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Abstract: Solar energy is an inexhaustible clean energy. However, how to improve the absorption
efficiency in the visible band is a long-term problem for researchers. Therefore, an electromagnetic
wave absorber with an ultra-long absorption spectrum has been widely considered by researchers of
optoelectronic materials. A kind of absorbing material based on ZnS material is presented in this
paper. Our purpose is for the absorber to achieve a good and wide spectrum of visible light absorption
performance. In the wide spectrum band (553.0 THz–793.0 THz) of the absorption spectrum, the
average absorption rate of the absorber is above 94%. Using surface plasmon resonance (SPR) and
gap surface plasmon mode, the metamaterial absorber was studied in visible light. In particular,
the absorber is insensitive to both electric and magnetic absorption. The absorber can operate in
complex electromagnetic environments and at high temperatures. This is because the absorber is
made of refractory metals. Finally, we discuss and analyze the influence of the parameters regulating
the absorber on the absorber absorption efficiency. We have tried to explain why the absorber can
produce wideband absorption.

Keywords: solar absorber; broadband; perfect absorption; surface plasmon

1. Introduction

One of the major issues that are limiting the development of human society is the
energy crisis. The most promising new green energy source for the twenty-first century
is solar energy. One way to effectively alleviate the energy crisis is to make full use of
solar energy. We know that broadband absorption close to the solar spectrum is necessary
to effectively collect and use solar energy. Plasmon absorbers with unique subwave-
length trapping capability have received special attention from researchers [1–4]. In 2008,
Landy et al. proposed an electromagnetic wave absorber, which attracted the attention of
researchers [5]. We observe visible light on Earth at frequencies ranging from 380 THz to
850 THz. The best way of obtaining solar energy is through solar thermal systems [6]. A
perfectly designed absorber is the key to a solar thermal system being able to absorb solar
radiation perfectly. An ideal absorber should have a sufficiently broad absorption curve
with good absorption performance in the visible wavelength band. The absorber should
also be insensitive to electric field absorption and magnetic field absorption [7–10]. We
combine multiple surface pattern structures in the absorption layer of the same resonant
cell to achieve broadband absorption [11–14]. This multi-resonance combination method
can make multiple resonance absorption peaks in the spectrum overlap with each other.
We end up with a wide absorption bandwidth [15,16]. However, the broadband of the
absorber cannot be infinitely wide due to the influence of adjacent resonant arrays and
the fact that an array of cells can only accommodate a limited combination of resonator
stacks [17]. Au can produce plasmon resonance and optical coupling. Therefore, Au is
used in the metal material of the absorber designed in this paper [18].

Micromachines 2021, 12, 909. https://doi.org/10.3390/mi12080909 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi12080909
https://doi.org/10.3390/mi12080909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12080909
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12080909?type=check_update&version=1


Micromachines 2021, 12, 909 2 of 12

Metamaterials have unique absorption properties. Using metamaterials to design
ideal absorbing materials has become the focus of researchers [19–22]. Metamaterials can
completely absorb microwaves. Metal–insulator–metal (MIM) consists of three parts of a
plasmon absorber. The stack structure of the absorber can accomplish multi-band spectral
absorption or wide spectrum absorption [23–28]. The top layer of the metal–insulator–
metal absorber is composed of a metal array pattern, the middle layer is a dielectric layer,
and the bottom is a metal substrate to prevent transmission. The bottom metal film is
used to prevent the transmission of electromagnetic waves. The patterned metal structure
on the top layer is used to match the spatial impedance and suppress the reflection of
electromagnetic waves. In addition, the ability of metamaterial absorbers to absorb light
depends not only on the material itself but also on its shape, size, arrangement, and
structure. Many researchers have designed solar absorbers based on membrane stacking,
but these absorbers usually have very narrow absorption bands [29–31]. In 2017, Luo et al.
developed a sandwich structure metamaterial based on nickel (Ni) film [32]. In this
metamaterial structure, SPP resonance is excited at the interface of Ni film and air. A
resonant cavity mode exists in the grooves of the absorber. The integration of the SPP
syntony and the resonator mode results in a wide band response. Ni has a strong absorption
property in the visible band. Therefore, the sandwich metamaterial structure has perfect
absorption performance in the whole visible light band. In 2017, Cao et al. realized the
perfect absorption of the whole visible band by using Ge2Sb2Te5 material with a large
imaginary part of dielectric function in the visible band [33]. Takatori et al. developed a
silver-based broadband absorber. The average absorption rate of the silver-based absorber
is more than 50% in the wavelength range of 400 nm–3200 nm [34]. The combination of
surface plasmon resonance and resonant cavity mode can localize the electromagnetic field
in the dielectric gap to achieve near-perfect absorption [35–38].

Inspired by the literature published by Luo in 2017, we decided to adopt the stack
structure of a thin film layer to achieve better absorption efficiency in the visible light
band. Inspired by Cao et al.’s literature in 2017, we used refractory precious metal gold to
replace silver material so that the absorber can still maintain a high absorption rate at high
temperatures. The former work uses the combination of surface plasmon resonance (SPR)
and cavity mode to enhance absorption. Therefore, this paper also designed the structure
to make the surface plasmon resonance and resonant cavity mode obtain better absorption
efficiency. ZnS material is an important II–VI compound semiconductor. ZnS material
is a kind of common wide bandgap semiconductor material. ZnS nanomaterials have
attracted much attention. In this paper, a broadband absorber with a multilayer structure
based on ZnS material is proposed. The structure of the absorber and the materials
used can interact to produce surface plasmon resonance. Surface plasmon resonance
results in strong absorption or scattering of incident photons on the metal surface. The
absorber concentrates the energy of the electromagnetic field in the subwavelength range,
so the absorber produces a very strong light field enhancement effect. This effect greatly
increases the interaction between light waves and absorbent materials. Therefore, we could
obtain an absorber with good performance and a wide spectrum. Notably, the multilayer
metamaterial achieved an average good absorption rate of 94% across the 240 THz spectrum,
with a single peak of up to 99.7% at 396.0 THz. In addition, the absorptivity is insensitive
to polarized light. The absorber based on precious metal will deform at a relatively low
temperature. Strong plasmon resonance can enhance the absorption of light. When the
structure is exposed to strong light, the structure of the absorber based on precious metal
may deform and lose its original absorption performance. The UWB absorber we proposed
is based on refractory metal and semiconductors, which can maintain a stable structure at
high temperatures [39]. Therefore, our proposed ultra-wideband electromagnetic wave
absorber has wide application foreground in the fields of thermal photovoltaic, transducer,
cloaking, and infrared detection [40–44]. At the same time, this paper can provide some
suggestions for the design of the absorber of the film stack structure.
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2. Design and Structure

Figure 1 shows the structure of the absorber. Each cell array consists of three layers
stacked on top of each other [45–47]. The top layer is composed of an Au microstructure
layer. The dielectric function of Au film is the Drude model [48]. The structural param-
eters of the metamaterial are shown in Figure 1. The period width of the absorber is
W1 = 1000 nm, and the width of the square ring structure is W2 = 800 nm, the square ring
spacing is W3 = 100 nm, the cross-structure width is W4 = 140 nm, and the thickness of
the absorption layer is h3 = 80 nm. A semiconductor material ZnS is used as the dielectric
layer in the middle, and its thickness is h2 = 40 nm. We use the Au layer with h1 = 200 nm
thickness at the bottom to eliminate the transmission in order to make the absorber trans-
mittance zero. The total thickness of the whole nanocavity is 320 nm. COMSOL software
was used to verify whether the absorber proposed has a good absorption effect [49]. In this
paper, the absorption characteristics of square cross multilayer metamaterials are simulated
by using the finite element method. The boundary conditions during simulation are set
as follows. The top layer of the air layer outside the absorber is modeled with the perfect
matching layer and the scattering boundary conditions. The goal is to allow as much plane
light with frequencies between 380 THz and 850 THz to shine vertically into the absorber
from above the z-axis. Since the absorber is composed of multiple repeated cell arrays, we
set Floquet periodic boundary conditions around the cell arrays. The research of an array
of cells in the absorber can reduce the computational burden.
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Figure 1. Schematic diagram of the base absorber: (a) schematic diagram of the three-dimensional
structure of the ultra-broadband solar absorber. (b) Top view of the absorber structure. (c) the perfect
matching layer (PML) of the base absorber.

3. Results and Discussion

As the thickness of Au is much larger than that of the substrate through which
the electromagnetic wave can penetrate, the transmittance of the structure is basically
zero. The absorption spectrum of multilayer stacked metamaterials can be calculated by
A = 1 − R [50–54]. As shown in Figure 2a, the absorption spectrum is marked by red
lines, and the reflectivity is represented by black lines. As can be seen from Figure 2a,
there is one peak in the low-frequency part and two peaks in the high-frequency broad-
spectrum absorption part. The three different peaks are 396 THz, 582 THz, and 738 THz,
and their respective absorptions are 99.67%, 98.71%, and 99.61%, respectively. Therefore,
the structure we researched has wider and better absorption lines. As shown in Figure 2b,
we compare the absorption spectra with and without the top antireflection layer. When
there is an antireflective layer on the top, the absorber has better absorption performance.
The absorbency of the absorber is more than 90% in the wavelength range of 240 THz, with
an average absorbency of 94%. There are two maximum absorption peaks, f2 and f3, in the
broad spectrum, and the absorptions are 98.71% and 99.61%, respectively. There is a single
peak f1 with perfect absorption in the low-frequency part, and the maximum absorption is
99.7%. When there is no absorption layer, we can see from Figure 2b that the absorption
efficiency of the absorber to visible light is very low. The results show that the uppermost
structure contributes the most to light absorption.



Micromachines 2021, 12, 909 4 of 12

Micromachines 2021, 12, x  4 of 12 
 

 

sorption efficiency of the absorber to visible light is very low. The results show that the 
uppermost structure contributes the most to light absorption. 

 
Figure 2. (a) Ultra-broadband spectrum of a solar absorber. (b) Spectrum of an absorber without 
surface structure. 

To evaluate the performance excellence of the proposed structure, we compare the 
results with other similar absorbers, as shown in Table 1. Obviously, our proposed ab-
sorber has a higher average absorption rate in the visible band 

Table 1. Comparison with other similar visible band absorbers. 

Refer. Absorption Band-Width Modulation Depth The Average Absorption 
This article 553 THz–793 THz Over 90% 94% 

[55] 523–592.5 THz Over 90% <90% 
[56] 375 THz–750 THz Over 90% 70% 
[57] 481.2 THz–684.0 THz Over 90% 92% 
[58] 430 THz–770 THz Over 90% 93.7% 
[59] 400 THz–750 THz (N = 2) Over 90% 90% 

We simulated the electric field distribution at absorption peaks f1, f2, and f3, in or-
der to understand why the absorber can absorb solar radiation in the visible band. We 
know that the SPP response can be excited at the metal–dielectric interface by the inci-
dent electromagnetic wave. The MIM structure has two metal–dielectric interfaces, and 
the two SPP modes are coupled in the dielectric layer to form the interstitial surface 
plasmon mode. The gap surface plasmon mode is derived from the coupling of two SPP 
modes. Therefore, the gap surface plasmon modes propagate along the polarization di-
rection. The propagation of this mode is limited at the z axis. A schematic diagram of 
electric field in X–Y plane is shown in Figure 3a–c. The frequency of absorption peak f1 is 
396 THz. The gap surface plasmon modes propagate along the y-axis direction. When the 
surface structure size meets certain conditions, the gap surface plasmon modes propa-
gate along the y-axis in both forward and backward directions. The absorber will pro-
duce a perfect absorption peak due to the standing wave syntony of a specific wave-
length. The frequency of the absorption peak f2 is 582 THz, and the absorption excited by 
the electric field is distributed in the y-axis direction of the pattern layer on the top of the 
absorber. The distribution of the electric field enhances the absorption between the ab-
sorbing layer and the dielectric layer. Absorption peak f3 is located at 738 THz. The elec-
tric field distribution is similar to that of f2. As can be seen from Figure 4a, each cell array 
in the absorption layer excites surface plasmon between the top Au layer and the ZnS 
layer. The results show that the incident electromagnetic wave excites the SPP and forms 
the gap surface iso-polariton mode on the absorber, which enhances the light absorption. 
These electric fields are tightly confined between the metal and the medium. From Figure 
4b,c, we can conclude that the absorption enhancement excited by the electric field is 
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surface structure.

To evaluate the performance excellence of the proposed structure, we compare the
results with other similar absorbers, as shown in Table 1. Obviously, our proposed absorber
has a higher average absorption rate in the visible band

Table 1. Comparison with other similar visible band absorbers.

Refer. Absorption Band-Width Modulation Depth The Average
Absorption

This article 553 THz–793 THz Over 90% 94%
[55] 523–592.5 THz Over 90% <90%
[56] 375 THz–750 THz Over 90% 70%
[57] 481.2 THz–684.0 THz Over 90% 92%
[58] 430 THz–770 THz Over 90% 93.7%
[59] 400 THz–750 THz (N = 2) Over 90% 90%

We simulated the electric field distribution at absorption peaks f1, f2, and f3, in
order to understand why the absorber can absorb solar radiation in the visible band. We
know that the SPP response can be excited at the metal–dielectric interface by the incident
electromagnetic wave. The MIM structure has two metal–dielectric interfaces, and the
two SPP modes are coupled in the dielectric layer to form the interstitial surface plasmon
mode. The gap surface plasmon mode is derived from the coupling of two SPP modes.
Therefore, the gap surface plasmon modes propagate along the polarization direction. The
propagation of this mode is limited at the z axis. A schematic diagram of electric field
in X–Y plane is shown in Figure 3a–c. The frequency of absorption peak f1 is 396 THz.
The gap surface plasmon modes propagate along the y-axis direction. When the surface
structure size meets certain conditions, the gap surface plasmon modes propagate along
the y-axis in both forward and backward directions. The absorber will produce a perfect
absorption peak due to the standing wave syntony of a specific wavelength. The frequency
of the absorption peak f2 is 582 THz, and the absorption excited by the electric field is
distributed in the y-axis direction of the pattern layer on the top of the absorber. The
distribution of the electric field enhances the absorption between the absorbing layer and
the dielectric layer. Absorption peak f3 is located at 738 THz. The electric field distribution
is similar to that of f2. As can be seen from Figure 4a, each cell array in the absorption
layer excites surface plasmon between the top Au layer and the ZnS layer. The results
show that the incident electromagnetic wave excites the SPP and forms the gap surface
iso-polariton mode on the absorber, which enhances the light absorption. These electric
fields are tightly confined between the metal and the medium. From Figure 4b,c, we can
conclude that the absorption enhancement excited by the electric field is concentrated in
the y-axis direction of the absorption layer. In the x direction, the incident electric field of
the absorber is mainly confined to the dielectric layer. In summary, the square ring cross
absorber designed in this paper can achieve broad-spectrum light absorption mainly by
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excitation of the surface plasmon and interstitial surface plasmon mode. The absorber
relies on standing wave resonance to achieve a strong electric field localization effect to
achieve the perfect absorption peak at f1.
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The aim of this study is to investigate whether changing the structural parameters
affects the performance of the absorber. An attempt was made to adjust the structural
parameters of the metamaterial absorber. We adjusted the spacing of the top square ring
structure W3. The absorption effect is shown in Figure 5a. We changed the distance W3
of the square ring structure of the absorber from 80 nm to 120 nm in steps of 10 nm. The
absorption peak of the absorber increased from 83.3% to 99.59% at f1 and from 92.0%
to 99.1% at f2. The absorption performance of the absorber is significantly improved.
While the absorption peak of f3 fluctuated slightly, the absorption of the absorber at the
frequency of f3 first dropped from 99.4% to 98.2% and then rose to 99.4%. The absorption
band of the absorber gradually widened, and the absorption rate between f1 and f2 also
increased to more than 87.5%. The reason for these phenomena is that ZnS nanometer
resonators provide effective resonance absorption through square ring resonance and
cross plasmon resonance [60,61]. Therefore, in order to obtain an ideal absorption peak,
appropriate square ring resonance and cross resonance should be adjusted to maximize
the superposition resonance absorption. The superposition of absorption peaks produces
ultra-wideband absorption. At f1 and f2, the resonance of the absorber is significantly
enhanced with the decrease of W3. The resonance reaches the maximum at W3 = 100 nm.
We can observe and conclude from Figure 5b that as W4 increases, the absorption peak
of the absorber at f2 also increases. The absorptivity of the absorber increased from
97.34% to 99.85%. When W4 = 160 nm, the resonance absorption of the absorber reaches
the maximum, and the absorption efficiency graph is red-shifted. The resonance of the
absorber reaches the maximum at W4 = 150 nm, and the absorption peak at f3 reaches
99.85%. When W4 = 150 nm, the absorbance of f3 is as high as 99.9%, but the absorption
efficiency of the absorber is not as wide as that of W4 = 140 nm. In addition, we can also
observe that the structural parameters change in a wide range, and the absorber can still
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maintain a wide absorption bandwidth and high absorption efficiency. These characteristics
will be beneficial to physical manufacturing because the absorber has a high tolerance.
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Afterward, we wanted to find out whether changes in the thickness of the film would
have an effect on the absorption spectrum. We changed the ZnS film thickness h2 and Au
film thickness h3 of the absorber. Observing Figure 6a, it can be concluded that as the ZnS
film thickness h2 increases, the absorber appears red-shifted, and the overall absorption
efficiency moves towards the lower frequencies. The absorption peak of the absorber at
f1 fluctuates greatly. The absorption efficiency of the absorber increased from 24.0% to
99.68% and then decreased to 55.94% due to the red-shifted of the absorption peak at f1.
The absorption peaks of the absorber begin to split at f2 and f3. The absorption efficiency
between f2 and f3 is significantly reduced. The absorption effect of the high-frequency
part of the absorber decreased significantly. When h2 is greater than 40 nm, the absorption
effect of the absorber between f2 and f3 begins to improve again. In summary, when h2 is
adjusted to an appropriate thickness, a wide spectrum of absorption can be formed between
f2 and f3. When the thickness of ZnS film h2 is set at about 40 nm, the absorption intensity
of absorption peaks at f2 and f3 has no obvious change. By observing Figure 6b, we can see
that the absorption map of the absorber is red-shifted after the change of the film thickness
of the absorbing Au layer h3. With the augment of Au layer thickness, the absorption
rate of the absorber at f1 increases from 90.0% to 99.7%. This phenomenon indicates that
resonant light becomes stronger and stronger in the cavity [62,63]. However, the absorption
efficiency between f2 and f3 increased significantly, but the absorption efficiency of the high-
frequency part after f3 decreased gradually. This is because the resonance enhancement at
f2 and f3 results in the red-shifted absorption peak at f3 from 738 THz to 702 THz. Obtaining
the results of changing the structural parameters in Figure 6a,b, we found that the size
of the absorber structure has a great effect on the absorber’s performance. Therefore, the
selection of appropriate absorber layer thickness h3 and dielectric layer thickness h2 is
crucial to whether the absorber can achieve perfect absorption of solar radiation.

It is well known that visible light does not necessarily incident vertically in practical
applications. Insensitive to both polarization and angle of incidence, it is an ideal absorber
in the minds of researchers. We varied the pitch angle and polarization of the incident light
in order to investigate whether the angle of incidence and polarization had an effect on the
absorption spectrum of the absorber. We investigated the effect of different polarized light
and incident angles on the absorption spectra. The absorption spectrum of the absorber
does not change significantly when the incident magnetic field changes to the incident
electric field. The absorption spectrum when the incident field is a magnetic field is shown
in Figure 7a. Therefore, the absorber is insensitive to TE and TM light. This conclusion is
primarily caused by the symmetrical arrangement of the square ring cross structure in the
periodic array. The absorption of the absorber at 0–80◦ incidence is shown in Figure 7b.
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When the back oblique incidence angle is 40◦ and 60◦, the absorption of the absorber
begins to decrease in part of the frequency range. The incident light from different angles
has an effect on the absorption performance of the absorber. The results suggest that the
effect is limited. The calculation results show that the wideband absorber has strong angle
sensitivity. The absorptance of the absorber decreases as the angle of incidence increases.
This is because as the angle of incidence increases, the component of the incident magnetic
field in the x-axis direction decreases. The decreasing × component causes the magnetic
flux density between the surface metal blocks to become smaller and smaller. Less and
less energy is being absorbed into the absorber. As a result, there will be less and less
electromagnetic absorption [64,65]. Despite the increase in the angle of incidence to 60◦,
the absorber still has a high absorption rate. The absorber can still meet the requirements
of many practical applications.
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Finally, we want to understand how each part of the absorber affects the performance
of the absorber, and we divided the proposed absorber into two parts for research. We only
kept the top square ring structure of the absorber. The absorption spectrum and the top
structure are shown in Figure 8a. We can find that there are two better absorption peaks,
f4 = 612 THz and f5 = 712 THz, and their absorptions are 99.1% and 99.5%, respectively.
This result confirms that the wide spectrum absorption caused by the excited surface
plasmons is mainly provided by the square ring structure. Figure 9a shows the absorption
spectrum of the absorber with only a cross structure. We can find that there are two
better absorption peaks, f6 = 390 THz and f7 = 566 THz, and their absorptions are 99.7%
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and 99.0%, respectively. The results confirm that the ideal single absorption peak in the
low-frequency part is mainly provided by the cross structure when the two structures
become the metamaterial absorber proposed in this paper. Due to the superposition of
the absorption properties of f4 and f7, we finally obtain the absorption efficiency of the
absorber at f2. The ideal absorption peak of the absorber at f6 is also transferred to f1 due
to the superposition of absorption properties. The ideal absorption peak of the absorber
at f5 is also transferred to f3. This conclusion is shown in Figure 10. After the cross and
square ring are superimposed, the absorption pattern changes from four absorption peaks
to three absorption peaks. Due to the interaction of these two structures, we obtained
a metamaterial absorber with an ideal absorption peak and a wide spectrum of visible
light bands. The design of axisymmetric structures insensitive to polarization is a method
to significantly enhance surface plasmon resonance. The final effect of surface plasmon
resonance, therefore, rests with the mode structure of the absorbing layer at the top of the
metamaterial. By reason of the foregoing, the absorber designed in this paper has a better
effect than other absorbers that absorb visible light radiation.
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4. Conclusions

In this paper, a wideband absorber with a stacked membrane structure is designed.
Each array element of the absorber is a sandwich structure consisting of a top absorber layer
with a square ring cross pattern, a dielectric layer made of ZnS, and a bottom film made of
Au. The absorber has an absorbance of more than 90% in the visible wavelength range of
240 THz, with an average absorbance of 94%. There are two maximum absorption peaks
in the wide spectrum, f2 and f3, with absorption rates of 98.71% and 99.61%, respectively.
There is a perfectly absorbed unimodal f1 in the low-frequency section, with a maximum
absorption rate of 99.7%. Wideband absorption is primarily caused by surface plasmon
resonance and gap surface plasmon mode. On this basis, the effects of different structural
parameters on the absorption characteristics of the absorber are studied in detail. The
ultra-wideband absorption of the perfect absorber proposed in this paper is polarization-
independent. This characteristic allows the absorber to have a good performance of
electromagnetic wave absorption under electromagnetic conditions. The material we used
has a high thermal stability, which indicates that the absorber has a potential application
prospect in high-intensity irradiation and high temperatures. The broadband absorber
proposed in this paper has a broad application prospect in solar photovoltaic power
generation, stealth, thermal electronic equipment, and other fields.
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