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Abstract
Objectives
The change in tumor fluorodeoxyglucose (FDG) uptake by positron emission tomography (PET) scan after
one cycle of platinum-based chemotherapy has been shown to predict progression-free and overall survival
(PFS and OS) among advanced non-small cell lung cancer (NSCLC) patients. Using early FDG-PET response
to determine subsequent chemotherapy, we aim to evaluate the role that adaptive chemotherapy regimens
have on later CT response, PFS, and OS in patients with advanced NSCLC.

Materials and Methods
Chemotherapy-naïve patients with metastatic NSCLC received carboplatin and paclitaxel (CP) on day one
and repeated FDG-PET on day 18. PET-responding patients continued CP chemotherapy for a total of four
cycles. PET non-responders were switched to alternate docetaxel and gemcitabine (DG) for three additional
cycles. The primary outcome was the CT Response Evaluation Criteria in Solid Tumors (RECIST 1.0)
response. Secondary endpoints included PFS and OS.

Results 
Forty-six patients initiated treatment with chemotherapy on trial and were evaluable by PET/CT. Of these,
19 (41%) met the FDG-PET criteria for the response after a single cycle of CP. Only one non-responding
patient had a CT response. Despite the lack of CT response in the DG arm, no trend for worse PFS or OS was
seen between the two arms.

Conclusions
This work demonstrates that changing chemotherapy in the event of non-response by PET did not lead to
improved CT RECIST response. However, non-responding patients who switched chemotherapy had similar
PFS and OS to those who responded by PET and continued the same regimen.

Categories: Radiology, Oncology, Nuclear Medicine
Keywords: paclitaxel, cisplatin, metastatic, adaptive clinical trial, (18f)-fdg pet, non-small cell lung cancer

Introduction
In clinical practice, CT is the predominant method for assessing the response to chemotherapy for solid
tumors. This is based on data demonstrating that response by CT is a surrogate marker for improved predict
progression-free (PFS), overall survival (OS), and quality of life (QOL) [1-3]. Response assessment by CT is
limited by two factors: (1) Patients are typically assessed after several cycles of therapy, as the response by
CT is gradual, and (2) CT is limited in the ability to differentiate slow tumor growth and a cytostatic effect of
treatment. Lack of progression by CT referred to as the disease control rate has been shown to be the best CT
predictor of survival in non-small cell lung cancer (NSCLC) [4].

As metabolic changes occur much earlier than tumor shrinkage in response to therapy, fluorodeoxyglucose-
positron emission tomography (FDG-PET) has been investigated to assess the response early during cancer
treatment [5-8]. The promise of adaptive therapy based on FDG-PET response has become the standard of
care in the treatment of Hodgkin lymphoma [9]. Serial FDG-PET has been used successfully to predict early
response in a variety of tumors including lymphoma [10,11], breast [12,13]. colorectal [14], esophageal
[8,15], gastrointestinal stromal (GIST) [16], pancreas [17], ovarian [18], and lung cancer [19-23]. Increasing
data points to the predictive role of FDG-PET imaging response in NSCLC treated with immunotherapy or
tyrosine kinase inhibitors [24-28]. However, despite nearly two decades of study in solid tumors, there is
insufficient data to support the widespread adoption of this strategy.
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The first and most compelling study of FDG-PET for early response assessment in lung cancer was reported
in 2003 [29,30]. This study demonstrated that FDG-PET response after one cycle of platinum-based
chemotherapy in advanced NSCLC closely correlated with time to progression (TTP) and OS. Subsequent
work [21-23,31] confirms these findings and suggests that FDG-PET is a powerful early biomarker for
chemotherapy response in NSCLC independent of the chemotherapy regimen. Further work has
demonstrated that early FDG-PET response can be used to guide subsequent treatment choices in resectable
NSCLC, with an overall improvement in radiographic response [32]. This trial builds on these studies and
tests the hypothesis that early response assessment by FDG-PET can be used to individualize the selection of
chemotherapy in metastatic NSCLC. 

This study was conceived prior to the widespread adoption of current chemoimmunotherapy regimens for
NSCLC. Carboplatin/paclitaxel was chosen as the initial doublet as this was the most commonly utilized
therapy. Docetaxel/gemcitabine was chosen as the alternate regimen for metabolic non-responders (MR-) as
there are two phase III trials showing overall survival that was not statistically different from the reference
platinum doublet comparator arm [33,34]. Furthermore, there is evidence from a phase II study by Kosmas
that patients previously treated with paclitaxel and a platinum agent respond to docetaxel/gemcitabine with
a PR in 13/43 (33%) [35].

Given prior work demonstrating the predictive nature of early FDG-PET response, we hypothesize that
outcomes from chemotherapy can be improved by determining early tumor response with FDG-PET and
changing chemotherapy agents in the event of poor response by PET.

Materials And Methods
Study design
This is a single-center phase II trial accruing from 2007-2011. The study schema is presented in Figure 1.
Enrolled patients underwent CT scan as well as baseline FDG-PET scan on day one prior to commencing
cycle 1 of carboplatin with an area under a curve (AUC) equal to six and paclitaxel (175 mg/m2)
chemotherapy. A repeat FDG-PET scan was done between days 18-21. Subsequent therapy was based on PET
metabolic response; the response was defined prospectively as a decrease in standardized uptake
value (SUV)max of ≥ 20% as prior work at our institution demonstrated a within-subject coefficient of
variation in SUV of 10%. Metabolic responders (MR+) continued carboplatin/paclitaxel every 21 days for
three additional cycles. Metabolic non-responders (MR-) were switched to gemcitabine (1000 mg/m2) on
days one and eight, docetaxel (75 mg/m2) on day eight, and pegfilgrastim 6 mg subcutaneous (SQ) on day
eight or nine every 21 days for the subsequent three cycles. The MR- subgroup underwent an additional
PET/CT during cycle 2 between days 18-21. All patients were to complete four cycles of chemotherapy in
total, with repeat FDG-PET/CT and CT scans done following completion of chemotherapy. This study was
approved by the University of Washington IRB and was registered under the National Clinical Trial Registry
(NCT00564733). Written consent was obtained at the time of study enrollment. 

FIGURE 1: Study Schema.
 PET: positron emission tomography; PC: paclitaxel/carboplatin; DG: docetaxel/gemcitabine; EOT: end-of-
treatment.

Patient eligibility
Patients with histologically or cytologically confirmed NSCLC not amenable to curative intent therapy were
eligible [American Joint Committee on Cancer (AJCC) 7th edition stage IIIB (pleural effusion) or stage
IV]. Patients were required to have measurable disease, defined as at least one lesion that can be accurately
measured in at least one dimension (> 10 mm with spiral CT scan) [36]. Patients were eligible if baseline
FDG-PET scan demonstrated a target lesion with SUV > 3 that was ≥ 2 times the background uptake. Patients
were excluded if they had received prior treatment with conventional cytotoxic chemotherapy for NSCLC but
may have had prior radiotherapy or been treated with epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors (TKI). One week must have elapsed after discontinuation of TKI prior to the initial PET
scan. Patients who received radiotherapy must have recovered from the side effects of therapy (except

2021 Eaton et al. Cureus 13(10): e18804. DOI 10.7759/cureus.18804 2 of 10

https://assets.cureus.com/uploads/figure/file/260367/lightbox_537db4b011b611ecb10ae79fcb8243c7-Figure-1.png


alopecia) and have measurable disease outside of the radiation field. Other eligibility criteria included: age ≥
18 years, life expectancy ≥ 3 months, Eastern Cooperative Oncology Group (ECOG) performance status 0-2,
and adequate organ and marrow function.

(18F)-FDG PET imaging procedure
Initial and repeat imaging was performed using the same protocol on two cross-calibrated GE Discovery STE
(DSTE) PET/CT systems (GE Medical Systems, Waukesha, WI). Patients fasted for 12 hours prior to injection
of 10 mCi (370 MBq) (18F)-FDG administration. Blood glucose measurements were less than 150 mg/dL. A
PET/CT from the base of the skull to mid-thigh was acquired in 2-D mode 60 minutes after the injection and
reconstructed with random, scatter, and attenuation correction using the filtered back-projection algorithm
(reconstruction parameters: 12 mm Hanning filter, 55 cm image diameter, 128 x 128 matrix). The CT scan
was acquired using a low dose technique (60 mA, 0.8-sec tube rotation at 120 kVp).

Quantitative imaging analysis
For all patients, the analysis of PET scans was completed prior to response evaluation by CT. CT scan results
were characterized per response evaluation criteria in solid tumors (RECIST) 1.0 criteria [36]. The PET target
lesion used for calculation of ΔSUV was selected prospectively at the time of study entry by designated
radiologists at the University of Washington Medical Center. This was the primary lung lesion if it had not
been previously irradiated. In cases where there was no apparent primary lesion (e.g. relapse after surgery),
the dominant metastatic lesion was used as the target lesion.

Primary outcome measures and statistical analysis
The primary outcome of this trial was the radiographic response by CT RECIST criteria following four cycles
of chemotherapy. This study utilized response criteria based on the best response by the end of treatment.
As this was an adaptive clinical trial, we hypothesized that changing chemotherapy would result in a
response rate that is significantly better than the expected response rate of < 5% in this subpopulation if the
initial carboplatin/paclitaxel therapy was continued.

To test this hypothesis, we planned to study 52 patients. Anticipating a dropout rate of 10% or less, we
expected to have at least 45 patients complete at least one cycle of chemotherapy and have early response
assessment by PET/CT. We compared the CT response rate in the initial metabolic non-responders to the
observed response rate in metabolic non-responders in the work of Weber, which is 4% (1/27 patients). We
expected N ≈ 20 initial non-responders by FDG-PET based on prior work demonstrating a 50% metabolic
response rate following one cycle of cisplatin/paclitaxel (per prior work by Weber et al).

Using a predicted baseline response rate of p0=0.04, we defined a clinically interesting response rate as
p1=0.2. A single sample test of proportions testing p1 > p0, using an exact calculation based on the binomial
distribution, gives the power of 0.79 for a one-sided 0.05 level test. This would result in a positive trial if
three or more patients out of the 20 responded. We justified the use of a one-sided test because the
inferiority of the PET-based chemotherapy selection would not be clinically important to detect. Patients
who were not evaluable were classified as non-responders. As such, this study has a simple criterion for
success - observation of at least three responses as measured by CT at the end of four cycles of
chemotherapy in the subset of patients who did not show evidence of response by PET to their initial
chemotherapy with carboplatin/paclitaxel.

Secondary outcome measures
Secondary outcomes included PFS and OS. Additionally, this work sought to further validate previous work
indicating that early PET is predictive of subsequent radiographic response [19,21-23,29,31,32]. Due to the
intervention of changing therapy in initial non-responding patients, we could not directly verify these
results. However, we could test corollary hypotheses in specific patient subsets, namely:

1) Initial metabolic responders to carboplatin/paclitaxel would have a high response rate by CT at the end of
therapy,

2) Subsequent metabolic responders to docetaxel/gemcitabine would have a high response rate by CT at the
end of therapy, and

3) Metabolic never responders would be unlikely to respond by CT at the end of therapy.

Among all patients who demonstrated an initial response to carboplatin/paclitaxel, we calculated the
proportion of responders by CT at the end of therapy and compared these results directly to the proportion
of metabolic responders in prior work [29]. Among patients who do not show metabolic response to
carboplatin/paclitaxel and are subsequently treated with docetaxel/gemcitabine and demonstrate a
metabolic response, we calculated the proportion of responders by CT at the end of therapy. We
hypothesized that the CT response rate in the metabolic responders by a second response assessment by PET
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would be similar to that seen in metabolic responders to initial platinum doublet therapy. Among patients
who showed no evidence of early metabolic response to either carboplatin/paclitaxel or subsequent
docetaxel/gemcitabine, we calculated the proportion of non-responders by CT at the end of therapy. This
subgroup was compared to the analogous subgroup of metabolic non-responders to initial platinum doublet
therapy in the Weber series. Patients who withdrew from the study due to intolerance of chemotherapy,
need for concomitant treatment, or symptomatic or radiographic progression prior to the final CT evaluation
were classified as non-responders by CT and were included in the denominator of the above proportion.

Results
Patient characteristics
In total, 55 patients consented to this trial. Four patients withdrew from the study prior to beginning
treatment, and five were deemed ineligible following enrollment, with 46 undergoing treatment (Figure 2).
Baseline patient characteristics are summarized in Table 1. Treatment was well tolerated, with no
unexpected toxicities or adverse events. Treatment-related toxicities are summarized in Appendix 1.

FIGURE 2: CONSORT diagram.
PET-CT: positron emission tomography-computed tomography; MR: metabolic response; EOT: end-of-treatment;
PR: partial response; SD: stable disease; PD: progressive disease
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N All subjects (N=46) MR+ (N=19) MR- (N=27)

Median Age 62 64 58

Males 52% 47% 56%

Stage IIIB (pleural effusion) 11% 5% 15%

Stage IV 89% 95% 85%

Adenocarcinoma 65% 58% 70%

Squamous 24% 26% 22%

Other NSCLC 11% 16% 7%

Treated CNS metastases 28% 32% 26%

Prior EGFR TKI 9% 5% 11%

ECOG PS    

   0 17% 21% 15%

   1 76% 79% 74%

   2 7%  11%

TABLE 1: Demographic and baseline clinical characteristics
NSCLC: non-small cell lung cancer; CNS: central nervous system; EGFR TKI: epidermal growth factor receptor tyrosine kinase inhibitors; ECOG
PS: Eastern Cooperative Oncology Group Performance Status

Radiographic and metabolic response
Of the initial 46 patients who underwent treatment, 19/46 (41%) were found to be initial MR+ and 27/46
(59%) were deemed to be MR-. Four of the MR- patients withdrew from the study (three due to progressive
disease, one due to side effects), the remaining 23/46 were switched to docetaxel/gemcitabine (Figure 2).
Eight out of 23 of the MR- patients treated with docetaxel/gemcitabine and three out of 19 of the MR+
patients continued on carboplatin/paclitaxel subsequently withdrew prior to completing four cycles of
chemotherapy due to side effects and/or declining performance status. These patients are included in the
progressive disease (PD) group for all further analysis. Of those patients initially classified as MR-, only one
out of 27 patients was shown to have a radiographic response per RECIST criteria on CT scan following four
cycles of chemotherapy. Of the initial MR- patients, however, 10/27 demonstrated stable disease on follow-
up imaging after a total of four cycles of chemotherapy. Radiographic response stratified by the metabolic
response for both this study population and the historic reference population described by Weber et al. is
shown in Table 2. 

 MR+ MR-

 Weber Current Weber Current

% of patients 28/57 (49%) 19/46 (41%) 29/57 (51%) 27/46 (59%)

PR 20/28 (71%) 9/19 (47%) 1/29 (3%) 1/27 (4%)

SD 7/28 (25%) 6/19 (32%) 10/29 (34%) 10/27 (37%)

PD 1/28 (4%) 4/19 (21%) 18/29 (62%) 16/27 (59%)

TABLE 2: Radiographic response at end of treatment stratified by metabolic response following
cycle 1 for current study, cycle 2 for Weber study
PR: partial response; SD: stable disease; PD: progressive disease
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Progression-free and overall survival
PFS and OS for both this study cohort and for the comparison cohort as described in Weber et al. are
presented in Table 3. All study participants had over five years of follow-up with a median PFS of 125 days
and OS of 265 days. Kaplan Meier OS and PFS curves for MR+ and MR- patients are presented in Figures 3, 4.
The Weber work showed a statistically significant difference of over 100 days in PFS and OS between MR+
and MR- subjects. In contrast, the PFS for the MR+ (148d) and MR- (97d) were not statistically different (log-
rank p=0.14). Also in contrast to the Weber data, we observed no difference in overall survival between the
MR+ (273) and MR- (223) group (log-rank p = 0.43). 

 
PFS (days) OS (days)

Weber Current Weber Current

All Subjects 143 125 222 265

MR+ 163 148 252 273

MR- 54 97 151 223

P-value 0.0003 0.14 0.005 0.43

TABLE 3: Median progression-free and overall survival
MR+: Metabolic responders; MR-: metabolic non-responders

P-values reflect published and calculated log-rank test values from respective Kaplan Meier Curves by Weber et al. and the current work. For current work,
N=46 for all subjects, N=19 for MR+, and N=27 for MR-. For Weber et al., N=55 for all subjects, N=28 for MR+, and N=27 for MR-

FIGURE 3: Kaplan-Meier overall survival curve censored at 5 years,
stratified by metabolic response on Day 18 FDG PET imaging. Metabolic
response was defined as ≥ 20% decrease in SUV of the dominant
lesion.
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FIGURE 4: Kaplan Meier progression-free survival curve censored at 5
years, stratified by metabolic response on Day 18 FDG PET imaging.
Metabolic response was defined as ≥ 20% decrease in standardized
uptake value of the dominant lesion.

Discussion
Our hypothesis that changing chemotherapy in MR- patients would improve the CT-RECIST response rate
after four cycles of chemotherapy was not confirmed. The secondary outcome measures did show that
metabolic responding patients (MR+) were likely to respond by CT RECIST with a positive predictive value
(PPV) of 47%, comparable to the PPV of 71% seen by Weber. This underscores the potential utility of early
PET to predict subsequent CT response. Table 2 further highlights that among the current study’s MR-
group, rates of PR, SD, and PD are similar to those seen in the Weber et al. study despite the alternative
chemotherapy regimen that these patients received.

In contrast to other adaptive chemotherapy trials [32], a very low CT response rate was seen in the MR-
patients who were switched to an alternative chemotherapy regimen (1/27, or 4% in the current trial as
compared with 6/13, or 46%, in previously published work). There are many possible reasons for this
difference, including the stage of the patients (metastatic vs. non-metastatic), sample size, and the
alternative chemotherapy regimen that was used (docetaxel/gemcitabine vs. docetaxel/vinorelbine). Of
patients who came off study after treatment initiation, 12 out of 15 were secondary to treatment-related
toxicities, likely reflective of the regimen used, while only three were due to disease progression, and it is
possible that this further impacted our results.

While our study failed to meet the primary endpoint, the adaptive treatment did not appear to be harmful, as
the overall survival of our entire cohort was comparable to historic controls. In the Weber data, a sharp
contrast was seen between the metabolic responders and non-responders, with a statistically significant
difference in overall and progression-free survival of about 100 days. In our study, there was no statistically
significant difference between the MR+ and MR- groups in PFS and OS.

It is important to acknowledge that the standard of care treatment for NSCLC has changed significantly
since this study was conducted. There has been a paradigm shift away from conventional chemotherapy to
immunotherapy and molecularly driven therapies. However, the therapeutic approach and study design
utilized in this trial are still instructive, as there remains a strong case for developing tools to assess for
predictive biomarkers and/or early response evaluation to avoid the toxicities and cost of ineffective
treatments. FDG-PET markers have been shown to carry predictive and prognostic weight in patients with
advanced NSCLC treated with immunotherapy and tyrosine kinase inhibitors, as well as in other solid
tumors in the neoadjuvant setting [13,17,24-28,37-40]. Additionally, there are ongoing trials evaluating the
use of adaptive-radiation therapy techniques based on interim FDG-PET response [41]. This work could
potentially inform other efforts examining the use of PET as a surrogate marker for adaptive therapy
response. Ultimately such an approach would need to be validated in randomized control trials in order to be
incorporated into routine clinical care.

Conclusions
In summary, this study failed to demonstrate a predictive CT response benefit by utilizing radiographic
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metabolic response following one cycle of cytotoxic chemotherapy to adapt further chemotherapy. However,
OS and PFS were comparable between the metabolic responders and non-responders, suggesting a possible
underlying survival benefit from the adaptive chemotherapy regimen. Response or disease control rate by CT
remains an imperfect surrogate for the overall clinical benefit for patients with metastatic NSCLC. This study
highlights that FDG-PET is a promising alternative surrogate, but there is insufficient data to adopt it in
clinical practice for response assessment to palliative cytotoxic chemotherapy.

Appendices
Appendix 1 

Adverse Event All Grades* Grade 2 Grade 3 Grade 4 SAE†

Thrombocytopenia 7 (15.2) 2 (4.4) 3 (6.5) 2 (4.4)  

Dyspnea 5 (10.9)  3 (6.5) 2 (4.4)  

Fatigue 5 (10.9)  4 (8.7) 1 (2.2)  

Pain (NOS) 5 (10.9)  5 (10.9)   

Anemia 4 (8.7)  3 (6.5) 1 (2.2)  

Neutropenia 3 (6.5)  1 (2.2) 2 (4.4) 1

Hypercalcemia 2 (4.4) 1 (2.2)  1 (2.2) 1

Leukopenia 2 (4.4)   2 (4.4)  

Pleural effusion 2 (4.4) 2 (4.4)    

Pneumonia 2 (4.4)  1 (2.2) 1 (2.2) 1

Tachycardia 2 (4.4)  2 (4.4)   

Acute renal insufficiency 1 (2.2) 1 (2.2)   1

Alanine aminotransferase (ALT) increased 1 (2.2)  1 (2.2)   

Anxiety 1 (2.2)  1 (2.2)   

Atelectasis 1 (2.2)   1 (2.2)  

Thromboembolic event 1 (2.2)  1 (2.2)   

Dehydration 1 (2.2)  1 (2.2)   

Fever 1 (2.2) 1 (2.2)    

Hypoalbuminemia 1 (2.2)  1 (2.2)   

Hypoxia 1 (2.2)  1 (2.2)   

Lymphocyte count decreased 1 (2.2)  1 (2.2)   

Nausea 1 (2.2)  1 (2.2)   

Sepsis 1 (2.2)  1 (2.2)  1

Syncope 1 (2.2)  1 (2.2)   

Vomiting 1 (2.2)  1 (2.2)   

TABLE 4: Treatment-related toxicities
N= 46; SAE: serious adverse event; *CTCAE version 3.0 used for grading AE’s; †Only grade 3 and higher adverse events or adverse events that led to a
dose reduction or dose delay were captured. Hospitalizations related to disease progression were not captured as SAEs. 
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