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A biochemically-interpretable machine learning
classifier for microbial GWAS

Erol S. Kavvas® ', Laurence Yang?, Jonathan M. Monk® ', David Heckmann® ' & Bernhard O. Palsson® 3™

Current machine learning classifiers have successfully been applied to whole-genome
sequencing data to identify genetic determinants of antimicrobial resistance (AMR), but they
lack causal interpretation. Here we present a metabolic model-based machine learning
classifier, named Metabolic Allele Classifier (MAC), that uses flux balance analysis to esti-
mate the biochemical effects of alleles. We apply the MAC to a dataset of 1595 drug-tested
Mycobacterium tuberculosis strains and show that MACs predict AMR phenotypes with
accuracy on par with mechanism-agnostic machine learning models (isoniazid AUC = 0.93)
while enabling a biochemical interpretation of the genotype-phenotype map. Interpretation of
MACs for three antibiotics (pyrazinamide, para-aminosalicylic acid, and isoniazid) recapi-
tulates known AMR mechanisms and suggest a biochemical basis for how the identified
alleles cause AMR. Extending flux balance analysis to identify accurate sequence classifiers
thus contributes mechanistic insights to GWAS, a field thus far dominated by mechanism-

agnostic results.
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ARTICLE

ycobacterium tuberculosis (TB) claims 1.6 million lives

annually and resists eradication through evolution of

antimicrobial resistance (AMR)!. To elucidate AMR
mechanisms, researchers have applied machine learning
approaches to large-scale genome sequencing and drug-testing
datasets for identifying genetic determinants of AMR?~7. While
current machine learning approaches have provided a predictive
tool for microbial genome-wide association studies (GWAS),
such black-box models are incapable of mechanistically inter-
preting genetic associations. Such a limitation has become
increasingly apparent in TB, where numerous experimental stu-
dies have shown that AMR-associated genetic variants often
reflect network-level metabolic adaptations to antibiotic-induced
selection pressures (Supplementary Fig. 1, Supplementary
Table 1)3-12. These studies show that identified genetic associa-
tions have corresponding network-level associations that are
highly informative of AMR mechanisms. However, current
GWAS results only provide predictions for which alleles are most
important, not their functional effects. Therefore, machine
learning models that incorporate biochemical network structure
may naturally extend GWAS results by estimating functional
effects of identified alleles, leading to an enhanced understanding
of AMRI3-15,

Over the past couple of decades, the computational analysis of
biochemical networks in microorganisms has been advanced
through the use of genome-scale models (GEMs)!%17, By com-
puting metabolic flux states (see Glossary for definition of terms)
consistent with imposed biological constraints, GEMs have been
shown to predict a range of cellular functions, making them a
valuable tool for analyzing multi-omics datasets!8. Although
GEMs are transparent genotype-phenotype models, they are
largely outperformed by machine learning models in direct
comparisons of prediction accuracy. Approaches have thus been
developed that integrate meaningful GEM computations with
predictive black-box machine learning to enable white-box
interpretations of datal®. These approaches have worked well
for endogenous metabolomics data by using the GEM to directly
transform the measurements to meaningful inputs for black box
machine learning.

This approach, however, may not be amenable to analyzing
microbial GWAS data, in which the genetic parameters of the
GEM are not directly observed (see Supplementary Notes). GEMs
have previously modeled genetic variation at the resolution of
gene presence-absence?0-23, but have not yet been used to link
nucleotide-level genetic variation (i.e., alleles) to observed phe-
notypes (i.e., AMR) in a predictive manner?4. Since alleles are the
primary forms of causal variation identified in GWAS, an
approach for mechanistically integrating information about
alleles is of major interest?>.

Here we develop a GEM-based machine learning framework
for modeling datasets used in GWAS and apply it to a sequencing
dataset of drug-tested TB strains. We show that our framework
achieves high performance in accurately classifying AMR phe-
notypes of TB strains. We then characterize the identified clas-
sifiers for pyrazinamide, isoniazid, and para-aminosalicylic acid
AMR and show that they identify key genetic determinants and
pathway activity discriminating between resistant and susceptible
TB strains. This work demonstrates how GEMs can be used
directly as an input-output machine learning model to extract
both genetic and biochemical network-level insights from
microbial GWAS datasets.

Results
Assessing  AMR mechanisms motivates metabolic model
approach. We first set out to assess the scope of a potential

mechanism-based genotype-phenotype map using a dataset of
1595 drug-tested TB strains>2¢ and a GEM of TB H37Rv, named
iEK1011%7. The acquired genetic variant matrix (G) of the
1595 strains describes 3739 protein-coding genes and their 12,762
allelic variants, where each variant is defined as a unique amino
acid sequence for the protein coding gene. Our analysis therefore
does not account for synonymous amino acid changes and
intergenic genetic variants. The corresponding drug susceptibility
status for a strain is described by a binary ‘susceptibility’ or
‘resistance’ phenotype to a particular antibiotic. iEK1011 accounts
for 1011 genes (26% of H37Rv) and comprises a metabolic net-
work of 1229 reactions and 998 metabolites.

Comparing the gene list between iEK1011 and the genomics
dataset, we found that 26% (981/3739) of the total genes and 25%
(3310/12,762) of the total variants described by the genetic
variant matrix were accounted for by the GEM. To evaluate
iEK1011’s potential to model causal variants, we compiled a list of
AMR genes and compared this list to the gene list of iEK1011
(Supplementary Data 1; Methods). We found that 72% (32/44) of
known AMR genes are accounted for in iEK1011 (Supplementary
Table 1). In the case of six drugs (ethambutol, isoniazid, d-
cycloserine, para-aminosalicylic acid, ethionamide, and pyrazi-
namide), 87% (20/23) of their AMR genes were accounted for in
iEK1011. AMR genes not explicitly accounted for in iEK1011
were primarily related to DNA transcription (e.g., rpoB) and
transcriptional regulation (e.g., embR). The antibiotics rifampicin,
ofloxacin, and streptomycin do not have AMR genes accounted
for in iEK1011 and are therefore out of scope for our study.
Taken together, the abundance of AMR genes accounted for in
iEK1011 motivated a GEM-driven analysis of the TB AMR
dataset.

A flux balance framework for classifying microbial genomes.
While we have shown that a GEM accounts for the majority of
known genetic determinants of AMR in TB, computational
methods do not exist for integrating a fine-grained description of
allelic variation with GEMs to directly predict binary phenotypes
(i.e., AMR susceptible/resistant classification). We thus set out to
develop a GEM-based machine learning framework for analyzing
the TB dataset. The developed method, named Metabolic Allele
Classifier (MAC), takes the genome sequence of a particular TB
strain as its input and classifies strains as either resistant or
susceptible to a specific antibiotic (Fig. 1a). Specifically, the MAC
is an allele-parameterized form of flux balance analysis?®2° that
represents a strain as a set of allele-specific flux capacity con-
straints and classifies AMR according to the optimum value
attained by optimizing an antibiotic-specific objective.

We formulate the MAC within the flux balance analysis
framework as follows,

Hy, = sign(m‘?x cyTVk +b)

s. L

(Antibiotic-specific objective)

Sv, =0
W<y <yub

(Flux balance constraint)
(Over-all min/max flux constraints)

Ga® = v <y<v* = Ga**  (Allele-specific min/max flux constraints)

(1)
Where each line of the MAC formulation in Eq. (1) is briefly
described with plain text to the right, and further detailed by the
correspondingly ordered bullet points below;

e H,; is the sign of the MAC optimum value that classifies a
strain, k, as either resistant (R) or susceptible (S) to a specific
antibiotic, y (see Supplementary Notes for comparison
between the MAC and the Support Vector Machine). The

optimum value is determined by optimizing the objective
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Fig. 1 A metabolic systems approach for genetic associations. a In this study, data describing TB genome sequences and AMR data types are integrated
with a metabolic model to learn a biochemically-interpretable classifier, named Metabolic Allele Classifier (MAC). The MAC parameters consist of allele-
specific flux capacity constraints, a, and an antibiotic-specific metabolic objective, ¢, both of which are inferred from the data. b The optimal MAC describes
strain-specific polytopes in flux space that separate into resistant (R) and susceptible (S) regions. The MAC objective function, cTv, is identified as normal
to the plane that best separates R and S. € The learned MAC provides a biochemically-based hypothesis of AMR mechanisms and allele-specific effects
through interpretation of ¢ and v. The genome-scale flux state of a strain, v, consists of fluxes that are directly activated by alleles (allelic fluxes) and those
that are flux-balance consequences of the allele-activated fluxes (compensatory fluxes). Abbreviations: S, susceptible; R, resistant; AMR, antimicrobial

resistance.

function, max cTyvk, which describes a linear combination of
the metabolic fluxes, v, and is specific to an antibiotic, y. The
antibiotic-specific objective coefficients, ¢,T, are unknown a-
priori and inferred from the data as a normal to the plane that
best separates resistant and susceptible strains (Fig. 1b).

e The classical flux-balance constraints, Sv, = 0, ensure that for
each strain, k, the net mass flux through each of their
metabolites is balanced to 0 (i.e., steady internal homeostatic
state), where S is the stoichiometric matrix with 998
metabolites (rows) and 1229 reactions (columns).

e The constraints on the fluxes (reaction rates) through the
metabolic reactions, ¥¥##b, describe the overall min/max flux
constraints not changed by allelic variation and are thus the
same for all strains. Geometrically, the constraints vIb>#0 and
Svi = 0 define a polytope in which all strain-specific fluxes
must reside (Fig. 1b).

e The binary genetic variant matrix, Gg;, is the primary data
type used in GWAS and describes the presence/absence of i
alleles (columns) across k strains (rows).

e The constraints, Gk,,-a,-,jlb’“b = vk,jlb’“b, represent the genome
sequence of each strain (represented as a row in G) as a set of
allele-specific flux constraints, v ;/#b. The allele-constraint
matrix, alb4b, describes the allele-specific flux constraint
values of i alleles (rows) that encode for enzymes catalyzing j

reactions (columns) (see Supplementary Notes for further
explanation on the biological relationship between alleles and
flux constraints). The allele-constraint matrix is unknown a-
priori and inferred from the data. Geometrically, Ga describes
strain-specific polytopes that represent the best separation of
resistant and susceptible strains within the overall flux space
(Fig. 1b).

Importantly, the MAC was formulated such that for each
strain-antibiotic classification, H,,, there exists a corresponding
flux state, v, thereby providing a biochemical network explana-
tion of the classification. Geometrically, the flux state of the
metabolic network of a particular strain is described by the
intersection of the objective function with its genome-specific
polytope (Fig. 1c).

The objective function corresponds to the fluxes through a set
of metabolic reactions that form the basis for the MAC. By the
fundamental nature of flux balancing, these reactions identify
activity levels of discriminating pathways. The objective function
that best separates the two polytopes formed by the spaces of
resistant and sensitive phenotypes is a plane that describes a
critical level of pathway activity that discriminates between the R
and S phenotypes. Thus, the separating plane consists of fluxes
that are directly activated by alleles (c; # 0) and those that result
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Fig. 2 Validation of metabolic allele classifiers. a Receiver operator characteristic (ROC) curves for MAC AMR predictions determined using a test set of
1188 isoniazid-tested strains. b Histogram of median absolute MAC objective function coefficients (cyT) for pyrazinamide, para-aminosalicylic acid, and
isoniazid MACs. The reaction variables corresponding to the two largest coefficients are noted in text. The reaction variable corresponding to the primary
genetic determinant is colored pink. Abbreviations: AUC, area under the curve.

from flux-balance consequences of ¢; # 0. Statistical tests can then
be performed using the set of all strain-specific intersections to
identify both significant flux states discriminating between
resistant and susceptible strains (Supplementary Fig. 2a) as well
as their underlying allele-specific flux effects (Supplementary
Fig. 2b). The MAC is therefore a biochemically interpretable
machine learning classifier.

Validation of metabolic allele classifiers. We utilized rando-
mized sampling, machine learning, and model selection to
identify predictive MACs (see Supplementary Fig. 4-5, Meth-
ods, and Supplementary Notes for further details of the process
outlined below). Specifically, the MACs were trained on the
same 375 strains to predict antibiotic phenotypes with
1220 strains set aside for testing. Since the computational cost
of estimating MACs scales poorly with the number of alleles
utilized, we limited the set of alleles modeled by the MAC to
237, describing 107 genes consisting of both known and
unknown relations to AMR (Supplementary Data 1). The
known AMR genes provide validation cases while the unknown
genes enable novel insights.

We assessed MACs for isoniazid, rifampicin, pyrazinamide,
ethambutol, and ethionamide using held out test sets and find
that the MACs generally achieve high classification performance
(Fig. 2a), with scores similar to our previous mechanism-agnostic
machine learning models?. The MACs were further validated by
assessing their ability to recover the primary AMR genes. We find
that the largest objective weights for pyrazinamide, para-
aminosalicylic acid, and isoniazid MACs correspond to the
primary known AMR genes of antibiotics (Fig. 2b). These results
show that the MAC performs on par with state-of-the-art
machine learning approaches in AMR classification and identi-
fication of primary AMR genes.

MAGC:s reveal known and new antibiotic resistance determi-
nants. The ability of MACs to efficiently predict AMR phenotypes
(i.e., high accuracy, low complexity) suggests that the model
parameters have biological relevance. Furthermore, in contrast to
black-box machine learning models, the genotype-phenotype map
of a MAC was designed to satisfy known biological constraints on
metabolism e.g., reaction stoichiometry, mass conservation, gene-
product-reaction encoding, nutrient environment. Therefore, we
hypothesized that MACs should not only identify genetic deter-
minants of AMR, but also provide metabolic systems explanations
of their predictions.

Below, we focus our analysis on three case studies: pyrazina-
mide, para-aminosalicylic acid, and isoniazid AMR. These three
antibiotics were chosen due to having both characterized and
uncharacterized mechanisms underlying their associated alleles,
allowing for both test cases and novel insights for the MAC. We
analyze the best MACs for each antibiotic through four steps: (i)
identification of significant fluxes discriminating between resis-
tant and susceptible strains (ie., flux GWAS), (ii) pathway
enrichments of significant fluxes, (iii) identification of key allelic
flux effects, and (iv) network-level flux tracing of allelic effects
(Methods).

MAC:s for pyrazinamide resistance. To identify key flux states
discriminating between resistant and susceptible strains, we per-
formed statistical associations between the strain-specific MAC
fluxes, v, and pyrazinamide AMR phenotypes using the training
set of 77 strains (52 resistant, 25 susceptible) (we refer to this as
Flux GWAS, see Fig. 1d). Flux GWAS identified 25 significant
reaction fluxes (Bonferroni corrected P <4.66 x 105, 0.05/1073
reactions) whose gene-protein reaction rules overlapped with 8
genes modeled by MAC alleles (pncA, ansP2, fadD26, ppsA, and
drrABC) (Supplementary Fig. 7a; Supplementary Data 3).
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Fig. 3 Characterization of pyrazinamide MACs. a Horizontal bar plots of pathways enriched with significant pyrazinamide-associated fluxes with FDR <
0.05. b Boxplots of pncA, ansP2, and ppsA allele-specific fluxes for the reactions catalyzed by their gene-products. Alleles are rank ordered from least to
greatest by their log odds ratio (LOR), from left to right. The boxes are colored according to the allele LOR, where positive corresponds to resistant (R)
dominant while negative corresponds to susceptible (S) dominant. The box shows the quartiles of the dataset with the median noted as the horizontal line
while the whiskers extend to show the rest of the points with outliers colored gray. The R-squared and P-value for the regression between allele LOR and
flux is noted. See Supplementary Data 3 for list of mutations per allele. € Clustered heatmap of allele LOR-flux correlations between genes (y-axis) and
significant reactions fluxes (x-axis). d Pathway depiction of nicotinate and nicotinamide metabolism and phthiocerol biosynthesis with objective variables
plotted. Coenzyme-A generation from L-asparagine through aspartate decarboxylase (ASPTA) and citrate synthase (CS) is also depicted. Traced allelic

effects are shown as dashed lines and colored for pncA, ansP2, and ppsA.

To gain a coarse systems view of the 25 significant fluxes, we
performed pathway enrichment tests using a curated gene-
pathway annotation list consisting of both BioCyc?® and KEGG
pathways®! that accounts for 32% of protein-coding genes in the
H37Rv genome (1254/3906) (Supplementary Data 2; Methods).
Of the 245 total pathways, 5 were enriched with significant fluxes
with less than 5% false discovery rate (FDR < 0.05)32 and were
primarily described by phthiocerol biosynthesis and nicotinate
and nicotinamide metabolism (Fig. 3a). These results recapitulate
two pyrazinamide features describing flux variation in nicotina-
midase activity’®> and phthiocerol dimycocerosate (PDIM)
biosynthesis!?

We then set out to understand the genetic basis for the flux
associations by identifying loci in which the AMR association of
each allele was correlated with their flux distribution (LOR-flux
correlation) (see Methods). The idea here is that resistant alleles
have different metabolic effects than susceptible alleles for key
genes. These allele-specific flux differences underlie the AMR

| (2020)11:2580 | https://doi.org/10.1038/s41467-020-1

classification accuracy of the MAC. We identified significant
LOR-flux correlations at pncA, ansP2, and ppsA loci (FDR < 0.05)
(Fig. 3b). Specifically, the MACs infer a flux decreasing selection
pressure at the pncA locus and flux increasing selection pressures
at the ansP2 and ppsA loci. The estimated decreased enzymatic
activity of pncA is consistent with studies describing resistant
pncA mutants as loss of function3?, Mutations in ppsA have
previously been linked to pyrazinamide AMR!? and convergent
AMR evolution® while ansP2 mutants have not yet been
associated with AMR.

To understand the global effects of pncA, ppsA, and ansP2 alleles
on the metabolic network, we traced out their LOR-flux correlation
through the 25 significant reactions (Fig. 3c). For ansP2, we
observe that the increased generation of L-asparagine by the
resistant ansP2 allele was utilized to generate coenzyme A (CoA)
through aspartate aminotransferase (ASPTA) and citrate synthase
(CS) (Fig. 3d), which recapitulates experimental studies describing
L-aspartate-based modulation of CoA as a pyrazinamide resistance
5
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mechanism!2, However, our results differ from that of the proposed
panD-based pantothenate route for CoA generation3¢-38, The lack
of pyrazinamide-associated panD alleles in our dataset may
underlie this discrepancy.

In summary, pyrazinamide MACs correctly identify pncA and
ppsA alleles as major genetic determinants and recapitulate
nicotinamide metabolism, CoA biosynthesis, and phthiocerol
metabolism as key metabolic associations!>3*. As for new
hypothesis, the MACs implicate ansP2 mutants in resistance
through L-aspartate-based modulation of the coenzyme-A pool.

MACs for Para-aminosalicylic acid resistance. We performed
flux GWAS using the para-aminosalicylic acid training set of
375 strains (80 resistant, 295 susceptible) and identified 52 fluxes
discriminating between resistant and susceptible strains (Bonfer-
roni corrected P <4.66 x 107>, 0.05/1073 reactions) (Supplemen-
tary Fig. 7b, Supplementary Data 4). Of these 52 reactions, 10 were
directly encoded by MAC alleles of 8 genes (thyA, katG, pncA,
alar, cysK2, ald, fadE26, aspB, kdg, and inhA). Pathway enrich-
ment tests of these 52 reactions identified S-adenosyl-L-methio-
nine cycle II, NAD de novo biosynthesis I (from aspartate), and
cysteine and methionine metabolism as key para-aminosalicylic
acid pathways (FDR < 0.05) (Fig. 4a). The identification of cysteine
and methionine metabolism recapitulates known metabolic effects
of para-aminosalicylic acid®.

We tested these genes for allelic LOR-flux correlations and
identified selection pressures at thyA, cysK2, alr, pncA, and
fadD26 loci (FDR<0.05, R2>0.1) (Fig. 4b). Specifically, the
MAC: infer flux decreasing selection pressures at the thyA, cysK2,
pncA, and fadD26 loci and a flux increasing selection pressure at
the alr locus. The estimated decreased enzymatic activity of thyA
resistant alleles is consistent with experimental studies describing
thyA resistant mutants as loss of function®40, The identification
of alr and pncA—known determinants of cycloserine and
pyrazinamide, respectively—reflect the co-resistance of these
strains and are not known to have selective pressure in para-
aminosalicylic acid treatment. Of these genes, only cysK2 encodes
an enzyme in cysteine and methionine pathway and has not been
previously linked to AMR.

We traced out the allelic LOR-flux correlation of c¢ysK2 through
cysteine and methionine pathway flux and found that their effects
positively correlated with fadD26 alleles and negatively with thyA,
alr, and pncA alleles (Fig. 4c). Resistant cysK2 alleles are estimated
to lead to increased flux through O-succinylhomoserine (SHSL2r)
and cystathionine beta-synthase (CYSTS). The effect of cysK2
decreases from SHSL2r to CYSTS at the r-homocysteine flux
balance node, which implicates r-homocysteine modulation as
the cysK2 selection pressure (Fig. 4d). Notably, .-homocysteine
was experimentally identified as the most differentially perturbed
metabolite resulting from para-aminosalicylic acid treatment3®.

In summary, para-aminosalicylic acid MACs recover thyA as
the primary genetic determinant and recapitulate cysteine and
methionine metabolism as a major pathway induced by the drug.
As for novel hypothesis, the MACs implicate deleterious cysK2
mutants in resistance through modulation of r-homocysteine that
may either arise from deleterious thyA mutants or para-
aminosalicylic acid treatment.

MAC:s for isoniazid resistance. We performed flux GWAS using
the isoniazid training set of 375 strains (248 resistant, 127 sus-
ceptible) and identified 160 significant fluxes (Bonferroni cor-
rected P<4.66x 107>, 0.05/1073 reactions) (Supplementary
Fig. 7¢, Supplementary Data 5). We find that only 11.3% (18/160)
of the significant fluxes were catalyzed by gene-products of the
MAC alleles. Pathway enrichments of the 160 significant fluxes

identified TCA cycle V, oxidative phosphorylation, superpathway
of mycolate biosynthesis, and gluconeogenesis I as key isoniazid
pathways (FDR < 0.05) (Fig. 5a). These results are consistent with
numerous studies demonstrating TCA and oxidative phosphor-
ylation as key TB pathways altered by isoniazid treatment*!-43
and studies generally linking antibiotic efficacy to these path-
ways#%, In general, we found that resistant strains were char-
acterized by decreased respiratory activity, which is consistent
with studies connecting decreased respiration to increased iso-
niazid resistance?2. The genes encoding enzymes in these enri-
ched pathways correspond to known (inhA, fabD, kasA, accD6,
fadE24, ndh) and unknown (accD5, nuoL, gpdA2) genetic deter-
minants of isoniazid resistance; however, none of these encoded
for reactions annotated with TCA cycle V.

We tested the significant fluxes for allelic LOR-flux correlations
and identified selection pressures at katG, ndh, nuoL, accD6,
gpdA2, fabD, kasA, and accD5 loci (FDR<0.05) (Fig. 5b).
Specifically, the MACs infer flux decreasing selection pressures
at the ndh, nuoL, fabD, gpdA2, and kasA loci and a flux increasing
selection pressure at the katG, accD6, and accD5 locus
(MCOATA is depicted in reverse direction). The resulting
increased CAT flux observed in resistant strains is consistent
with studies describing the majority of resistance-conferring
katG alleles in clinical isolates as preserving catalase-peroxidase
activity while disabling isoniazid binding (i.e., strains carrying
susceptible-dominant katG alleles have low catalase-peroxidase
flux due to isoniazid binding)4>4°. The increased flux towards
mycolic acid biosynthesis in resistant strains by fabD, accD6, and
kasA is consistent with studies showing increased expression of
these genes resulting from isoniazid treatment?’. Furthermore,
the metabolite acted on by these genes, malonyl-CoA, has
recently been shown to have a significant fold change in response
to 16 antibiotics in TBS.

We traced out significant LOR-flux correlations of these genes
through the enriched pathways to elucidate their global network
effects (Fig. 5¢). For the novel genetic determinants, nuoL and
gpdA2, we find that their alleles have significant flux effects in
cytochrome bd oxidase reactions (CYTBD, CYTBD2) traced
through menaquinone and ubiquinone flux balance nodes,
respectively (Fig. 5d). The allelic effects of the primary genetic
determinant, katG, are similarly traced through cytochrome bd
oxidase flux by oxygen. The importance of cytochrome bd
oxidase has recently been linked to isoniazid*!. These results
implicate gpdA2 and nuoLl mutants in isoniazid AMR through
modulation of quinone/menaquinone pools.

In summary, isoniazid MACs recover the primary (katG) and
secondary (inhA, fabD, kasA, accD6, fadE24, ndh) genetic
determinants and recapitulate oxidative phosphorylation, TCA,
and mycolic acid biosynthesis as major pathways induced by the
drug#1-43. As for novel genetic hypothesis, the MACs implicate
gpdA2 and nuoL mutants in resistance through modulation of
menaquinone and ubiquinone that may either arise from katG
mutants or isoniazid-induced oxidative stress.

Conventional pathway analyses do not recapitulate mechan-
isms. To assess how MAC results compare to mechanism-
agnostic approaches, we performed conventional pathway ana-
lysis of the 197 alleles (Supplementary Data 6, Methods). Com-
parison of pathway-based analysis showed that results derived
from conventional pathway enrichments do not recapitulate the
antibiotic mechanisms for isoniazid, pyrazinamide, and para-
aminosalicylic acid. For isoniazid, a total of five pathways were
enriched (FDR < 0.05); however, the significant allelic associations
enriched in pathways were simply those annotated for katG, such
as superoxide radicals degradation and tryptophan metabolism.
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Fig. 4 Characterization of para-aminosalicylic acid MACs. a Horizontal bar plots of pathways enriched with significant para-aminosalicylic acid-associated
fluxes with FDR < 0.05. b Boxplots of thyA, cysK2, alr, pncA, and fadD26 allele-specific fluxes for the reactions catalyzed by their gene-products. Alleles are
rank ordered from least to greatest by their log odds ratio (LOR), from left to right. The boxes are colored according to the allele LOR, where positive
corresponds to resistant (R) dominant while negative corresponds to susceptible (S) dominant. The box shows the quartiles of the dataset with the median
noted as the horizontal line while the whiskers extend to show the rest of the points with outliers colored gray. The R-squared and P-value for the
regression between allele LOR and flux is noted. See Supplementary Data 4 for list of mutations per allele. ¢ Clustered heatmap of allele LOR-flux
correlations for significant reactions in cysteine and methionine metabolism. d Pathway depiction of cysteine and methionine metabolism and one carbon
pool by folate. Significant allelic effects are shown by dashed lines and colored for thyA and cysk2.

For para-aminosalicylic acid, L-alanine biosynthesis I was the only
enriched pathway while no pathway was enriched for pyr-
azinamide alleles (FDR < 0.05).

These results show that flux balance constraints are required to
generate meaningful network-level hypotheses for identified
genetic associations. The basis for this advancement is that flux
balances represent how the entirety of metabolic gene products
come together to produce balanced homeostatic states.

Discussion

We have developed a computational framework for analyzing
data sets (comprised of genotypes and binary phenotypes) using a
genome-scale model (GEM) to identify the genetic and metabolic

basis for TB AMR (Fig. 1a). The identification of the underlying
biochemical mechanisms is reflected in the MAC. We first discuss
our approach, emphasizing key design choices, and then describe
the results it generates when applied to the TB dataset.

The outcome of the MAC depends on two major design
choices: the set of alleles and the objective function that optimally
separates strains into resistant and sensitive strain cohorts in the
overall metabolic flux space. Although our approach does not
explicitly require prior knowledge of key AMR genes, we chose a
set of alleles with just over 100 genes with known and implicated
AMR relations in order to both provide test cases and to address
the combinatorial explosion of sampling possible allelic effects.
Relaxing the current computational bottleneck in identifying
MAC:s will enable the utilization of all alleles. For determining the
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objective function, our approach was based on the key insight
that a linear program may behave as a machine learning classifier
if its objective optimizes in the direction normal to a predictive
classification plane. While we utilized PCA, L1-logistic regression,
and the BIC metric to identify sparse linear objectives, there are
potentially alternative avenues that could be taken. The major
concept that should sustain in any model selection strategy is that
a good model is simple (in structure) yet accurate (in its pre-
dictions). Application of the MAC to other GWAS datasets may
therefore benefit from tuning these parameters appropriately.

The MAC advances current GWAS machine learning
approaches by enabling a biochemical interpretation of genetic
associations. Although advancements have been made to increase
the explainability of black-box machine learning models**—>1,
such interpretations are limited by the lack of mechanistic
knowledge incorporated in the model. We show that causal
biochemical explanations for classifications can be derived by
constraining a machine learning classifier to satisfy knowledge-
based biological constraints (gene function, reaction stoichio-
metry, flux balance, etc).

Our interpretation of MACs for pyrazinamide, para-
aminosalicylic acid, and isoniazid AMR identified genome-scale
flux states and key pathways discriminating resistant and sus-
ceptible strains. Notably, we found the MAC-identified pathways
to be consistent with known antibiotic mechanisms. In contrast,
conventional pathway analysis using only alleles was unable to
recapitulate known pathway mechanisms. The MAC therefore
provides a mechanistic approach for pathway-based analysis of
genome-wide associations®2.

Dissection of the allele-specific fluxes underlying the significant
fluxes further clarified the genotype-phenotype map and provided
hypotheses regarding specific allelic effects. For example, pyr-
azinamide MACs implicate an ansP2 allele as a novel resistance
determinant through increased uptake of asparagine towards L-
aspartate-based CoA generation. The MAC thus extends allele-
phenotype associations (i.e., LOR) by estimating allele-specific
flux effects and their network interactions.

Taken together, the framework presented here meets the
pressing need to integrate comprehensive biochemical mechan-
isms for the analysis of genomics-phenomics datasets. Our
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framework both recovers known gene-AMR relations and pro-
vides novel insights regarding their metabolic basis. As genome
sequences, phenotypes, and genome-scale network reconstruc-
tions of microbes continue to grow in size and scope, similar
results to those presented here are likely to appear in the coming
years. This initial development of an FBA based GWAS analysis
(FBA-GWAS) is likely to continue the development of a
mechanistic basis into future GWAS methods.

Methods

Characteristics of utilized datasets. The TB AMR datasets utilized in this study
were acquired from a previous study that performed machine learning and protein
structure analysis. References describing this data set are provided in the supple-
mentary information of the previous study?. The dataset was initially acquired
from the PATRIC database?®. The sequencing and phenotypic testing data for these
strains were generated at the Broad Institute. Additional information for these
sequencing projects can be found at the Broad Institute website for the TB Anti-
biotic Resistance Catalog (TB-ARC).

Curation and functional assessment of TB AMR genes. A list of known and
implicated TB AMR genes was curated for 8 antibiotics (isoniazid, rifampicin,
ethambutol, pyrazinamide, ofloxacin, d-cycloserine, para-aminosalicylic acid) using
a combination of databases?, experimental studies, and computational
studies>3>>4>>, Experimental studies on allele-specific effects for these AMR genes
were curated utilizing a previous study performing 3D structural mutation map-
ping? and functional annotation from UNIPROT®C. The lists of known and
implicated TB AMR genes and mutational effects are provided (Supplementary
Data 1).

Modification of base genome-scale model. We performed minor modifications
to the base genome-scale model, iEK1011, in order to use it for the MAC. Speci-
fically, we performed quality-assurance and quality check (QA/QC) by removing
blocked reactions (i.e., cannot carry any flux) and imposing maximum and
minimum allowable flux constraints on the model determined by Loopless Flux
Variability Analysis (LFVA)>7-8. Before FVA-derived constraints were imposed,
we parameterized the exchange reactions according to the experimental nutrient
media for testing AMR phenotypes, Middlebrook 7H10 (m7H10). Specifically, the
LFVA simulations were constrained to have a biomass flux of at least 10% of its
maximum value, and the total flux was bounded from above by 1.5 times the
minimum total flux determined by parsimonious flux balance analysis®®. The code
for initializing the base genome-scale model is provided in the code repository.

Discretization of flux solution space for allelic effects. We determined the set of
potential constraints imposed by an allele through discretization of the flux solu-
tion space. Following QA/QC, the flux solution space was sampled by Markov-
Chain Monte-carlo sampling®®®!, resulting in a probability distribution for each
reaction flux. The solution space can then be discretized by first splitting the flux
space in half at the mean flux. The upper bounds are then constructed by taking
equal intervals from the mean to the maximum upper flux. The lower bounds are
constructed similarly by setting them at equal intervals from the mean to the
minimum lower flux. Notably, this discretization of the sampled flux space into
upper and lower bound constraints requires the explicit definition of the total
number of potential constraints an allele can potentially be mapped to. Specifying
the set of constraints per allele determines the possible flux variation in the
population. The set of constraints per allele was chosen to be minimally sufficient
in our case, owing to the coarse resolution of the binary AMR phenotypes.
Increasing the number of constraints per allele provides a finer resolution of the
flux solution space, but comes at the cost of increasing the number of sampled
MAGCs. We tested variations of the discretization resolution and found that while
more constraints generally allow for the largest variety of variation, increasing the
number of potential constraints by a linear factor leads to an exponential increase
in the size of the solution space, requiring more samples. We found 4 to 10
constraints to be sufficient for generating popFVA states capable of explaining
observed phenotypic variation. All constraint-based modeling was performed using
the cobrapy package version 0.15.362,

Randomized sampling of allele-constraint map ensemble. Since knowledge of
allele-specific effects are unavailable, we generated an ensemble of landscapes
through randomized sampling of the allele-constraint map. Specifically, we gen-
erated an allele-constraint sample by sampling from each allele’s discretized con-
straint set. The constraint set per allele includes the no change option and has a
uniform probability distribution (i.e., each constraint has equal probability). An
allele-constraint map sample is thus derived from sampling each allele’s constraint
distribution for all alleles.

Estimation of MAC objective function. In order to identify the antibiotic-specific
objective functions for each MAC, we first comprehensively evaluated the meta-
bolic consequences of their allele-constraint map sample using a population
extension of Flux Variability Analysis (FVA)%3, named population FVA (popFVA).
The popFVA linear program is formulated as follows,

m‘;ax/ mvin Vi; (Maximize and minimize flux through all j reactions)
s.t.

Sv, =0

Vit <y <yt

(Flux balance constraint) (2)
(Over-all min/max flux constraints)

Ga' = Vo <y<y" = Ga"®  (Allele-specific min/max flux constraints)

Where G is the genetic variant matrix with k strains and i alleles, and where S is the
stoichiometric matrix. The matrices a? and a'® describe the mapping of alleles to
upper bound (ub) and lower bound (Ib) flux constraints, respectively (allele-con-
straint map). Optimizing the minimum and maximum flux through all allele-
catalyzed reactions represents our ignorance of the true evolutionary forces
underlying the dataset. Once popFVA is computed for the MAC allele-constraint
map, we then approximate the MAC linear objective using a series of steps
described below.

1. We first use principal component analysis (PCA) to decompose the popFVA
landscape, X, into a linear combination of two matrices, U (strains, PCA
components) and VT (popFVA features, PCA components) (e.g, X=1UV).
Prior to decomposition, X was first normalized using minmax scaling. PCA
was constrained to explain at least 90% of the total variation and
implemented using the pca function in the scikit-learn toolbox v.0.20.3%4.

2. The U matrix was then fit using L1-regularized logistic regression (LogReg)
to predict AMR phenotypes. Ll-regularized logistic regression was
implemented using the Logit function in the statsmodels package version
0.9.0% with parameters maxiter, disp, and alpha set to 1500, False, and 0.5,
respectively. An intercept was included for the regression model using the
add_intercept function in statsmodels. The process of using PCA with
regression is known as principal component regression (PCR).

3. To identify a linear programming objective from the PCR model, we make
the key observation that the PCR function is a linear function normal to the
decision boundary and has increasing/decreasing probability of classifying
strain as resistant as you go further from the decision boundary (i.e.,
probability is closer to 0.5 at boundary and closer to 0 or 1 as you go further
away). Therefore, the PCR function itself provides an ideal template for
identifying a linear programming objective. We expect that the MAC
predicts increasing or decreasing resistance as we maximize or minimize the
objective value. Since the MAC objective function operates on the flux space,
a series of mathematical transformations were taken to go from the PCR
popFVA model to the MAC objective function (ie., LogReg(PCA(FVA
fluxes) — LogReg(v)). We start with the PCA decomposition of the popFVA
fluxes (3)

PCA(FVA fluxes) — U = XZ (3)

Where X is the popFVA fluxes (strains, popFVA features), and U describes the
PCA components (strains, PCA components) and Z has shape (popFVA features,
PCA components). Fitting logistic regression to predict AMR using the PCA
components gives the following Eq. (4)

LogReg(PCA(FVA fluxes)) — Y = by + byu; + - - - + by (4)

Where u describes the k PCA components and b describes the LogReg coefficients.
From this, we transform back to FVA space using the following mapping (5)

x=uvz" (5)
Which leads to the new LogReg equation,
LogReg(FVA fluxes) — Y = by + ¢;x; + - - - + ¢, %, (6)

Where ¢, = 2{-{:1 z,,;b; for m popFVA variables and k PCA components. The ¢
values become the coefficients in the MAC objective function by representing the
Vmax POPFVA variables as Vi, ywara flux variables and V,;,, popFVA features as
Vieverse flux variables.

If the objective is a minimization, then it is converted to a maximization by
multiplying the objective function by —1.

Assessment of MAC quality and model selection. We used the Bayesian-
Information criterion (BIC) to assess the quality of each MAC sample. Specifically,
the BIC was derived from the PCR model used to infer the MAC objective. Since
the BIC value, by itself, is not interpretable, high-quality MACs were determined
according to their specific distance from the minimum BIC value, ABIC; (ie.,
ABIC; = 0 for minimum BIC model). We chose a ABIC; cutoff of 10, which is in
line with a rule of thumb that meaningful models (i.e., relatively high empirical
support) should have ABIC; < 10%.
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Flux GWAS. We performed statistical tests to identify MAC fluxes significantly
associated with AMR phenotypes. The goal was to determine which fluxes dif-
ferentiate resistant and susceptible strains. Specifically, we tested whether the
median scaled flux of a reaction was linearly correlated AMR phenotypes using an
ANOVA F-test implemented by the f_classif function in the scikit-learn toolbox
v.0.20.3%%. The strain-specific reaction fluxes per MAC were normalized to be
between zero and one using the MinMaxScaler function in the scikit-learn tool-
box%%. The set of significant reaction fluxes was determined by the Bonferroni-
corrected significance threshold set at P < 0.05/1073 = 4.66 x 10~>.

Pathway enrichments for significant fluxes. We identified metabolic pathways
enriched in significant AMR-associated fluxes through hypergeometric enrichment
tests using the scipy function hypergeom®”. The set of pathways was curated by
combining gene-pathway annotations using both BioCyc3® and KEGG3! pathway
annotations of TB genes. Pathways with 2 or less reactions were removed from the
list, leaving a total of 264 pathways. We identified significant pathways as having
less than 5% false discovery rate (FDR) correction by the Benjamini-Hochberg
method.

Statistical tests for allelic AMR and flux stratification. We tested the AMR-
based flux stratification of alleles by fitting a linear regression line between the allele
log odds ratio (LOR) and fluxes. Linear regression was implemented using the
linregress function in the scipy package. The LOR for each allele with respect to a
specific antibiotic was quantified as LOR = log;o((PR/PS)/(AR/AS)). PR, PS, AR,
and AS denote number of strains that have the allele and are resistant (PR), have
the allele and are susceptible (PS), do not have the allele and are resistant (AR), and
do not have the allele and are susceptible (AS), respectively. If any of the values
were 0, then 0.5 was added to each value to ensure a value when computing the
logarithm. The fluxes for each allele were defined as the set of fluxes in strains
containing that allele. We identified significant allelic LOR-flux correlations as
having less than 5% FDR by the Benjamini-Hochberg method.

Conventional pathway analysis of allelic variants. We identified metabolic
pathways enriched in the alleles of key AMR genes through hypergeometric
enrichment tests using the scipy function hypergeom and the gene-pathway
annotation list described above. We identified significant pathways as having less
than 5% false discovery rate (FDR) correction by the Benjamini-Hochberg method.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The TB AMR datasets utilized in this study were acquired from a previous study that
performed machine learning and protein structure analysis”. References describing this
data set are provided in the supplementary information of the previous study?. The
dataset was initially acquired from the PATRIC database°. The sequencing and
phenotypic testing data for these strains were generated at the Broad Institute. Additional
information for these sequencing projects can be found at the Broad Institute website for
the TB Antibiotic Resistance Catalog (TB-ARC).

Code availability
Code for MAC:s is available on GitHub (https://github.com/erolkavvas/metabolic-allele-
classifiers).
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