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Multivariate metabotyping of plasma predicts survival in
patients with decompensated cirrhosis
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Background & Aims: Predicting survival in decompensated ver operating curve [AUROC] = 0.96 (95% CI 0.90–1.00, sensitivity

cirrhosis (DC) is important in decision making for liver transplan- 98%, specificity 89%). UPLC-TOF-MS confirmed that lysophos-

tation and resource allocation. We investigated whether
high-resolution metabolic profiling can determine a metabolic
phenotype associated with 90-day survival.
Methods: Two hundred and forty-eight subjects underwent
plasma metabotyping by 1H nuclear magnetic resonance (NMR)
spectroscopy and reversed-phase ultra-performance liquid chro-
matography coupled to time-of-flight mass spectrometry (UPLC-
TOF-MS; DC: 80-derivation set, 101-validation; stable cirrhosis
(CLD) 20 and 47 healthy controls (HC)).
Results: 1H NMR metabotyping accurately discriminated
between surviving and non-surviving patients with DC. The
NMR plasma profiles of non-survivors were attributed to reduced
phosphatidylcholines and lipid resonances, with increased lac-
tate, tyrosine, methionine and phenylalanine signal intensities.
This was confirmed on external validation (area under the recei-
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phatidylcholines and phosphatidylcholines [LPC/PC] were down-
regulated in non-survivors (UPLC-TOF-MS profiles AUROC of 0.94
(95% CI 0.89–0.98, sensitivity 100%, specificity 85% [positive ion
detection])). LPC concentrations negatively correlated with circu-
lating markers of cell death (M30 and M65) levels in DC. Histo-
logical examination of liver tissue from DC patients confirmed
increased hepatocyte cell death compared to controls. Cross liver
sampling at time of liver transplantation demonstrated that hep-
atic endothelial beds are a source of increased circulating total
cytokeratin-18 in DC.
Conclusion: Plasma metabotyping accurately predicts mortality
in DC. LPC and amino acid dysregulation is associated with
increased mortality and severity of disease reflecting hepatocyte
cell death.
� 2016 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

The global incidence of cirrhosis is rising rapidly, owing to an
increased prevalence of alcohol-related liver disease, non-
alcoholic fatty liver disease, and viral hepatitis [1]. Patients with
cirrhosis are prone to decompensation, requiring hospital treat-
ment and can progress to acute on chronic liver failure (ACLF)
[2], which requires admission to intensive care with an associ-
ated high short-term mortality and significant economic cost [3].

Several methods of outcome prediction in cirrhosis are cur-
rently used. The Model for End-Stage Liver Disease (MELD) is
the most commonly applied and is used for listing and prioritisa-
tion in liver transplantation throughout the world. Despite the
success of MELD, several limitations exist concerning the repro-
ducibility of prothrombin time measurement and the limitations
of creatinine [4] as a marker of renal function in patients with
16 vol. 64 j 1058–1067
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cirrhosis. The performance of MELD for outcome prediction is
best in patients with stable cirrhosis, but is less accurate for
patients with acute on chronic liver failure (ACLF) [5]. Therefore
organ failure based scores such as the recently developed CLIF-
SOFA (chronic liver failure sequential organ failure assessment)
score have been developed [2,6].

Exploratory metabolic profiling or metabotyping involves
untargeted measurements of low molecular weight (<1 kDa)
compounds using nuclear magnetic resonance (NMR) spec-
troscopy or mass spectrometry (MS) in biofluids or tissues [7].
The response of complex spectral data is then assessed using
multivariate statistical techniques [8] to determine which
metabolites or metabolite combinations most accurately describe
differences seen between classes (control or diseased cohorts or a
state pre- or post-intervention (e.g. drug treatment)).

Since the metabolic profile is typically comprised of hundreds
or thousands of signals depending on the technique, it is, poten-
tially, a highly valuable methodology in delivering personalised
healthcare [9], namely a highly discriminant prediction of
response or diagnostic accuracy. The use of pre-interventional
phenotypes to predict the outcome of intervention based on
mathematical modelling is termed ‘‘pharmacometabonomics”
[10] and the approach has been widely used to predict drug
metabolism [11] and outcomes of cancer therapy, toxicity [12]
and safety.

Metabolic profiling has been applied in inflammatory bowel
disease [13,14], hepatocellular carcinoma [15,16] and to a limited
extent, liver failure [17]. The metabolites detected by NMR reflect
a number of roles of the liver in glucose, lipid, amino acid and
urea metabolism and these have been investigated in acute liver
failure (ALF) by proof-of-principle measurements [17,18] and
metabolic phenotypes specific to patients with minimal hepatic
encephalopathy (MHE) [19] or high MELD score [20].

Liver failure secondary to hepatitis B has been characterised
using MS in tandem with either gas chromatography (GC-MS)
or liquid chromatography (LC-MS) [21]. Decreases in plasma
glycerophosphocholine and phosphatidylcholine (PC) levels
occur [22], and are common markers between different aetiolo-
gies of cirrhosis [23,24]. Apoptosis of hepatic endothelial beds
may be responsible for this lipid dysregulation. Higher levels of
circulating cell death markers have been demonstrated in ALF
[25,26], and recently in decompensated cirrhosis (DC) and ACLF
[27]. No studies have assessed how profiling could prognosticate
and none uses a combination of technologies to develop a global
overview of the metabolic signature of poor survival in DC.

In this study, we metabotype plasma in patients with DC to:
1) determine and validate a 1H NMR metabotype of 90-day mor-
tality, which we hypothesise could be more accurate than MELD
or CLIF-SOFA; and 2) characterise the lipids of the 1H NMR profile
by UPLC-TOF-MS.
Materials and methods

Patients and sample collection

Between December 2008 and January 2011, 80 patients with DC referred to the
Institute of Liver Studies, Kings College Hospital, London, were recruited and fol-
lowed for 90 days. Cirrhosis was defined by at least two compatible diagnostic
tests from the following: liver biopsy (fibrosis grade 5 or more), radiologic (ultra-
sound, computed tomography or magnetic resonance imaging), clinical (presence
of hepatocellular jaundice/ascites/hepatic encephalopathy [HE]) or biochemical
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(hyperbilirubinaemia, prolonged prothrombin time and/or thrombocytopaenia)
to provide evidence of cirrhosis. Outcome was defined as either spontaneous sur-
vival or death/transplantation. Here, we define decompensation as an acute epi-
sode of variceal bleeding, jaundice, encephalopathy, ascites, sepsis or renal
dysfunction requiring hospital admission. The study was approved by the local
ethics committee (#08/H0702/74) and patients, or their nominee gave written,
informed consent within 48 h of presentation. Exclusion criteria were presence
of hepatocellular carcinoma, non-hepatic malignancy, non-cirrhotic portal hyper-
tension, chronic liver disease but not cirrhotic and acute liver failure. Liver inten-
sive care unit admission was offered to patients if deemed appropriate by the
referring hepatologist and/or intensivist. All patients were managed following
standard evidence-based protocols by a specialist multidisciplinary team [28,29].

Blood was drawn within 24 h of admission to hospital into lithium heparin-
containing vacuum tubes (BD Vacutainer, BD, Franklin Lakes, NJ, USA) and cen-
trifuged at 12,000 g for 10 min within 1 h of sample collection. Plasma aliquots
were stored immediately at �80 �C until further analysis. Data collected at time
of sample collection were age, gender, aetiology of cirrhosis, past medical history,
medication use, dietary history and 72 h dietary recall, alcohol and recreational
drug use, recent exercise history, bedside physiology and blood biochemistry.
The Child-Pugh Score (CPS) [30], MELD [31], United Kingdom end-stage liver dis-
ease (UKELD) [32], CLIF-SOFA [2], CLIF AD [33] and CLIF-C ACLF [6] scores were
calculated from data taken on the same day as blood was drawn for metabolic
profiling. Twenty patients with stable cirrhosis and 20 age- and sex-matched
healthy controls (HC) with no history of liver disease, excess alcohol or recre-
ational drug use, or hepatotoxic or over the counter medication usage were also
enrolled following written, informed consent (REC #09/H0712/82). From Decem-
ber 2011 to January 2015 a further validation cohort of 101 patients (in two
cohorts of 59 and 42 respectively) hospitalized with DC and 27 HC were recruited.
The primary outcome was 90 day survival.

NMR data acquisition and processing

Plasma aliquots were thawed to room temperature. Aliquots of 200 ll plasma
were added to 400 ll of a solution containing 0.9% NaCl and D20 as previously
described [34]. This was centrifuged at 12,000 g for 10 min and 550 ll of super-
natant placed into 5 mm NMR tubes (Norell, Landisville, NJ, USA). Data were
acquired in a random, blinded order on a Bruker AvanceTM spectrometer (Bruker
GmbH, Rheinstetten, Germany) with a 5 mm TXI probe operating at
600.13 MHz and 300 K. Data were acquired using a 1D technique using a standard
pulse sequence with pre-saturation of the water resonance and Carr-Purcell-
Meiboom-Gill (CPMG) spin echo sequences to attenuate the broader peaks arising
from lipids and proteins, as described in Supplementary methods along with pre-
processing techniques.

UPLC-TOF-MS data acquisition and processing

Plasma aliquots were thawed to room temperature. 50 ll of plasma were added
to 150 ll of ice cold 100% methanol, vortexed briefly, and kept at �20 �C for
20 min. Following 10 min of centrifugation at 12,000 g, 170 ll of supernatant
was transferred to EppendorfTM containers (Eppendorf, Stevenage, UK). The super-
natants were dried during 90 min of centrifugation under vacuum at 40 �C
(Savant SpeedVac, ThermoScientific, Asheville, NC, USA). Dry material was sus-
pended in 120 ll of high purity water (UpS grade, Romil Ltd, Cambridge, UK)
and sonicated for 30 min. One-hundred ll of each sample was added in a random
order in a 96-well plate while 20 ll were reserved from each to make a quality
control (QC) sample. Samples were then transferred to the sample manager of
a Waters Acquity UPLC system (Waters Corporation, Milford, MA, USA) main-
tained at 4 �C. Reversed-phase chromatography was conducted using a gradient
from acidified water to acidified methanol as detailed with MS conditions in Sup-
plementary material. Extraction of features detected by mass spectrometry across
the entire sample set was performed using XCMS software [35] operating in the R
computing environment. A data matrix of samples analysed vs. detected features
and corresponding intensity values was produced and analysed by multivariate
analysis using SIMCA P software (v 12.0.1 Umetrics AB, Umeå, Sweden).

Multivariate analysis of the plasma spectral profiles

For both NMR and UPLC-TOF-MS data, principal components analysis (PCA) was
performed to visualise any inherent clustering and identify outliers. Orthogonal
projection to latent structure (OPLS) analysis was performed to maximise class
differences while minimising variability unrelated to class. The R2 value was cal-
culated to give a measure of the goodness-of-fit or amount of variability
explained by the model. A cross-validated Q2 statistic (leave-one-out algorithm)
vol. 64 j 1058–1067 1059



Table 1. Demographic, biochemical and physiological details from the
derivation study population.

Variable All patients Survivors Non-survivors p value
80 62 18

Age 55 (23-75) 55 (23-75) 51 (39-73) 0.955
Sex 
(male:female)

60:20 54:8 16:2 0.667

Aetiology
Alcohol
Viral hepatitis
Autoimmune
NASH
Other

43
8
16
8
5

32
6
14
7
3

12
2
1
1
2

0.629

Diabetes (Y:N) 19:61 13:49 4:14 0.381
Serum Na 
(mmol/L)

137 (125-149) 137 (125-146) 137 (132-149) 0.304

K (mmol/L) 4.2 (2.1-5.5) 4.2 (2.1-5.5) 4.0 (3.1-4.8) 0.165
Ct (μmol/L) 85 (39-211) 83 (39-149) 110 (53-211) 0.085
AST (IU/L) 55 (22-2848) 54 (22-2848) 63 (34-510) 0.250
GGT (U/L) 86 (13-1754) 86 (15-1754) 85 (13-312) 0.349
Bilirubin 
(μmol/L)

33 (8-511) 30 (8-474) 177 (27-511) <0.001

Albumin (g/L) 33 (7-48) 34 (15-48) 27 (7-39) <0.001
INR 1.4 (0.9-14.7) 1.3 (0.9-14.7) 1.9 (1.3-4.0) <0.001
Haemoglobin 
(g/L)

11 (6.5-16) 11.9 (7.7-16) 9.0 (6.5-11) <0.001

WCC (x109/L) 5.5 (1.5-35) 5.0 (1.5-35) 9.7 (4.2-21) <0.001
Platelets
(x109/L)

104 (34-550) 110 (34-550) 78 (35-369) 0.046

HE grade 0 (0-4) 0 (0-4) 2.5 (0-4) <0.001
Ammonia 
(μmol/L)

98 (19-268) 98 (19-268) 98 (44-238) 0.962
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was calculated as a quantitative measure of the predictability of the model for the
Y variable. The cross-validated-analysis-of-variance (CV-ANOVA) statistic corre-
sponds to a null hypothesis of equal predictive residuals between the models
under investigation (p <0.05 suggests the model is superior to one chosen at
random). Sensitivity and specificity were calculated from the cross-validated
Y-predicted variable. The S-line and S-plot loadings (displaying correlation vs.
covariance of spectral variables) was used to determine the metabolites con-
tributing to class separation for NMR and UPLC-MS data respectively. AUROC
comparison was by the Hanley-McNeill method. Univariate comparison of plasma
levels of metabolites was performed by one way ANOVA within MedCalc v12.1.4
(MedCalc Software, Mariakerke, Belgium).

Measurements of cell death activity

Plasma levels of total (un-cleaved) cytokeratin-18 (M65) and caspase cleaved
cytokeratin-18 (M30) were quantified with commercially available ELISAs (Peviva
AB, Bromma Sweden), previously validated in clinical trials and used according to
manufacturer’s instructions as described elsewhere [36]. Levels were taken in
patients with DC, stable chronic liver disease (CLD) and HC. To determine the role
of the liver in cell death activity, M30 and M65 levels were also measured in
seven patients with DC at the time of liver transplantation prior to hepatectomy.

Liver samples and Immunohistochemistry

Explant liver tissue was available in six patients undergoing orthotopic liver
transplantation for DC. Background liver from liver resection specimens contain-
ing metastatic adenocarcinoma from colorectal primaries (n = 4) served as normal
control tissue. Liver tissue from a patient with post-liver transplant recurrent
HCV infection was used as a positive control. Negative controls were obtained
by omitting the primary antibody. Tissue samples were taken for diagnostic his-
tological examination and formalin fixed, paraffin-embedded (FFPE), and stained
with H&E using a standard procedure. FFPE tissue was cut at 4 lm and serial sec-
tions were picked up on poly-l-lysine coated slides, which were manually stained
using the M30 CytoDEATH primary antibody (product number 12140322001,
Roche, UK; dilution 1:10).

M30 enzymatic immunohistochemistry are described in the Supplementary
methods.
Mechanically 
ventilated (Y:N)

13:67 6:56 9:9 <0.001

Vasopressor 
use (Y:N)

12:68 5:57 8:10 <0.001

ACLF grade 
(0/1/2/3)

43/15/17/5 40/12/9/1 3/3/8/4 <0.001

CPS 9 (7-13) 8 (7-13) 12 (7-15) <0.001
CLIF-SOFA 7 (4-18) 7 (4-18) 10 (5-18) <0.001
MELD 15 (4-40) 12 (4-29) 23 (6-40) <0.001
UKELD 61 (43-88) 56 (50-68) 75 (63-84) <0.001

p values – v2 test for categorical variables, Mann Whitney U test for continuous
variables. Continuous data given as median (range). HE, hepatic encephalopathy;
INR, International Normalised Ratio; WCC, white cell count; CPS, Child-Pugh
score; MELD, Model for End-Stage Liver Disease; CLIF-SOFA, Chronic Liver Failure
Sequential Organ Failure Assessment; UKELD, United Kingdom End-Stage Liver
Results

Eighty patients (median age 55 (23–75) years, 60 male) com-
prised the derivation cohort (Table 1). Sixty-two patients sponta-
neously survived. In keeping with other reports of outcome in
these groups, non-survivors exhibited a higher MELD, UKELD
and CPS and were associated with higher levels of requirements
for organ support therapies. Aetiology was not associated with
mortality. Thirty-seven patients met criteria for ACLF at the time
of recruitment (15 patients with ACLF grade 1, 17 with ACLF
grade 2 and 5 with ACLF grade 3). The remainder (43) did not
meet CANONIC criteria for ACLF.
Disease.
NMR spectroscopic multivariate analysis

Comparisons between controls and patients with cirrhosis
Examples of 1H NMR spectral data for plasma are shown in Sup-
plementary Fig. 1. Clear differences can be seen in the glucose,
lipid and lactate resonances between controls and patients with
liver disease. PCA comparing controls with liver disease patients
in a 3 component model gave an R2X statistic of 0.75 with a Q2Y
of 0.54 (Supplementary Fig. 2). OPLS-DA analysis gave similar
robust differentiation of the NMR spectral profile (R2X = 0.67,
R2Y = 0.75, Q2Y = 0.59, CV-ANOVA 10�23, sensitivity 97%, speci-
ficity 100%). Resonances increased in patients with cirrhosis were
lactate, glucose, methionine and pyruvate, while those reduced in
patients with cirrhosis were lipid, choline and phosphocholine
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resonances (see Table 2; Supplementary material). OPSLDA mod-
elling accurately discriminated patients with and without ACLF
profile (R2X = 0.25, R2Y = 0.49, Q2Y = 0.38, CV-ANOVA 10�9, sensi-
tivity 83%, specificity 90%) but did not discriminate by aetiology.

Outcome prediction in patients with DC
When 90-day survival was used as the class variable within the
cohort of patients with DC, a discriminant model was produced
(3 component OPLS-DA (R2X = 0.57, R2Y = 0.46, Q2Y = 0.39) with
100% sensitivity and 85%, CV-ANOVA 10�6; Fig. 1). Higher levels
of lactate, tyrosine, methionine and phenylalanine were found
in patients with poor outcome, whereas lower levels of the lipid
resonances (VLDL, LDL) and particularly the choline/phospho-
choline resonances at d 3.22 were demonstrated. The resonance
vol. 64 j 1058–1067



Table 2. Nuclear magnetic resonance (NMR) observed metabolites with intensity (mean (SD), arbitrary units) differences associated with decompensated cirrhosis
vs. controls and those liver disease patients with and without poor prognosis with sign of change denoted.

Metabolite Chemical shift and multiplicity HC DC-S DC-D p value
 (ANOVA)

p value
 (DC-D vs. DC-S)

1 Lipids (mainly LDL) 0.84 (t), 1.2b (m) 29.1 (7.4) 19.9 (8.14) 22.1 (8.20) <0.001 0.002
2 Lipids (mainly VLDL) 0.87 (t), 1.29 (m), 1.57 (m) 38.1 (16.7) 26.9 (13.7) 26.8 (15.0) <0.001 0.220
3 Isoleucine 0.93 (t), 1.00 (d) 1.25 (ddd) 1.20 (0.18) 1.02 (0.22) 1.10 (0.25) 0.001 0.010
4 Leucine 0.94 (d), 0.95 (d), 1.70 (m), 3.73 (m) 1.10 (0.20) 0.91 (0.20) 0.93 (0.19) <0.001 0.025
5 Valine 3.6 (d), 2.26 (m), 0.8 (d), 1.04 (d) 0.72 (0.16) 0.63 (0.17) 0.54 (0.17) <0.001 0.666
6 Lactate 4.11 (q), 1.32 (d) 13.2 (3.30) 12.9 (4.05) 13.8 (9.70) <0.001 <0.001
7 Alanine 1.46 (d), 3.77 (m) 3.14 (0.59) 3.00 (0.92) 3.50 (2.51) 0.595 0.079
8 N-acetylated glycoproteins 2.06 (s) 2.49 (0.40) 2.25 (0.44) 2.23 (0.42) 0.228
9 Methionine 2.13 (s) 1.42 (0.71) 1.58 (0.57) 2.13 (2.53) 0.033 0.019
10 Pyruvate 2.36 (s) 0.46 (0.12) 0.60 (0.14) 0.59 (0.22) <0.001 0.047
11 Citrate 2.53 (d), 2.66 (d) 0.023 0.012
12 Creatinine 3.03 (s) 1.06 (0.15) 1.16 (0.61) 1.23 (0.70) 0.236 0.002
13 Choline 3.19 (s) 11.04 (3.16) 8.65 (2.48) 7.35 (3.37) <0.001 <0.001
14 Phosphocholine 3.22 (s) 3.97 (1.21) 4.78 (1.71) 3.43 (1.18) <0.001 <0.001
15 Glycine 3.55 (s) 3.36 (1.45) 4.02 (1.79) 3.11 (1.18) 0.001 0.157
16 Glucose 3.42 (s), 3.54 (dd), 3.76 (m), 3.84 

(m), 5.23 (d)
0.95 (0.54) 1.21 (0.59) 0.88 (0.37) <0.001 0.107

17 Urea 5.8 (s) 1.34 (0.45) 2.39 (0.56) 4.64 (0.78) 0.04 0.002
18 Tyrosine 7.18 (dd), 6.89 (dd) 0.65 (0.22) 3.99 (0.88) 5.34 (1.32) <0.001 <0.001
19 Histidine 7.04 (s), 7.74 (s) 1.65 (0.45) 1.89 (0.65) 2.03 (0.76) 0.14 0.453
20 Phenylalanine 7.32 (d), 7.41 (t) 0.87 (0.21) 3.21 (0.87) 5.09 (1.32) <0.001 <0.001
21 Formate 8.45 (s) 1.21 (0.32) 1.87 (0.56) 2.54 (0.065) 0.379 0.001

The assignment numbers as per the annotation in Fig. 1. Nuclear magnetic resonance peak multiplicity – s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of
doublets). LDL, low density lipoproteins; p values one way ANOVA with multiple comparison correction.
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at d 3.22 contains peaks attributable to both choline and the
associated phosphocholine macromolecule and therefore
reversed-phase UPLC-TOF-MS was performed for detailed
metabolite characterisation (see below).

External validation of NMR profiling as predictive of hospital survival
In a separate cohort of 59 patients with DC (median age 56
(43–65), 54% male, 14D; 45 SS, see Supplementary material) the
3 component NMR profile developed on the training set was used
to predict outcome in this fully external validation cohort. The
outcome prediction accuracy was again excellent with a sensitiv-
ity of 98% (87–100%), specificity 89% (67–99%), positive likeli-
hood ratio 9 (3–34), negative likelihood ratio 0.03 (0.004–0.2),
AUROC 0.96 (0.90–1.00) (Fig. 2). In a further validation cohort
both the differences between patients with cirrhosis (n = 42)
and controls (n = 27) and discriminatory ability for predicting
90-day mortality were confirmed (see Supplementary data).

By limiting the metabolites used for prediction to those with a
variable importance of more than unity, a simplified metabolite
array of glycerophopshocholine (GPC), lactate, LDL, phenylala-
nine, methionine, pyruvate, glucose and tyrosine, retained a
discriminatory accuracy (R2X = 0.61 R2Y = 0.41 Q2Y = 0.15,
CV-ANOVA p = 0.02, AUROC 0.86, sensitivity 92%, specificity 85%).
Characterisation of lipids by UPLC-TOF-MS multivariate analysis
In the dataset resulting from positive ion formation (examples in
Fig. 2), accurate discrimination between patients with cirrhosis
and healthy controls was attained with PCA (3 component model
R2X = 0.53, Q2Y = 0.51) and confirmed on subsequent OPLS-DA
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(3 component model – R2X = 0.52, R2Y = 0.67, Q2Y = 0.42,
sensitivity 85%, specificity 97%, CV-ANOVA 3 � 10�14).

A two component model was used for discrimination between
survivors and non-surviving patients with decompensated cir-
rhosis, producing a valid model for discrimination of survival
(Fig. 1; R2X = 0.47, R2Y = 0.54, Q2Y = 0.40, AUROC 0.94, sensitivity
100%, specificity 85%, CV-ANOVA p = 10�8). Major discriminatory
metabolites are listed in Supplementary Table 1. A collection of
masses related to adducts of other lysophosphatidylcholines
(LPCs) and phosphatidylocholines (PC) were identified as being
reduced in non-surviving patients as shown in Table 3, confirm-
ing the importance of downregulation of a number of LPC/PC spe-
cies in increasing severity of liver disease and in outcome
prediction. See Supplementary results for negative mode
ionisation.

Cell death markers increased in DC and correlate with LPC
concentrations
Levels of M30 were elevated in both CLD and DC compared with
HC (Fig. 3). Similarly, the plasma levels of M65 were also highest
in DC patients, compared to CLD and HC. M30/M65 ratios were
lowest in DC, compared to other groups. M30 and M65 were cor-
related with MELD score (M30 vs. MELD r = 0.40, p = 0.002; M65
vs. MELD r = 0.39, p = 0.004). On OPLS modelling M65 levels cor-
related negatively with the LDL (pcorr �0.85) and PC (pcorr
�0.74) resonances on 1H NMR and correlated positively with ala-
nine (0.51), methionine (0.49), tyrosine (0.66) and phenylalanine
(0.74, p <0.001 for all correlations model CV-ANOVA p = 0.004).
M30 and the apoptotic index M30/M65 did not produce valid
OPLS models with the NMR profile.
vol. 64 j 1058–1067 1061
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Fig. 1. 1H NMR and UPLC-MS plasma profile models. These multivariate models demonstrate discrimination of patients with DC who survive or die (A–D) 1H NMR data.
(A) Principal components analysis (PCA) scores plot 3 component model R2X = 0.75 Q2 = 0.54. (B) Orthogonal projection least squares discriminant analysis (OPLS-DA)
scores plot (1 + 2 + 0) R2X = 0.57 R2Y = 0.46 Q2 = 0.25. (C) permutation analysis (D) S-line loading plot (E–H) UPLC-MS positive mode data (E) PCA scores plot (3 components)
R2X = 0.54 Q2 = 0.42 (F) OPLS-DA scores plot (1 + 2 + 0) R2X = 0.52 R2Y = 0.67 Q2 = 0.42 (G) permutation analysis (H) S-plot loadings. 1H NMR peak annotations are as per
Table 2. (This figure appears in colour on the web.)
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Of the identified lipids on UPLC-MS, LPC (16:0) was negatively
correlated with M30 (r = �0.30, p = 0.010) and M65 (r = �0.39,
p = 0.002) levels and also predicted hospital survival (AUROC
0.76 (95% CI 0.66–0.84), p <0.001).

M65 levels performed less well at outcome prediction (AUROC
0.66 (95% CI 0.54–0.76) p = 0.02). M30 and M30/M65 ratio were
not independently associated with outcome.

Cross liver sampling demonstrates hepatic endothelial beds as source
of total cytokeratin-18 in DC
Blood sampling from the systemic artery, portal and hepatic
veins at the time of liver transplantation prior to hepatectomy
demonstrated higher levels of M65 in the hepatic vein compared
to portal vein (p = 0.047) and lower M30/M65 ratios in the hep-
atic vein, compared to portal vein (p = 0.027, see Fig. 4).

Thequantitativeanalysisof apoptotic cells in the control andDC
groups on theM30-stained slides revealed a significant increase in
apoptotic cell numbers in the DC group compared to controls
(p = 0.008). This finding was supported by a similar increase as
assessed on the H&E stained slides from the same cases (see
Fig. 4, p = 0.002).

Comparison of outcome prediction abilities of profiling techniques
The AUROC curves analysis of the metabolic profiling techniques
in comparison with accepted clinical decision making tools is
1062 Journal of Hepatology 2016
shown in Table 4 and Supplementary material. All profiling
modalities (NMR and in both UPLC-TOF-MS ionisation mode)
generated Y-prediction scores with increased predictive accuracy
over CPS, CLIF-SOFA, CLIF AD, CLIF-C ACLF and MELD. Combining
clinical scores with metabolic profiling methods gave models
with similar accuracy to the metabolic profiling techniques
and combining CLIF-SOFA (the most accurate clinical scoring
system in this cohort) with NMR profiling data gave a high
degree of accuracy similar but not superior to NMR profiling
(see Table 4).
Discussion

This study demonstrates that metabolic profiling of plasma in
patients with DC can provide both highly accurate prognostica-
tion and mechanistic insights into the metabolic and cellular per-
turbations of acute decompensation. Circulating levels of LPC/
PCs, amino acids and energy metabolites combined by multivari-
ate methods in patients who do not survive to hospital discharge
have a characteristic profile. For the first time we demonstrate
metabotyping to be more accurate than standard clinically
derived prognostic tools, although this requires validation in
larger datasets.
vol. 64 j 1058–1067
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Fig. 2. Comparison of outcome prediction performance by Area Under
Receiver Operating Curve (AUROC) analysis. AUROC comparisons of CPMG
(Carr-Purcell-Meiboom-Gill), NMR (nuclear magnetic resonance), MELD (model
for end-stage liver disease), CLIF-SOFA (chronic liver failure sequential organ
failure assessment), UPLC-MS (ultra-performance liquid chromatography mass
spectrometry). (A) Derivation Cohort CPMG NMR profile (AUROC 0.95 (0.90–1),
sensitivity 100%, specificity 79%, p <0.001); CLIF-SOFA – AUROC 0.87 (0.77–0.93)
sensitivity 78%, specificity 91%, p <0.001); MELD – AUROC 0.81 (0.66–0.96),
sensitivity 78%, specificity 86%, p <0.001); Child-Pugh Score – AUROC 0.87 (0.76–
0.98), sensitivity 83%, specificity 78%, p <0.001. (B) Validation Cohort CPMG NMR
profile (AUROC 0.96 (0.90–1), sensitivity 98%, specificity 84%, p <0.001); CLIF-
SOFA – AUROC 0.93 (0.86–0.99) sensitivity 74%, specificity 100%, p <0.001); MELD
– AUROC 0.87 (0.66–0.96), sensitivity 89%, specificity 79%, p <0.001); Child-Pugh
Score – AUROC 0.87 (0.76–0.98), sensitivity 80%, specificity 79%, p <0.001. (This
figure appears in colour on the web.)
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The most important metabolite class discovered and validated
in these prognostic models was the lipid subclass PC/LPC. PC and
LPCs have been implicated in malignancies, autoimmune disease,
inflammation and cell signalling. These lipids regulate cell senes-
cence, liver repair and lipolysis, and elicit many immune-
modulatory functions including enhancing chemotaxis [37],
stimulating phagocytosis and upregulating the expression of
adhesion molecules [38] and reducing the organ injury and dys-
function in septic shock [39].

Reduced plasma levels of LPCs and PCs occur in murine mod-
els of liver injury [40] and human liver failure [41] independently
of age, gender and diet and in correlation with MELD [42]. Murine
Journal of Hepatology 2016
models [40] of alcohol-related liver injury have demonstrated
similar differences in the PC/LPC profile, as in our UPLC-TOF-MS
results. In particular, the reduction in LPC (16:0/18:0) seen in
both our study and in previous reports (in both patients with
hepatitis B cirrhosis and alcoholic liver disease) suggest common
lipid derangements that correlate with severity of disease and not
aetiology.

No previously reported studies provide a mechanistic insight
into how PC/LPC are associated with severity of ACLF or outcome.
Wehypothesised that circulating lipid abnormalitieswere a reflec-
tion of cell death, similar to ALF [25]. Cytokeratin-18 fragments in
peripheral blood are generated by apoptosis and full-length
cytokeratin-18 generated by necrosis, and are elevated in a variety
of liver diseases including NASH and viral hepatitis [43–45]. The
commonly used M30 antibody identifies a fragmented form of
cytokeratin-18 generated by cleavage of multiple caspases (3, 6
and 7). The M65 antibody allows measurement of all
cytokeratin-18 fragments because of loss of cell membrane integ-
rity fromnecrosis and/or apoptosis [46]. Concurrentmeasurement
using the M30 and M65 assays allows for the quantification of the
relative contributions of apoptosis and necrosis to cell death [46].
The M30/M65 ratio is therefore an indicator of the contribution of
apoptosis to the total cell death activity (expressed by M65).

Our hypothesis proved partly correct with strong negative
correlations with total cytokeratin-18 and circulating lipids. We
demonstrate M30 and M65 levels are increased in patients with
DC, compared to stable CLD. In ALF, we have previously demon-
strated differences in cross-gut and cross-liver levels of markers
of apoptosis [25]. In contrast, and for the first time, we have
demonstrated that the liver is a source of total cytokeratin-18
production in DC. This suggests (in conjunction with the strong
M65 correlations with lipids (both PC and LDL) and amino acids
in the 1H NMR spectra) that necrosis is also an important process
in ACLF. This is interesting in comparison with recent reports of
apoptosis in ACLF [27] and while we agree that apoptosis is an
important mechanism of hepatocyte cell death, necrosis may still
have an important contribution.

We are not yet in a position to define causality in this relation-
ship, but necrosis may disrupt overall lipid production or its
release into peripheral blood, while apoptosis may consume
LPC as signalling molecules, as well as contributing to intrahep-
atic lipid accumulation. LPCs are implicated in the death of a
number of endothelial cell types, but in particular of the hepato-
cyte. In hepatocyte lipoapoptosis in NASH [47], LPC may be pro-
duced from di-acylglycerol in preference to triglyceride
production if saturated fatty acid (FA) levels are higher than
unsaturated FA, or in the presence of pro-apoptotic protein sig-
nalling. LPC may then generate apoptosis via mitochondrial-
induced caspase activation or activation of G-protein coupled
receptors [47]. Exogenous LPC has also been reported to induce
apoptosis [47,48] of endothelial cells and stimulate inflammatory
cells [49] in experimental models of sepsis.

Following experimental hepatectomy, hepatocyte loss and
acute liver failure is associated with a reduction in levels of circu-
lating lipids and marked hepatic lipid accumulation [50]. A num-
ber of recent studies have suggested that hepatic necrosis is also
a hallmark of ACLF [51,52], but as yet there are no human studies
that investigate the role of lipids and hepatic necrosis together in
ACLF. Nevertheless, formation of TAG within the hepatocyte and
failure of LPC production from DAG under the influence of
pro-apoptotic proteins may further reduce circulating LPC levels.
vol. 64 j 1058–1067 1063
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Fig. 3. Analysis of markers of cell death in peripheral blood, across the liver and in correlation with metabolic profiling. (A–C) Comparison of markers of cell death in
peripheral blood on day 1. DC, Decompensated cirrhosis; CLD, chronic stable liver disease; HC, healthy control. Kruskall Wallis test with Dunns test for multiple
comparisons (⁄p <0.05, ⁄⁄p <0.01, ⁄⁄⁄p <0.001, ⁄⁄⁄⁄p <0.0001) data are expressed as mean(SEM). (D–F) Total and caspase cleaved cytokeratin-18 levels measured by ELISA
from samples taken from the hepatic vein (HV), portal vein (PV) and systemic artery (ART) at the time of liver transplant prior to hepatectomy in n = 7 patients. (D) M30
levels demonstrating no gradient (E) M65 levels demonstrating positive gradient between portal and hepatic vein (E) M30/M65 ratio demonstrating negative ratio between
portal and hepatic veins. All M30 and M65 levels are in IU/L (logarithmic scale for D-F, Paired t test n.s., non-significant ⁄p <0.05). (G-I) OPLS modelling of 1H NMR plasma of
patients with DC and M65 levels (G) OPLS model (1 + 1 + 0 components, R2X = 0.39 R2Y = 0.56 Q2 = 0.27 CV-ANOVA p = 0.004) (H) permutation test demonstrating validity
of model (I) OPLS S-line loading plot demonstrating correlation with M65 levels and 1H NMR measured metabolites in particular LDL, PC (negative correlation), alanine,
methionine, phenylalanine and tyrosine (positive correlation; peak annotations as for Fig. 1 and Table 2). (This figure appears in colour on the web.)

Table 3. The putative identification (ID) of UPLC-TOF-MS measured metabolites associated with cirrhosis and with poor prognosis and intensity differences between
classes (mean (SD), arbotrary units).

RT (mins) Mass 
(m/z)

Adduct HC DC-S DC-D p value 
(ANOVA)

p value
(DC-S vs. DC-D)

Compound

1 12.4 518.3
496.3

M + Na
M + H

4.56 (1.27) 1.72 (1.71) 6.80 (0.87) <0.001 <0.001 LPC (16:0) M,S

LPC (16:0)
2 18.6 758.6 M + H 9.12 (1.54) 6.89 (2.78) 4.54 (3.39) <0.001 <0.001 PC (34:2) A

3 18.9 806.6
784.6

M + Na
M + H

6.73 (0.91) 6.11 (1.65) 4.06 (2.13) <0.001 <0.001 PC (18:1/18:2) M,S

4 18.1 804.6 M + Na 5.71 (0.69) 3.79 (1.46) 2.12 (1.34) <0.001 <0.001 PC (18:2/18:2) M

5 18.6 780.5 M + Na 6.80 (0.69) 6.37 (1.28) 5.04 (1.83) <0.001 <0.001 PC (16:0/18:2) M

6 16.8 723.5 M + H 3.63 (0.80) 1.54 (1.10) 1.26 (1.23) <0.001 n.s. PG (20:0/15:0) A

7 19.8 786.6
808.5

M + H
M + Na

3.74 (0.96) 1.82 (0.93) 1.06 (0.85) <0.001 <0.001 PC (18:0/18:2) M,S

8 12.3 542.4 M + Na 1.9 (0.4) 1.2 (1.0) 0.66 (0.44) <0.001 <0.001 LPC (18:2) M,S

9 17.9 802.5 M + Na 2.79 (0.69) 1.18 (0.73) 0.53 (0.05) <0.001 <0.001 PC (18:2/18:5) A

10 13.9 381.3 M + Na 16.6 (5.75) 8.80 (5.88) 7.09 (4.96) <0.001 <0.001 Hexadecyl-acetyl 
glycerol A

11 8.6 568.2 M + H 1.6 (0.2) x10-2 0.29 (0.11) 2.45 (3.23) <0.001 <0.001 Unknown 
12 19.6 856.5 M + H 1.40 (0.45) 0.39 (0.04) 0.15 (0.01) <0.001 <0.001 PC (22:5/20:4) M,S

13 19.8 877.6 M + H 0.68 (0.096) 0.99 (0.02) 0.86 (0.02) <0.001 <0.001 PI (37:2) A

14 18.4 876.6 M + Na 1.39 (0.19) 20.1 (0.41) 1.72 (0.48) <0.001 <0.001 PS (41:4) M

15 18.7 849.5 M + H 0.47 (0.066) 0.73 (0.016) 0.74 (0.01) <0.001 n.s. PI (35:2) A

LPC, lysophosphatidylcholine; M-H protonated adduct; M-Na sodiated adduct; PC, phosphatidylcholine, choline; PG, phosphatidylglycerol; PI phosphatidylinositol, PS,
phosphatyidylserine; metabolite identification superscripted-M-MS/MS, S-standard, A-accurate mass; p values one way ANOVA with multiple comparison correction.

Research Article
Following acetaminophen-induced hepatic necrosis in rats, dose
dependent increases in serum levels of lactate, pyruvate and iso-
leucine are noted with reductions in serum GPC [53]. In
methotrexate-induced hepatic necrosis in a rat model of NASH
1064 Journal of Hepatology 2016
using a methionine-choline deficient diet, liver necrosis was
associated with higher hepatic GPC [54].

Further studies at the hepatic level with liver tissue are neces-
sary to define a causal relationship between dyslipidaemia and
vol. 64 j 1058–1067
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Fig. 4. Histological analysis of liver tissue. These demonstrate apoptosis in explanted liver tissue from control and DC cases. (A) Representative micrograph showing a
homogeneous cytoplasmic pattern in a cell morphologically similar to acidophilic bodies from H&E stains, in explanted control liver tissue (⁄ intense coarse granular
cytoplasmic staining pattern of hepatocytes regarded as non-specific staining and excluded from the quantitative assessment). (B) Representative micrograph
demonstrating homogeneous cytoplasmic staining for M30 in cells with morphologic features suggestive of apoptotic bodies (C), on a biopsy from a patient with post-
transplant recurrent HCV infection. (D–G) Representative micrographs of M30+ apoptotic cells and acidophilic bodies on H&E stain in the control and DC groups showing an
increased numbers in the latter. (H) Enumeration of apoptotic cells in control (n = 4) and DC groups (n = 6), as assessed by enzymatic immunohistochemistry and H&E
staining. (This figure appears in colour on the web.)

Table 4. The comparison of Model for End-Stage Liver Disease (MELD), Child-Pugh Score (CPS) and Chronic Liver Failure Sequential Organ Failure Assessment (CLIF-
SOFA), CLIF Acute Decompensation (CLIF AD) and CLIF Acute on Chronic Liver failure (CLIF-C ACLF) for prediction of hospital survival in patients with
decompensated cirrhosis in comparison with Y-predicted metabolic profiling strategies via NMR and UPLC-TOF-MS.

Outcome model AUROC Sensitivity/% Specificity/% LR+ LR-
Derivation cohort
MELD 0.81 (0.66-0.96) 78 (49-95) 86 (75-94) 5.7 (4.3-7.6) 0.3 (0.1-0.8)
CPS 0.87 (0.76-0.98) 83 (52-98) 78 (65-88) 3.8 (2.8-5.0) 0.2 (0.1-0.8)
CLIF-SOFA 0.87 (0.77-0.93) 78 (49-95) 91 (82-97) 9.1 (4.1-20.7) 0.2 (0.1-0.6)
CPMG NMRS 0.95 (0.90-1.00) 100 (69-100) 79 (65-90) 4.8 (4.2-5.5) 0
UPLCMS ESI+ 0.94 (0.89-0.98) 100 (74-100) 85 (73-93) 6.4 (5.8-7.2) 0
UPLCMS ESI- 0.94 (0.88-0.98) 100 (74-100) 79 (66-88) 4.7 (4.1-5.4) 0
Validation cohortΔ

MELD 0.87 (0.76-0.98) 87 (73-96) 79 (54-93) 4.2 (1.7-10) 0.16 (0.07-0.4)
CPS 0.87 (0.78-0.96) 80 (64-91) 79 (54-94) 3.8 (1.6-9.2) 0.25 (0.1-0.5)
CLIF-SOFA 0.93 (0.86-0.99) 74 (58-87) 100 (82-100) - 0.26 (0.2-0.4)
CLIF AD 0.83 (0.72-0.95) 92 (81-98) 68 (45-86) 2.9 (1.6-5.4) 0.12 (0.04-0.3)
CLIF-C ACLF 0.85 (0.74-0.96) 84 (71-92) 82 (60-95) 4.6 (1.9-11) 0.2 (0.1-0.4)
CPMG NMRS 0.96 (0.90-1.00) 98 (87-100) 89 (67-99) 9.3 (3.2-34) 0.03 (0.004-0.2)
CLIF-SOFA + CPMG 0.95 (0.89-1.00) 79 (63-90) 100 (82-100) - 0.21 (0.1-0.4)

LR, likelihood ratio; MELD, Model for End-Stage Liver Disease; CPS, Child-Pugh Score; CLIF-SOFA, Chronic Liver Failure Sequential Organ Failure Assessment; CPMG, Carr-
Purcell-Meiboom-Gill; NMRS, nuclear magnetic resonance spectroscopy; UPLC-MS ESI, Ultra-Performance Liquid Chromatography Mass Spectrometry Electrospray Ioni-
sation; D1st validation cohort comparison.
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apoptosis/necrosis but both methods of cell death are likely
occurring in patients with DC.

We also demonstrated the importance of energy metabolites
such as lactate and amino acids such as tyrosine, phenylalanine
and methionine. Hepatic ischaemia and failure to clear (as well
as increased production of) lactate are well described and lactate
is a classic biomarker of mortality in hepatology and critical ill-
ness when aerobic metabolism is overwhelmed. Increases in aro-
matic amino acids are also well described as ammonia levels rise
in conjunction with failure of the urea cycle in patients with HE
and liver failure [55]. However, ammonia alone is a poor biomar-
ker of survival in cirrhosis as a number of cofactors including
inflammation [56] are required to generate high grade HE and
contribute to poor outcome. Similarly, the urea rise we see in
Journal of Hepatology 2016
non-survivors in this study is more likely related to failure of
renal excretion given the high creatinine in patients who do not
survive. The combination of these markers with lipids in the 1H
NMR gives similar prognostic accuracy as the UPLC-MS so choos-
ing between the two methods would depend on a number of fac-
tors such as cost, reproducibility and familiarity. This is further
discussed in the Supplementary material.

The limitations of this study include its relatively small num-
ber of participants. We performed sample size analysis, based on
previous NMR work in patients with ALF [17], based on a 10%
improvement in AUROC curve from an estimated MELD AUROC.
Although we used a mix of aetiologies the metabolic profile asso-
ciated with severe decompensation and mortality has not been
shown to be aetiology dependent. Lead-time bias is difficult to
vol. 64 j 1058–1067 1065
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fully control in these cohorts, given patients present following
decompensation at different times and therefore future valida-
tion will include larger patient numbers at different time points
during the evolution of decompensation or ACLF.

Deployment of metabolic profiling techniques to assist clinical
decision making would require protocols to allow comparison of
measurements between centres. While NMR spectrometers
would represent a significant capital cost for hospitals each spec-
tral acquisition is possible within 30 min. UPLC-MS instruments
are more commonplace, with low space requirements and the
ability to quantify metabolite levels in minutes. Translating this
technology into the clinical setting is worthwhile, given the
potential advantages of both the global profiling techniques and
the multivariate statistics [57,58] to provide highly accurate
modelling and a personalised prediction system. This kind of step
change in outcome prediction performance can be realised via
collaborations, such as the UK National Phenome Centre and
Human Phenome Project [59] and may revolutionise approaches
to the patient journey based on metabotyping to allow meaning-
ful translation for this powerful but underutilised systems biol-
ogy toolset.
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