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A Commentary on

Preservation of a remote fear memory requires new myelin formation

by Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R., and Kheirbek, M. A. (2020). Nat. Neurosci. 23,
487–499. doi: 10.1038/s41593-019-0582-1

Memory is not permanently fixed, but can be updated by experience continuously. This process
requires synaptic reorganization of neural circuits, such as synaptic plasticity. In addition, adult
oligodendrogenesis throughout lifetime provides a plastic and perseverant anatomical substrate for
shaping the functioning for these neural circuits (Tripathi et al., 2017; Doron and Goshen, 2020).
Accumulating evidence demonstrated that oligodendrogenesis is regulated by neuronal activity and
plays important roles in experience-dependent learning, such as through de novomyelination with
temporal precision (Gibson et al., 2014; McKenzie et al., 2014; Mensch et al., 2015; Xiao et al., 2016).
Recently, several studies highlighted the roles of new myelin formation in memory processing,
especially in reconsolidation of remote memory (Pan et al., 2020; Steadman et al., 2020).

Steadman et al. (2020) reported that the experience-driven oligodendrogenesis is crucial
for spatial memory acquisition and consolidation. The study confirmed the oligodendrogenesis
induced by memory formation and investigated their causal relationship with a spatial memory
task in water maze. The animals took tests 1 day and 1 month following training to separate
the processes of memory acquisition and consolidation, respectively. To confirm the involvement
of oligodendrogenesis, they genetically controlled adult oligodendrogenesis at different stages.
Results showed that reduced adult oligodendrogenesis during immediate but not later post-training
period impaired both spatial learning and memory consolidation, suggesting a temporal
control for efficient myelination as an adaptive response to neural circuit activities. With a
contextual fear conditioning paradigm, the authors further reported the potential importance of
hippocampal-cortical ripple-spindle coupling, which correlated to oligodendrogenesis.

Consistently, Pan et al. (2020) demonstrated a similar role of oligodendrogenesis and
myelination with a prolonged timescale (up to several weeks). They trained animals for fear
learning in a contextual fear memory task and focused on the medial prefrontal cortex (mPFC).
Notably, context-elicited freezing responses of transgenic mice with new myelin formation
eliminated exhibited no difference during recent retrieval sessions (24 h) compared to normal
controls, but declined at 30 days post-conditioning (remote). In addition, they recorded population
calcium dynamics with fiber photometry in themPFC and detected a temporal pattern of prefrontal
activity, which decreased at 24 h post-conditioning and elevated at 30 days post-conditioning.
However, mice lacking active oligodendrogenesis failed to exhibit such time-dependent changes.
With pharmacological agents facilitating new myelin formation (e.g., clemastine fumarate), they
further confirmed the dependence of oligodendrogenesis and myelination for stabilizing remote
fear memory and promoting fear generalization.
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Both studies demonstrated the importance of adult
oligodendrogenesis and new myelin formation for remote
memory retrieval. These findings accord well with previous
studies in motor learning and sensory enrichment, which
induce oligodendrogenesis in motor and somatosensory cortices,
respectively (McKenzie et al., 2014; Xiao et al., 2016; Hughes
et al., 2018). With electron microscopy, Steadman et al. (2020)
excluded the influence of myelin thickness by measuring the
g-ratio of myelinated axons; while Pan et al. (2020) showed
a significant increase in the density of myelinated axons,
both consistent with experience-driven de novo myelination
in adult mice reported previously (Hill et al., 2018; Hughes
et al., 2018). In addition, both studies utilized a temporally
controlled strategy to figure out the time frame in which
oligodendrogenesis involved in different stages of memory
processing; they demonstrated the value of oligodendrogenesis
during a small time window to consolidation period. To further
explore the underlying mechanism, both studies tried to explain
the interaction between new myelinating oligodendrocytes
and neurons through electrophysiological or calcium imaging
method. Together with previous studies (Adamsky et al.,
2018; Alberini et al., 2018; Koeppen et al., 2018), all these
evidences emphasize a brand-new understanding of how
non-neuronal cells shape neural circuits, thus modulating
cognitive processes.

Yet, there are some issues requiring further exploration.
For instance, Pan et al. (2020) reported that there was hardly
new myelin formation until at least 7 days later though
maturing into pre-myelinating oligodendrocyte could be fast.
While in previous study using a skill learning model (Xiao
et al., 2016), the behavioral performance of two genotype
groups diverged within first 12 h. This may indicate different
neural mechanisms underlying different types of learning
and memory acquisition (Fields and Bukalo, 2020), and an
extra role of oligodendrocyte precursors or pre-myelinating
oligodendrocytes beyond myelination. As for fear memory
such as post-traumatic stress disorders (PTSD), time scale
is especially important, since its treatment strategy mainly
targets reconsolidation and extinction following retrieval
(Kida, 2019). Steadman et al. (2020) emphasized that
the impairment of memory consolidation was dependent
on the time to block oligodendrogenesis. Optimizing a
precise time window of myelination may offer a better

fundamentally-reorganized neural circuit for the forgetting
of traumatic memories.

Fear memories are reported to depend on coordinated
activity across interconnected brain regions, especially including
hippocampus, mPFC, and amygdala (Herry and Johansen, 2014).
Precise spike-time arrival determined by myelination could be
critical in such oscillation couplings. Steadman et al. (2020)
proposed coupling between hippocampal sharp wave ripples
(SWR) and cortical spindles promoted by new myelination
pattern as the regulator for memory consolidation, which is
supported by a gain-of-function study of hippocampal–cortical
coordination during the SWR (Maingret et al., 2016). As a
pattern associated with highly synchronous neural firing in the
hippocampus and modulation of neural activity in distributed
brain regions, SWR reaches apex rate in the contexts of novelty
and reward (Joo and Frank, 2018), consistent with functions
in both memory consolidation and retrieval, thus could be a
promising direction for future studies. In line with improved
remote memory preservation after chronic pro-myelinating
agent administration reported by Pan et al. (2020) andWang et al.
(2020) demonstrated both genetically and pharmacologically
enhancingmyelination can rescue spatial memory decline during
aging, implying therapeutic potential of targeting myelination
regulation in memory issues.

In conclusion, adult oligodendrogenesis is essential in shaping
memory circuits by promoting myelination, thus influence
the acquisition, retrieval, consolidation, and reconsolidation at
different stages of memory. Targeting myelination regulation
might serve as a new approach for memory enhancement
and restoration.
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