evident between tumour grade and mutation frequency.

DISCUSSION

It is well known that life expectancy of prostate cancer patients is
strongly related to tumour grade. Although survival rates are not
affected by grade 1 tumours, grades 2 and 3 significantly worsen
prognosis (Hanash et al, 1972; B�cking et al, 1982; Dhom, 1991).
We wanted to know whether this augmentation of malignant
potential goes along with an increase in LOH frequency. We actu-
ally found a significant tendency towards both an increase of the
overall LOH frequency and the number of affected chromosomal
loci with malignancy, when comparing grade 1 areas with grades 2
and 3. This tendency probably reflects an augmenting genetic
instability which leads to LOH by mechanisms such as chromo-
somal losses or interstitial deletions. It is not clear why we found
no significant differences between grades 2 and 3 in this series of
tumours because microdissection was carried out under micro-
scopic visual control. It can, however, not be excluded that chro-
mosomal loci not examined in the present study differ in their
LOH rates between these two grades.

A significant proportion of prostate carcinomas consists of
several histological patterns differing in morphology and malig-
nant potential. Whether these patterns are of clonal or multifocal
origin is still unclear. LOH typing is a suitable method to study
clonality, and special stress was laid upon this point. In 24 of the
47 tumours, 2Ð7 areas have been systematically analysed for LOH
at all 25 chromosomal loci. Four of these tumours had no allelic
losses at all. Thirteen of the 20 remaining cancers showed losses at
the same allele at 1Ð4 loci within two or three different areas. In
five tumours, these areas were even of different grades. These
findings show that there is at least some degree of clonality in
prostate carcinoma.

Mutational analyses of TP53 and BBC1 did not contribute
essentially to the question of clonality in the present series of
tumours because only two of them had TP53mutations and only
one had BBC1 mutations in two different areas. Mutations were
identical in carcinoma 42 (TP53), but different in tumours 39
(TP53) and 21 (BBC1). The findings of two other studies of TP53
British Journal of Cancer (1999) 79(3/4), 551–557
mutations are rather in favour of a multifocal origin of prostate
carcinoma (Konishi et al, 1995; Mirchandani et al, 1995).

We found TP53mutations in 27% of samples with LOH, which
may suggest a certain importance of this TSG in prostate cancer.
All mutations concerned the DNA-binding domain encoding
region. Those at codons 165, 184, 193, 200, 218, 239, 243 and 296
have not yet been reported (Bookstein et al, 1993; Navone et al,
1993; Chi et al, 1994). Mutations at codons 200 and 243 are
known not to affect the DNA-binding properties of the p53 protein
(Lin et al, 1994).

The finding of LOH at 16q24Ðqter (D16S539) near BBC1 or
D16S444E and the demonstration of mutations within this gene in
prostate cancers are novel. BBC1 is a recent candidate tumour-
suppressor gene of breast cancers which express it less strongly than
benign fibroadenomas (Cleton-Jansen et al, 1995). Homologues
have been identified in a wide range of species (Adams et al, 1992;
Helps et al, 1995), but the function of the protein is still unknown.
The fact that only 7% of prostate cancer samples of this series with
LOH near BBC1also had mutations is nevertheless not in favour of
an important role of this gene in prostate cancer.

Some of the investigated chromosomal loci near RB, DCC,
TP53 and at D13S325 (13q21Ð22) were found to be more often
affected by LOH in grades 2 and 3 compared with grade 1. TSGs
close to these sites might, therefore, be important for tumour
progression. Fitting in with this view, a suppression of tumori-
genicity of prostate cancer cell lines DU-145, TSU and PC-3
which contain mutated Rbor TP53genes has been achieved upon
introduction of the normal genes (Bookstein et al, 1990; Isaacs and
Carter, 1991).

A comparison of the 47 carcinomas finally makes evident that
each tumour actually has its own pattern of allelic losses when
evaluating all 25 loci. Although the LOH typing carried out in this
study is far from complete, it is nevertheless tempting to speculate
that different combinations of genetic events could result in
similar malignant phenotypes of prostate carcinoma, as has also
been suggested for other tumours (for review see Macdonald and
Ford, 1997).
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