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Abstract

Mobile robot path planning has attracted much attention as a key technology in robotics

research. In this paper, a reformative bat algorithm (RBA) for mobile robot path planning is

proposed, which is employed as the control mechanism of robots. The Doppler effect is

applied to frequency update to ameliorate RBA. When the robot is in motion, the Doppler

effect can be adaptively compensated to prevent the robot from prematurely converging. In

the velocity update and position update, chaotic map and dynamic disturbance coefficient

are introduced respectively to enrich the population diversity and weaken the limitation of

local optimum. Furthermore, Q-learning is incorporated into RBA to reasonably choose the

loudness attenuation coefficient and the pulse emission enhancement coefficient to recon-

cile the trade-off between exploration and exploitation, while improving the local search

capability of RBA. The simulation experiments are carried out in two different environments,

where the success rate of RBA is 93.33% and 90%, respectively. Moreover, in terms of the

results of success rate, path length and number of iterations, RBA has better robustness

and can plan the optimal path in a relatively short time compared with other algorithms in

this field, thus illustrating its validity and reliability. Eventually, by the aid of the Robot Oper-

ating System (ROS), the experimental results of real-world robot navigation indicate that

RBA has satisfactory real-time performance and path planning effect, which can be consid-

ered as a crucial choice for dealing with path planning problems.

Introduction

As the representative of high-end intelligent equipment and high-tech, mobile robot technol-

ogy is changing with each passing day, which has been widely applied in family services, rescue

and relief, warehousing and logistics, and other practical application fields. In order to achieve

the shortest collision-free movement of the mobile robot from the starting point to the target

point, the path planning of the mobile robot has become a hot spot of current research, and

has attracted close attention of relevant scholars. To date, a variety of effective methods have

been developed to deal with path planning problems, such as visibility graph [1, 2], artificial

potential field (APF) [3, 4], rapidly-exploring random tree (RRT) [5], reinforcement learning
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(RL) [6], ReinforcedRimJump (RRJ) [7, 8], nonlinear control [9], etc. Nevertheless, with the

increase of environment complexity and task difficulty, the above path planning methods are

hard to achieve desired effects. The path drawn by the visibility graph or the RRT is composed

of multiple straight lines, resulting in the path is not smooth enough. The APF is easy to get

trapped into local optima, moreover the phenomenon that the target point is unreachable may

occur. For the RL, it is difficult to use less resources to address the path planning problem in

complex environments. As an emerging algorithm, RRJ can achieve the shortest path plan-

ning, but it is only suitable for static environment, which seriously affects its practical applica-

tion value.

Since the establishment of swarm intelligence (SI) [10], it has become a research field of

great concern, bringing hope to solve complex optimization problems. The inspiration of SI

mainly comes from the collective behavior patterns of ants, bees, bats, and other biological

groups. All of these creatures search their targets through common wisdom and experience.

The SI-based optimization algorithms simulate the behavioral attributes of biological

populations, including particle swarm optimization (PSO) [11, 12], teaching-learning-based

optimization (TLBO) [13, 14], artificial bee colony (ABC) optimization [15–17], ant colony

optimization (ACO) [18–23], firefly algorithm (FA) [24, 25], bat algorithm (BA) [26–31],

whale optimization algorithm (WOA) [32], etc. As a classic swarm intelligence optimization

algorithm, PSO is frequently utilized to handle mobile robot path planning problems due to its

simple structure, high search efficiency, and easy improvement. So far, many valuable research

results have emerged [33–36]. Mo and Xu [33] proposed a novel approach for global path

planning in a static environment that hybridizes biogeography-based optimization (BBO) and

PSO. Tang et al. [34] introduced a hybrid PSO that combines PSO and differential evolution

(DE) algorithm. Mac et al. [35] conducted a more in-depth study on the path planning prob-

lem of mobile robots in complex environments and presented a constrained multi-objective

PSO. However, the above PSO variants are prone to fall into local optima, making it difficult

to efficiently complete optimal path planning. Li and Chou [36] came up with a SLPSO algo-

rithm and comprehensively considered constraints such as path length, collision risk degree

and smoothness to generate a feasible collision-free path. Nevertheless, the robustness of the

algorithm is not satisfactory, that is, as the complexity of the environment increases, the path

planning effect of the algorithm declines.

The BA, first introduced in 2010, is similar to PSO, however, it has better convergence and

can balance exploration and exploitation well when searching for the global optimum. Conse-

quently, BA is increasingly favored by researchers, and a number of well-known BA variants

have been advanced one after another. Liu et al. [37] put forward a modified BA, called

PTRBA, to process the global path planning problem of single-robot or multi-robots. In order

to improve the optimization performance of BA, the dynamic perturbation coefficient is intro-

duced into the position update in the global search stage, and the tangent random exploration

mechanism is integrated into the local search stage. Eventually, the PTRBA and cubic spline

interpolation are combined to form a smooth and feasible path. In reference [38], an adaptive

robotic bat algorithm (ARBA) was put forth to handle the multirobot target searching prob-

lem. The adaptive inertial weight strategy is added to the velocity update to improve the diver-

sity of ARBA. Furthermore, the Doppler effect and multi-swarm strategy are introduced into

ARBA to assist robots to better accomplish target searching. Based on the above description,

BA variants have many merits, but there are still some challenges to be solved. For instance,

loudness attenuation coefficient and pulse emission enhancement coefficient are the key ele-

ments that influence the balance between exploration and exploitation of BA. If the above two

parameters are not properly coordinated, the optimization performance of BA will be affected,

making it hard to guarantee the path planning effect. However, the BA variants described
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above do not take this factor into account. Hence, there is still plenty of room for improvement

in their performance.

In order to further improve BA and better complete the path planning task in static envi-

ronments, this paper puts forward a reformative BA, named RBA, in which all robots are

regarded as bats, and one robot represents one bat. Moreover, RBA is employed as the robots’

control mechanism to realize the robots’ search for the target, thereby accomplishing the path

planning task. The main contributions of RBA are highlighted in the following aspects: (1) The

Doppler effect is applied to the frequency update to ameliorate RBA. When the robot is in

motion, the Doppler effect can be adaptively compensated to prevent the robot from prema-

turely converging. (2) In the velocity update and position update, chaotic map and dynamic

disturbance coefficient are introduced respectively to enrich the population diversity and

weaken the limitation of local optimum. (3) Q-learning is adopted to make reasonable choices

for the loudness attenuation coefficient and the pulse emission enhancement coefficient to

coordinate the trade-off between exploration and exploitation, while improving the local

search capability of RBA. To verify the validity and reliability of RBA, simulation experiments

are carried out in two different environments. To begin with, the original RBA is compared

with five classical swarm intelligence optimization algorithms, including PSO, BA, FA, TLBO

and WOA. The experimental results demonstrate that RBA has good comprehensive perfor-

mance and can effectively and reliably implement the optimal path planning. Subsequently,

RBA is compared with four PSO variants, namely BPSO [33], PSO-DE [34], CMOPSO [35]

and SLPSO [36]. Experimental results show that contrasted with PSO variants, RBA has supe-

rior search performance and stronger robustness. Finally, the proposed RBA is compared with

three other state-of-the-art BA variants, i.e. EBat [28], PTRBA [37] and ARBA [38]. Experi-

mental results indicate that RBA can give consideration to optimization effect and computa-

tional efficiency, and has excellent robustness. With the help of ROS, real-world robot

navigation experiments are also carried out. The related results reveal that RBA has satisfactory

real-time performance and path planning effect, and can be considered as a crucial choice for

dealing with path planning problems.

The remainder of this paper is organized as follows. In ‘Bat algorithm’ and ‘Q-learning’, we

review the knowledge of BA and Q-learning, respectively. The proposed RBA is described in

detail in ‘Reformative bat algorithm (RBA)’. To evaluate the proposed approach, simulation

experiments are conducted in ‘Simulation testing’ and real-world robot navigation experi-

ments are finished in ‘Real-world case’. In the end, conclusions are drawn and future work is

provided in ‘Conclusions and future work’.

Bat algorithm

BA was first introduced in 2010, inspired by bats’ echolocation behavior in search of prey. In

nature, bats emit ultrasonic pulses and analyze reflected ultrasonic waves to determine the

information of prey. Besides, bats can search for prey by changing their ultrasonic frequency,

velocity and position. In the process of approaching prey, bats will increase the emissivity of

ultrasonic pulses and weaken the loudness. The implementation of BA is based on the follow-

ing assumptions. (1) All bats use echolocation to sense distance, and they can accurately distin-

guish between prey and obstacles. (2) Bats can automatically adjust the frequency and

emissivity of the pulses according to the proximity of the target. (3) It is assumed that the loud-

ness changes from a maximum value to a fixed minimum value.

The frequency, velocity and position values of each bat can be calculated as

fi ¼ fmin þ ðfmax � fminÞ � b; ð1Þ

PLOS ONE Mobile robot path planning with reformative bat algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0276577 November 4, 2022 3 / 22

https://doi.org/10.1371/journal.pone.0276577


vti ¼ v
t� 1
i þ ðx

t
i � x

�Þ � fi; ð2Þ

xti ¼ x
t� 1
i þ v

t
i ; ð3Þ

where fmax and fmin are the maximum and minimum values of the search pulse frequency,

respectively; β 2 [0, 1] is a uniformly distributed random number; x� indicates the optimal

position of all current bats.

For the local search stage, a new result is performed in accordance with the following:

xnew ¼ xold þ �At; ð4Þ

where xold is the current best solution, xnew is the new solution generated after the local search;

� 2 [−1, 1] is a random number; At is the average loudness of all bats at iteration t.
The iterative equations for loudness Ai and pulse emissivity ri are expressed as follows:

Atþ1
i ¼ aA

t
i ; ð5Þ

rtþ1
i ¼ r

0
i � ½1 � exp ð� gtÞ�; ð6Þ

where α and γ are constants; r0i is the initial pulse emissivity. For any 0< α< 1 and γ> 0, we

have Ati ! 0, rti ! r
0
i , as t! +1.

The pseudo code of BA is listed in Algorithm 1. As can be seen from Algorithm 1, the pulse

emissivity ri controls whether BA can perform local search, and the loudness Ai determines the

local search performance of BA. Furthermore, according to Eqs (5) and (6), it is distinct that

the loudness attenuation coefficient α and the pulse emission enhancement coefficient γ play a

vital role in the iterative process of loudness and pulse emissivity, respectively. Therefore, in

order to effectively coordinate the balance between exploration and exploitation and improve

the local search capability of BA, it is necessary to reasonably choose the loudness attenuation

coefficient and the pulse emission enhancement coefficient. In this paper, Q-learning is

employed to tackle this issue. The details will be given in ‘Parameters preselection’.

Q-learning

Q-learning is a trial and error learning method, whose purpose is to learn optimal strategies to

accumulate rewards, so as to maximize the Q-value. The Q-value is updated as follows:

Qðst; atÞ  ð1 � mÞQðst; atÞ þ m½reðst; atÞ þ Zmax
atþ1

Qðstþ1; atþ1Þ�; ð7Þ

where re(st, at) is an immediate reward; η is a discount factor; μ is the learning rate, which con-

trols the learning speed. Within a certain range of values, the larger the μ, the faster the

convergence.

In this paper, greedy strategy is chosen as action selection strategy. The greedy strategy, as

the name implies, aims to select the action that maximizes the Q-value. The relevant equation

is expressed as

at ¼ arg max
at
Qðst; atÞ: ð8Þ
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Reformative bat algorithm (RBA)

As mentioned in ‘Introduction’, BA has both advantages and challenges. Thus, in this section,

the RBA is proposed to address the corresponding challenges and significantly improve the

BA. On the one hand, the Doppler effect, chaotic map and dynamic disturbance coefficient are

utilized to assist RBA to avoid premature convergence and weaken the limitation of local opti-

mum. On the other hand, by means of Q-learning, RBA can effectively solve the challenges of

BA caused by the poor coordination between loudness attenuation coefficient and pulse emis-

sion enhancement coefficient.

Algorithm 1 Pseudo code of BA.
Determine the fitness function fit(x), x = (x1, x2, � � �, xd)

T;
Generate bat population xi (i = 1, 2, � � �, m) and initial velocity vi
(i = 1, 2, � � �, m);
Define pulse frequency fi at xi;
Initialize values for pulse emissivity ri and loudness Ai;
while t � Tmax do
Adjust frequency by Eq (1);
Update velocities by Eq (2);
Update positions by Eq (3);
if rand > ri then
Select a best position;
Generate a local position by Eq (4);

end
if rand < Ai and fit(xi) > fit(x�) then
Accept the new position;
Update Ai by Eq (5);
Update ri by Eq (6);

end
Find the current best x�;
if target is reached or stop condition is met then
break;

end
end
Show the results

Doppler effect

According to Eq (1), we can intuitively see that the frequency update of BA has a strong ran-

domness, resulting in the planned path is not smooth enough, and premature convergence

may occur. Consequently, the Doppler effect is introduced to ameliorate the frequency update

of BA. The improved frequency calculation formula is expressed as

fi ¼ fmin þ ðfmax � fminÞ � xi; ð9Þ

xi ¼
v� vti
v� vs

� �

� x0; ð10Þ

where ξi is the observation frequency, ξ0 is the original emission frequency of the emission

source (target); v is the velocity of wave propagation; vti is the movement velocity of the

observer (robot), if the observer is close to the emission source, the operator in front is “+”,

otherwise it is “-”; vs is the movement velocity of the emission source, if the emission source is

close to the observer, the operator in front is “-”, otherwise it is “+”.

In the light of Eq (10), we can discover that in the Doppler effect, the frequency will change

as the distance between the robot and the target changes. Hence, the robot can adaptively
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compensate for the Doppler effect during the movement, and then regulate the velocity by

adaptively adjusting the frequency, thereby avoiding premature convergence.

Improved model for velocity and position

In RBA, the velocity and position values can be updated as

vti ¼ v
t� 1
i þ s � ðx

t
i � x

�Þ � fi; ð11Þ

s ¼ st ¼ z � sin ðp � st� 1Þ; st 2 ð0; 1Þ; t ¼ 1; 2; � � � ;Tmax; ð12Þ

xti ¼ o � x
t� 1
i þ v

t
i ; ð13Þ

o ¼ 1 � sin
pt

2 � Tmax

� �

þ t � betarndðÞ: ð14Þ

The standard BA uses Eq (3) to update the position, in which the calculation of vti is insepa-

rable from xti � x
�. Hence, when conducting the global search, BA is directly constrained by

xti � x
�, and it is easy to fall into local optima. In response to this problem, the attenuation

coefficient σ is introduced in Eq (12). Since chaotic map has the merits of ergodicity, non-

repeatability and sensitivity, we select chaotic map to update σ, where z 2 (0, 1) is a constant

and t represents the current iteration number. Based on Eq (12), it is evident that the value

range of σ always belongs to (0, 1). Therefore, the limitation of local optimum is reduced. In

addition, the dynamic disturbance coefficient ω is put forward as shown in Eq (14), where τ is

the disturbance deviation factor and betarnd() is a random number obeying the beta distribu-

tion. The dynamic disturbance coefficient ω decreases adaptively with the increase of the num-

ber of iterations. Consequently, in the early stage, the dynamic disturbance coefficient ω has a

large disturbance to the position update, which is conducive to expanding the search scope of

bats. In the later stage, the dynamic disturbance coefficient ω reduces the disturbance to the

position update, which is beneficial to the stability of the algorithm. Through many experi-

ments, the constant z and the disturbance deviation factor τ are set to 0.5 and 0.1, respectively.

Parameters preselection

In BA, the quality of optimization results is determined by loudness attenuation coefficient α
and pulse emission enhancement coefficient γ. If the above parameters are not properly coor-

dinated, the convergence speed of BA will be affected, making it difficult to ensure the path

planning effect. Therefore, in the local search phase, Q-learning is applied to preselect the opti-

mal combinations of the above parameters to ameliorate the optimization effect of BA. The rel-

evant idea is displayed in Fig 1.

In Fig 1, < α, γ> set is composed of the loudness attenuation coefficient α and the pulse

emission enhancement coefficient γ, and a< α, γ> combination corresponds to an action in

Q-learning. Xi(t) is defined as the position of the ith bat at iteration t. Moreover, Ri(t) is the fit-

ness function value of the bat at position Xi(t), which is defined as the state of Q-learning. The

combination of BA and Q-learning can be described as selecting the optimal combination <

α0, γ0 > from the< α, γ> set according to Eq (8) when the state is Ri(t). In BA, the optimal

combination < α0, γ0 > is utilized to obtain the next position Xi(t + 1) of the bat, and then the

Q-value of the next state Ri(t+ 1) is estimated. On the other hand, when the optimal action <

α0, γ0 > acts on the environment, the corresponding immediate reward re(Ri(t), < α0, γ0 >)

will be generated. The immediate reward is set to the difference between the fitness function
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values of the bats in successive iterations. The related equation is executed as follows:

reðRiðtÞ; < a0; g0 >Þ ¼ fitðXiðt þ 1ÞÞ � fitðXiðtÞÞ ¼ Riðt þ 1Þ � RiðtÞ: ð15Þ

Finally, Q(Ri(t), <α0, γ0>) is updated in accordance with Eq (7).

Owing to the application of the Q-learning, in the local search phase, each bat position has

its corresponding optimal< α0, γ0 > combination, and all the information is saved in the Q-

table. In the implementation stage, RBA can directly select the optimal < α0, γ0 > combina-

tions from the Q-table, thus overcoming the defects of the standard BA due to the parameters

are not well coordinated.

Fitness function

In this paper, the fitness function is designed in the light of the following evaluation criteria.

(1) No collision with obstacles. (2) Achieve the shortest path length. The corresponding fitness

function is expressed as

fit ¼
1

L � ð1þ �p � lÞ
; ð16Þ

where L is the path length of the mobile robot from the starting point to the target point,

which conforms to Eq (17),

L ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxiþ1 � xiÞ
2
þ ðyiþ1 � yiÞ

2

q

: ð17Þ

�p is the penalty term used to exclude paths that collide with obstacles. The value of �p is set to

100. λ is the flag variable with an initial value of 0. The update process of λ is as follows:

for k = 1: nobs

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxx � xobskÞ
2
þ ðyy � yobskÞ

2

q

; ð18Þ

yk ¼ max 1 �
dk
robsk

; 0

� �

; ð19Þ

Fig 1. The combination of bat algorithm and Q-learning.

https://doi.org/10.1371/journal.pone.0276577.g001
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l ¼ lþmeanðykÞ: ð20Þ

end
Given that the robot has a certain volume, the obstacles are expanded to prevent the robot

from hitting the obstacles. nobs is the total number of obstacles. (xobsk, yobsk) and robsk are the

center coordinate and maximum influence radius of the kth expanded obstacle, respectively.

dk is the distance from the point on the path to the center coordinate of the obstacle. For λ, if

there is no collision between the robot and the obstacle, then λ = 0. However, if the robot col-

lides with the obstacle, λ is a positive number greater than 0. Hence, when the fitness function

fit reaches the maximum value, the shortest collision-free path can be obtained.

Implementation of RBA

After model improvement and parameters preselection, RBA will be implemented into path

planning. In the global search stage, the Doppler effect, attenuation coefficient and dynamic

disturbance coefficient are added to the RBA. Consequently, unlike standard BA, the fre-

quency, velocity and position values in RBA are updated according to Eqs (9)–(14). In the

local search stage, RBA can directly select the corresponding optimal <α0, γ0> combination

from the Q-table on the basis of the current position of the bat, which can significantly

improve the optimization performance of the algorithm.

The pseudo code of RBA is given in Algorithm 2.

Algorithm 2: Pseudo code of RBA.
Determine the fitness function fit(x), x = (x1, x2, � � �, xd)

T;
Generate bat population xi (i = 1, 2, � � �, m) and initial velocity vi
(i = 1, 2, � � �, m);
Define pulse frequency fi at xi;
Initialize values for pulse emissivity ri and loudness Ai;
while t � Tmax do
Adjust frequency by Eqs (9) and (10);
Update velocities by Eqs (11) and (12);
Update positions by Eqs (13) and (14);
if rand > ri then
Select a best position;
Select the optimal combination < α0, γ0 > from the Q-table;
Generate a local position by Eq (4);

end
if rand < Ai and fit(xi) > fit(x�) then
Accept the new position;
Update Ai by Eq (5);
Update ri by Eq (6);

end
Find the current best x�;
if target is reached or stop condition is met then
break;

end
end
Show the results

Complexity analysis of RBA

The time computational complexity of the proposed RBA can be expressed as O((T +M1) ×
(N +M2) × D), where T is the number of iterations, N is the population size, D is the dimen-

sion of the path planning problem to be addressed,M1 is the computation time of the
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attenuation coefficient σ and dynamic disturbance coefficient ω, andM2 indicates the compu-

tation time for the observation frequency ξi. For the original BA, its time computational com-

plexity can be described as O(T × N × D). From Eqs (10), (12) and (14), it is apparent that only

simple numerical operations are involved inM1 andM2. Hence, the time computational com-

plexity of the proposed RBA is only slightly increased compared to that of BA.

Simulation testing

Experimental setup

In order to verify the validity and feasibility of the proposed RBA, five classical swarm intelli-

gence optimization algorithms (PSO, BA, FA, TLBO and WOA), four PSO variants (BPSO,

PSO-DE, CMOPSO and SLPSO), and three BA variants (EBat, PTRBA and ARBA) are

selected to compare with RBA. To ensure the objectivity and fairness of the algorithm compar-

ison, all experiments are conducted in Windows 10 environment, using Intel(R) Core(TM)

i7–8750H 2.2GHz CPU and 8GB RAM, and all algorithms are implemented in MATLAB

R2018b. Two static maps of different complexity are constructed, in which the number of

obstacles is 9 and 13, respectively, as shown in Figs 5(a) and 9(a). The scale of both maps is

10 × 10, where the yellow square and green star are the starting point and the target point,

respectively. We run the proposed RBA and baseline algorithms 30 times on each map and cal-

culate the mean and standard deviation of the experimental results for comparison. The exper-

imental results include the path length planned by each algorithm and the iteration number

required by each algorithm to complete the path planning.

Based on previous researches, the key parameters of the above algorithms are fairly chosen

as follows. The population size and the maximum number of iterations are set to npop = 100

and Tmax = 100, respectively. For PSO, BPSO, PSO-DE, CMOPSO and SLPSO, inertia weight

and acceleration coefficients are selected as ω = 1 and c1 = c2 = 1.5, respectively. Especially, in

PSO-DE, scaling factor F = 0.5 and crossover rate CR = 0.5. For FA, randomization parameter

α = 0.5, light absorption coefficient γ = 1, highest attractiveness β0 = 2 and constantm = 2. In

BA, EBat, PTRBA and ARBA, the numerical settings of the loudness attenuation coefficient

and the pulse emission enhancement coefficient are the same, i.e. α = γ = 0.9. Different from

BA, EBat, PTRBA and ARBA, RBA selects the optimal α and γ values from the Q-table.

Test case 1

The map used in test case 1 contains nine obstacles. The shortest collision-free path on this

map is shown in Fig 5(a), where (0, 0) is the starting point, (8, 10) is the target point, and the

optimal path length is approximately 13.1716.

Comparison with classical algorithms. Five classical optimization algorithms are com-

pared with our approach to demonstrate the superiority of the proposed RBA. In order to

objectively analyze the performance of the algorithms and avoid contingency, each algorithm

runs 30 times on the map. After 180 experiments, the experimental results are shown in Fig 2.

In the 30 experiments of each algorithm, RBA realizes the optimal path 28 times, PSO realizes

the optimal path 17 times, BA realizes the optimal path 26 times, FA realizes the optimal path

16 times, TLBO realizes the optimal path 30 times, and WOA realizes the optimal path 20

times. Consequently, the success rates of the above algorithms are 93.33%, 56.67%, 86.67%,

53.33%, 100%, and 66.67%, respectively.

For an in-depth understanding of the distribution of the experimental data in Fig 2, the

mean and standard deviation of the relevant data are listed in Table 1. According to Fig 2(a)

and Table 1, the path length data curve of TLBO is very stable. This is because in 30 experi-

ments, TLBO has planned the optimal path every time, which also confirms that TLBO has the
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best ability to search for the global optimum. Excluding TLBO algorithm, among the remain-

ing algorithms, it is clear that RBA has better performance compared with other algorithms,

and its path length data curve shows relatively small fluctuations. In the light of Table 1, it is

obvious that the average path length of RBA is 13.3019, and the standard deviation of the path

length is only 0.1913. In terms of the number of iterations, as can be seen intuitively from Fig

2(b) and Table 1, the average number of iterations required for PSO to accomplish the path

planning is the least, which is 12.43. The second is RBA, with an average number of iterations

of 13.2. Although PSO can fulfill the path planning quickly, it has the defect that it is easy to

fall into the local optima and cannot plan the optimal path effectively. This can be verified

Fig 2. Experimental results of six algorithms in test case 1. (a) Path length. (b) Iteration number.

https://doi.org/10.1371/journal.pone.0276577.g002

Table 1. Performance comparison between RBA and classical optimization algorithms in test case 1.

Algorithm RBA PSO BA FA TLBO WOA

Average Path Length 13.3019 13.4432 13.3805 13.4543 13.1762 13.5402

Standard Deviation of Path Length 0.1913 0.3391 0.2654 0.3386 0.0373 0.3905

Average Iteration Number 13.2 12.43 21.87 19.6 31.8 36.67

Standard Deviation of Iteration Number 6.6974 4.0402 10.7663 9.9848 12.7344 9.4989

https://doi.org/10.1371/journal.pone.0276577.t001
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from the optimal path planning success rate, Fig 2(a) and Table 1. Relative to the excellent per-

formance in path length, TLBO does not perform satisfactorily in the number of iterations. In

30 experiments, the average number of iterations of TLBO is 31.8, and the standard deviation

of the number of iterations is as high as 12.7344.

Furthermore, under the same experiment, the path planning results of the six algorithms

are displayed in Fig 5(b). It is obvious that PSO, BA and FA are all trapped in local optima, and

only RBA, TLBO and WOA plan the shortest path. Among them, in order to complete the

optimal path planning, TLBO requires 8 iterations, WOA requires 60 iterations, while RBA

only requires 5 iterations. Therefore, contrasted with the classical optimization algorithms,

RBA can achieve the optimal path planning in a relatively short time, and the success rate can

reach 93.33%, which demonstrates that RBA has the merits of rapid optimization speed and

good optimization effect.

Comparison with PSO variants. In order to compare the path planning effects of RBA

and PSO variants, 150 experiments are fulfilled, and the related experimental results are

exhibited in Fig 3. In the 30 experiments of each algorithm, RBA realizes the optimal path 28

times, BPSO realizes the optimal path 13 times, PSO-DE realizes the optimal path 23 times,

CMOPSO realizes the optimal path 22 times, and SLPSO realizes the optimal path 27 times.

Fig 3. Experimental results of five algorithms in test case 1. (a) Path length. (b) Iteration number.

https://doi.org/10.1371/journal.pone.0276577.g003
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Consequently, the success rates of the above algorithms are 93.33%, 43.33%, 76.67%, 73.33%,

and 90%, respectively. On the basis of the success rate of each algorithm, it is obvious that in

addition to SLPSO, other PSO variants have relatively poor performance and are prone to fall

into local optimum, making it difficult to achieve optimal path planning.

To clearly analyze the experimental data in Fig 3, the mean and standard deviation of the

corresponding data are shown in Table 2. It can be seen intuitively from Table 2 that the aver-

age path length of the five algorithms is roughly the same, while RBA has the smallest standard

deviation of path length, which indicates that RBA has a more stable path planning effect. In

terms of the number of iterations, RBA achieves the smallest mean and standard deviation val-

ues, which means that RBA can accomplish optimal path planning faster than PSO variants.

Moreover, under the same experiment, the path planning results of the five algorithms are

exhibited in Fig 5(c). Obviously, except BPSO, other algorithms plan the shortest path, among

which, PSO-DE requires 9 iterations, CMOPSO requires 49 iterations, SLPSO requires 16 iter-

ations, while RBA only requires 4 iterations.

Comparison with BA variants. To finish the performance comparison between RBA and

other novel BA variants, we collate 120 experimental data in Fig 4 and present the mean and

standard deviation of the relevant data in Table 3. In the 30 experiments of each algorithm,

RBA realizes the optimal path 28 times, ARBA realizes the optimal path 27 times, PTRBA real-

izes the optimal path 17 times, and EBat realizes the optimal path 28 times. Consequently, the

success rates of the above algorithms are 93.33%, 90%, 56.67%, and 93.33%, respectively. Based

on Fig 4 and Table 3, it is distinct that the path planning effect of PTRBA is relatively poor. In

our opinion, this is because the tangent random exploration mechanism is applied in the local

search phase of PTRBA, which replaces � in Eq (4). The tangent random exploration mecha-

nism is represented as tan(π � (ξ − 0.5)), where ξ is a random number belonging to [0, 1].

When the value of ξ approaches 0 or 1, the value of the tangent function approaches infinity.

Therefore, in the iterative process of PTRBA, the phenomenon that the value of the tangent

function is too large may occur, which influences the stability of the algorithm and reduces the

path planning effect. For ARBA and EBat, their optimization performance is roughly the same

and better than that of PTRBA. Compared with the aforementioned BA variants, RBA has

more excellent path planning effects, not only in the path length but also in the number of iter-

ations, thus verifying the superiority of RBA.

Besides, under the same experiment, the path planning results of the four algorithms are

displayed in Fig 5(d). As the above analysis of the shortcomings of PTRBA, although PTRBA

converges quickly, it plans a relatively long path and has poor optimization effect. In contrast

with PTRBA, other algorithms plan the shortest path, among which, ARBA requires 40 itera-

tions, EBat requires 50 iterations, while RBA only requires 9 iterations.

Test case 2

In order to further demonstrate the superiority of RBA, a more complex map is used in test

case 2, which contains thirteen obstacles. The shortest collision-free path on this map is drawn

Table 2. Performance comparison between RBA and PSO variants in test case 1.

Algorithm RBA BPSO PSO-DE CMOPSO SLPSO

Average Path Length 13.3019 13.5662 13.3084 13.413 13.2171

Standard Deviation of Path Length 0.1913 0.3808 0.2787 0.3445 0.2003

Average Iteration Number 13.2 15.5 16.1333 18.8 19.4667

Standard Deviation of Iteration Number 6.6974 14.0755 9.8811 15.4661 18.2204

https://doi.org/10.1371/journal.pone.0276577.t002
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in Fig 9(a), where (0, 0) is the starting point, (8, 10) is the target point, and the optimal path

length is approximately 13.1966.

Comparison with classical algorithms. In the comparison experiment between RBA and

five classical optimization algorithms, after 180 experiments, the experimental results are

shown in Fig 6. In addition, the mean and standard deviation of the related experimental

results are listed in Table 4. In the 30 experiments of each algorithm, RBA realizes the optimal

path 27 times, PSO realizes the optimal path 16 times, BA realizes the optimal path 24 times,

FA realizes the optimal path 16 times, TLBO realizes the optimal path 29 times, and WOA real-

izes the optimal path 18 times. Consequently, the success rates of the above algorithms are

Fig 4. Experimental results of four algorithms in test case 1. (a) Path length. (b) Iteration number.

https://doi.org/10.1371/journal.pone.0276577.g004

Table 3. Performance comparison between RBA and BA variants in test case 1.

Algorithm RBA ARBA PTRBA EBat

Average Path Length 13.3019 13.3313 13.6544 13.3442

Standard Deviation of Path Length 0.1913 0.2325 0.4308 0.2124

Average Iteration Number 13.2 19.37 27.03 18.13

Standard Deviation of Iteration Number 6.6974 7.757 8.3438 7.3472

https://doi.org/10.1371/journal.pone.0276577.t003
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90%, 53.33%, 80%, 53.33%, 96.67%, and 60%, respectively. For RBA, compared to the results of

test case 1, the performance is slightly decreased. The probability of realizing the optimal path

is reduced by 3.33%.

On the basis of Table 4, it is clear that the average path length of RBA is 13.3436, and the

standard deviation of the path length is 0.2469. Excluding TLBO algorithm, the RBA performs

better than other algorithms. In terms of the number of iterations, PSO and FA can accomplish

the path planning task faster than RBA. However, they are difficult to achieve the optimal path

planning, and the success rate of optimal path planning is relatively low. Moreover, under the

same experiment, the path planning results of the six algorithms are depicted in Fig 9(b). It is

distinct that only RBA, BA, and TLBO fulfill the shortest path planning. Among them, in

order to implement the optimal path, BA requires 10 iterations, TLBO requires 27 iterations,

while RBA only requires 8 iterations. Thus, contrasted with classical optimization algorithms,

RBA has good overall performance, not only achieves good path planning effect, but also has

satisfactory robustness.

Comparison with PSO variants. To compare the optimization performance of RBA and

PSO variants, 120 experiments are conducted and the experimental data are presented in Fig

7. In the 30 experiments of each algorithm, RBA realizes the optimal path 27 times, BPSO real-

izes the optimal path 12 times, PSO-DE realizes the optimal path 18 times, CMOPSO realizes

the optimal path 18 times, and SLPSO realizes the optimal path 20 times. Consequently, the

success rates of the above algorithms are 90%, 40%, 60%, 60%, and 66.67%, respectively. For

Fig 5. The path planning results in the test case 1 and the number of iterations of all algorithms when the path is

implemented. (a) Optimal path. (b) Iteration curves of RBA and classical algorithms. (c) Iteration curves of RBA and

PSO variants. (d) Iteration curves of RBA and BA variants.

https://doi.org/10.1371/journal.pone.0276577.g005
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PSO-DE, CMOPSO and SLPSO, the performance is significantly degraded compared to the

results in test case 1. The success rates of the three algorithms are reduced by 16.67%, 13.33%,

and 23.33%, respectively.

The mean and standard deviation of the experimental results in Fig 7 are exhibited in

Table 5. It can be seen from Fig 7 and Table 5 that in terms of the number of iterations, in

addition to CMOPSO, BPSO, PSO-DE and SLPSO can complete the path planning faster than

RBA. Nevertheless, in the light of the success rate and path length results, PSO variants, espe-

cially BPSO and CMOPSO, have unsatisfactory global optimization performance and are

prone to fall into local optima. Besides, under the same experiment, the path planning results

Fig 6. Experimental results of six algorithms in test case 2. (a) Path length. (b) Iteration number.

https://doi.org/10.1371/journal.pone.0276577.g006

Table 4. Performance comparison between RBA and classical optimization algorithms in test case 2.

Algorithm RBA PSO BA FA TLBO WOA

Average Path Length 13.3436 13.436 13.4159 13.4352 13.2287 13.6005

Standard Deviation of Path Length 0.2469 0.3111 0.3819 0.3281 0.1603 0.5077

Average Iteration Number 19.9 13.97 26.83 14.83 30.5 35.8

Standard Deviation of Iteration Number 6.5303 3.0904 12.0146 6.1928 10.7855 11.1213

https://doi.org/10.1371/journal.pone.0276577.t004
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of the five algorithms are depicted in Fig 9(c). It is clear that only RBA and SLPSO accomplish

the shortest path, among which, SLPSO requires 14 iterations, while RBA only requires 7

iterations.

Comparison with BA variants. After 120 experiments, we collate the experimental results

of RBA and other state-of-the-art BA variants in Fig 8. Meanwhile, the mean and standard

deviation of the relevant experimental data are listed in Table 6. In the 30 experiments of each

algorithm, RBA realizes the optimal path 27 times, ARBA realizes the optimal path 25 times,

PTRBA realizes the optimal path 16 times, and EBat realizes the optimal path 25 times.

Fig 7. Experimental results of five algorithms in test case 2. (a) Path length. (b) Iteration number.

https://doi.org/10.1371/journal.pone.0276577.g007

Table 5. Performance comparison between RBA and PSO variants in test case 2.

Algorithm RBA BPSO PSO-DE CMOPSO SLPSO

Average Path Length 13.3436 13.6786 13.3749 13.9078 13.3586

Standard Deviation of Path Length 0.2469 0.8235 0.2692 1.3125 0.313

Average Iteration Number 19.9 9.3 9.87 21.23 17.7

Standard Deviation of Iteration Number 6.5303 3.153 4.1501 13.0481 9.1544

https://doi.org/10.1371/journal.pone.0276577.t005
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Consequently, the success rates of the above algorithms are 90%, 83.33%, 53.33%, and 83.33%,

respectively.

On the basis of Table 6, we can get that compared with the novel BA variants, RBA has bet-

ter path planning effect, not only in the path length but also in the number of iterations, which

further proves the superiority of RBA. Furthermore, under the same experiment, the path

planning results of the four algorithms are displayed in Fig 9(d). It is evident that only RBA

and EBat fulfill the shortest path planning, among which, EBat requires 71 iterations, while

RBA only requires 12 iterations.

Fig 8. Experimental results of four algorithms in test case 2. (a) Path length. (b) Iteration number.

https://doi.org/10.1371/journal.pone.0276577.g008

Table 6. Performance comparison between RBA and BA variants in test case 2.

Algorithm RBA ARBA PTRBA EBat

Average Path Length 13.3436 13.3984 13.703 13.4314

Standard Deviation of Path Length 0.2469 0.3278 0.4682 0.3699

Average Iteration Number 19.9 22.97 30.17 20.73

Standard Deviation of Iteration Number 6.5303 9.1594 10.2959 8.1238

https://doi.org/10.1371/journal.pone.0276577.t006
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After the above tests, the validity and superiority of RBA have been verified. With the

increase of environment complexity, the path planning effect of RBA is basically not influ-

enced, and the optimal path can be realized in a relatively short time. Simultaneously,

the robustness of RBA has also been proven, and it has good adaptability in complex

environments.

Real-world case

Except for the above simulation experiments, real-world experiments are carried out to verify

the real-time performance and effectiveness of our algorithm. The TurtleBot 2 mobile robot

equipped with SLAMTEC RPLIDAR A3 is adopted as the experimental platform. In addition,

the motion commands of the robot are generated by an IRU-K10 minicomputer with Ubuntu

16.04 and ROS Kinetic installed. The experimental environment map, robot localization

and robot path planning are implemented by ROS packages gmapping, amcl andmove_base,
respectively.

The real-world experimental results are depicted in Fig 10, where the black circle indicates

the robot, the green line is the global path of the robot planned by the proposed algorithm

RBA, and the green arrow cluster is the particle cloud, representing the robot pose estimated

by amcl. It is evident from Fig 10 that RBA can plan the global optimal path for the robot in

real time. Additionally, along this path, the robot can reach the target point safely and effi-

ciently, thus confirming the feasibility and validity of the proposed algorithm.

Fig 9. The path planning results in the test case 2 and the number of iterations of all algorithms when the path is

implemented. (a) Optimal path. (b) Iteration curves of RBA and classical algorithms. (c) Iteration curves of RBA and

PSO variants. (d) Iteration curves of RBA and BA variants.

https://doi.org/10.1371/journal.pone.0276577.g009
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Fig 10. Real-world robot navigation.

https://doi.org/10.1371/journal.pone.0276577.g010
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Conclusions and future work

In this study, a reformative BA is put forth and effectively addresses the mobile robot path

planning problem, mainly relying on the following contributions. First, the Doppler effect is

applied to frequency update to ameliorate RBA. When the robot is in motion, the Doppler

effect can be adaptively compensated to prevent the robot from prematurely converging. Sec-

ond, the chaotic map and dynamic disturbance coefficient are adopted in the velocity update

and position update respectively to weaken the limitation of local optimum and expand the

scope of global exploration. Third, Q-learning is integrated into RBA to make reasonable

choices for the loudness attenuation coefficient and the pulse emission enhancement coeffi-

cient to optimize the algorithm performance and improve the local exploitation capability.

Various simulation results verify the effectiveness and superiority of RBA. Compared with

other algorithms, RBA has good comprehensive performance in path planning tasks. Further-

more, as the complexity of the environment increases, RBA exhibits superior robustness, and

has the merits of fewer iterations, high success rate and high efficiency. Ultimately, real-world

experimental results demonstrate that RBA can accomplish the global optimal path planning

in real time, and along the optimal path, the robot can reach the target safely and efficiently.

Nevertheless, our work encompasses the following limitations. On the one hand, only the

path planning problem in static scenes is considered, while the influence of dynamic obstacles

is ignored. On the other hand, only the single-objective optimization problem is solved, while

the multi-objective optimization situation is not comprehensively taken into account. There-

fore, based on the above defects, in future work, we will comprehensively consider constraints

such as path length, collision risk degree and path smoothness to address the path planning

issue of mobile robots in static and dynamic environments.

Supporting information

S1 Data. Code and data. This file provides the relevant code for Test case 1 and Test case 2, as

well as the experimental data for Figs 2–4 and 6–8.
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