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Abstract

Economies are frequently affected by natural disasters and both domestic and overseas

financial crises. These events disrupt production and cause multiple other types of eco-

nomic losses, including negative impacts on the banking system. Understanding the trans-

mission mechanism that causes various negative second-order post-catastrophe effects is

crucial if policymakers are to develop more efficient recovery strategies. In this work, we

introduce a credit-based adaptive regional input-output (ARIO) model to analyse the effects

of disasters and crises on the supply chain and bank-firm credit networks. Using real Japa-

nese networks and the exogenous shocks of the 2008 Lehman Brothers bankruptcy and the

Great East Japan Earthquake (March 11, 2011), this paper aims to depict how these nega-

tive shocks propagate through the supply chain and affect the banking system. The credit-

based ARIO model is calibrated using Latin hypercube sampling and the design of experi-

ments procedure to reproduce the short-term (one-year) dynamics of the Japanese indus-

trial production index after the 2008 Lehman Brothers bankruptcy and the 2011 Great East

Japan earthquake. Then, through simulation experiments, we identify the chemical and

petroleum manufacturing and transport sectors as the most vulnerable Japanese industrial

sectors. Finally, the case of the 2011 Great East Japan Earthquake is simulated for Japa-

nese prefectures to understand differences among regions in terms of globally engendered

indirect economic losses. Tokyo and Osaka prefectures are the most vulnerable locations

because they hold greater concentrations of the above-mentioned vulnerable industrial

sectors.

Introduction

Economies are vulnerable to successive negative shocks, which could be a natural disaster,

such as Hurricane Katrina in the U.S. [1] or the 2011 Great East Japan Earthquake in Japan

(henceforth, the 2011 Great Earthquake) [2, 3], or an economic or financial crisis, such as the

2007-2008 financial crisis [4, 5] or the Japanese banking crisis [6].
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Natural disasters cause economic losses. Usually, it is straightforward to define the direct

losses from a disaster, as they are the immediate consequences of the disaster as defined in [7].

However, the shock of the initial damage leads to larger and longer term losses, as discussed in

[7], which are defined as indirect losses. The debate in economics over how to efficiently esti-

mate the indirect losses from a disaster remains unresolved. Indeed, due to the complexity of

the economic environment, it is difficult to quantify all indirect losses. Indirect losses may be

defined to include the modification of consumer behaviour after the disaster (such as their sav-

ing-consumption strategy), supply chain disruptions, stock market losses, increased bank

credit defaults, rising insurance costs, and a higher level of government expenditures.

Input-output (IO) models are one of the simplest measures of the indirect losses from a nat-

ural disaster [8]. The advantage of this approach is that it is modelled on inter-industry links

and the production network’s supply and demand structure. Thus, it could easily capture the

indirect losses due to the supply shortages. One application is the multi-regional input-output

model (MRIO) [9] to evaluate the global effects of a supply chain perturbation induced by a

disaster due to economic interdependence between different regions. A recent development is

the adaptive regional input-output (ARIO) model introduced in [10, 11]. In fact, compared to

the MRIO model, the ARIO model provides two main advantages: i) the ARIO model intro-

duces a temporal dynamics of the economic in the aftermath of a disaster; ii) the ARIO model

provides a highest resolution analysis at the firm level. However, the IO approach suffers from

rigidity, as it does not allow for the possibility of recovery or an adaptive strategy by agents,

which leads to overestimated indirect losses, as explained in [12]. To overcome this well-

known limitation of IO models, [13, 14] introduced an autonomous recovery mechanism for

firms in the production network after a disaster. These authors create a simulation with their

recovery-based ARIO model using the real production network of Japan (2011 data) and suc-

cessfully reproduce the dynamics of the value added (VA) of the Japanese economy in the

aftermath of the 2011 Great Earthquake.

The various versions of the ARIO framework assume that output losses result from inter-

rupted or disrupted production. As the World Economic Forum documents (https://www.

weforum.org/agenda/2014/08/natural-disasters-firm-activity-damage-banks), following the

2011 Great Earthquake, 36.5% of firms indicated that they were negatively affected by damage

experienced by their suppliers, and 44% stated that they were negatively affected by damage

experienced by their customers. Moreover, 11.4% of firms indicated that they were affected by

damage experienced by their major lender bank. [15] study the effect of the 1995 Great Han-

shin-Awaji earthquake in Japan and show that it weakened the financial capacity of borrowing

firms, which deteriorated banks’ loan portfolios (increasing non-performing loans, NPL) and

hence reduced their risk-taking capacity. The decline in banks’ lending capacity reduces credit

supply, which has a negative impact on borrowing firms’ activities, which is another indirect

effect of disasters that reduces the VA of the economy. [16] demonstrate that damage to firms

weakens the stability of U.S. banks and reduces their risk performance and credit supply. The

authors show that after disasters, banks suffer from higher NPL, a lower return on assets

(ROA), and lower equity ratios.

Financial crises are regarded as banking panics caused by liquidity or credit default prob-

lems, as described in [4]. In these cases, a domino effect may be observed via the credit defaults

of insolvent banks and the contraction of bank lending, which restricts firms’ financial

resources. Thus, firms reduce their production and may suffer unexpected losses (feedback

effect to the banking system); see [17]. Most research on financial crises examines the domino

effect of consecutive bankruptcies to measure the resilience of the economy. [18] consider an

artificial bipartite network of banks and bank assets and propose a cascading model that repro-

duces the bankruptcies of banks in the U.S. during the 2008 financial crisis. [19] improves on
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this cascading failure approach by considering a bank-firm bipartite network. The author

introduces nonlinear interactions between the financial and non-financial sectors. These

works consider firms or banks to be either healthy or bankrupt, which means that they fail to

measure the indirect losses suffered by the economy. In fact, losses during financial crises are

not only related to bankruptcies but can also be reflected in, for example, a reduction in firms’

production, an increased NPL rate, or reduced liquidity. In addition, some countries suffered

from the 2008 financial crisis without observing such failure cascades, although those econo-

mies did suffer from the systemic crisis. [20] asked why Japan was severely affected by the 2008

financial crisis despite its resilient banking system. The author’s answer is the high dependence

of Japanese industries on global trading networks and because Japan is the primary exporter

country to emerging Asian economies, which are the primary exporters of final goods to the

U.S. and Europe. Accordingly, the financial resources of Japanese firms were negatively

affected, which decreased their production capacity, affecting the production network. The

transmission channel from the external demand shock to the Japanese stock market and the

production network is discussed in [21]. Following the words of the author: ‘The damaging
impact of Japanese export decline to these advanced countries was also exacerbated by Japan’s
new trade structure that utilized a substantially regionalized production network’. Conse-

quently, the negative shock due to the 2008 financial crisis was neither a credit shock nor a

domestic banking bankruptcy shock in Japan. Therefore, the 2008 Lehman Brothers bank-

ruptcy could be considered an exogenous shock to the real supply chain in the Japanese

economy.

To the best of our knowledge, all existing models that simulate the spread of contagion treat

financial crises and natural disasters separately. In a contribution following the conference

titled Crises and Disasters: Measurement and Mitigation of their Human Costs, [22] discusses

several presented papers and highlights the need to examine the strategies adopted by agents

during crises and natural disasters and of exploring how public agencies can be more efficient

in protecting the wellbeing of households; see also [23] for further discussion of risk manage-

ment during financial crises and natural disasters. Therefore, the main contribution of this

work is that it builds a framework able to measure the indirect economic losses due to financial

crises and natural disasters.

This paper proposes a framework based on the ARIO model discussed in [11, 13, 14]. First,

we add the modelling of the Japanese credit market based on real bank-firm credit network

data, which allows the credit-based ARIO to measure the effect of an exogenous shock to real

production on the banking system. Second, we employ Latin hypercube sampling and the

design of experiments approach discussed in [24] to calibrate the parameters of the credit-

based ARIO model to the cases of the 2008 Lehman Brothers bankruptcy and the 2011 Great

Earthquake in Japan. Third, we specify the most vulnerable industrial sectors and the most vul-

nerable prefectures in Japan.

In the credit-based ARIO, production is represented by the supply chain network of listed

Japanese firms, where the weight of links represents the money flows of traded intermediate

goods between suppliers and customers. In the credit-based ARIO, a customer should pay its

suppliers when purchasing an intermediate good. Credit is represented by the bank-firm net-

work, where each firm has initial loans and deposits with its lending banks. Each firm has an

initial balance sheet that evolves following the dynamics of the credit-based ARIO model. A

firm purchases intermediate goods with its deposits or, if necessary, short-term bank loans,

produces goods following a linear production function, sells intermediate goods to its custom-

ers and final goods to households, and increases its bank deposits based on its profits. Follow-

ing a negative shock, a firm uses a recovery loan supplied by banks connected to the bank-firm

network for reconstruction or financial recovery, depending on the nature of the damage.
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Then, each firm continues its economic process as described previously. A negative shock is

modelled by an initial disruption of production. Then, the model measures the effect of the ini-

tial shock on the VA of the economy and on the banks’ ratios (NPL and liquidity).

Next section presents the production network of Japanese listed firms and the bank-firm

credit network. Then, we introduce the credit-based ARIO model and discuss its assumptions.

Thus, another section reports the model initialization, the simulation experiments, and the

model calibration using the design of experiments procedure and Latin hypercube sampling.

Therefore, we present the experimental simulation results. Finally, last section offers a discus-

sion, concluding remarks and directions for future research.

Real data and the modelled networks

We present real economic data captured after disaster events. Some of these data will be used

to calibrate our model. Then, we present the network data used in the credit-based ARIO

model.

The effects of the 2008 financial crisis and the 2011 Great Earthquake

Fig 1 shows the losses in terms of the index of industrial production (IIP) in Japan after the

2008 Lehman Brothers bankruptcy and the 2011 Great Earthquake. The two negative shocks

are reflected by an initial crash in production and a progressive recovery. We will attempt to

reproduce these IIP dynamics using our model. Fig 2 displays 4 ratios of Japanese banks from

1990 to 2012: ROA in Fig 2(a), the equity to assets ratio in Fig 2(b), profit and loss (PnL)

growth in Fig 2(c) and the provision for loan losses (PLL) to loans ratio in Fig 2(d). The evolu-

tion of these ratios indicates that during negative shocks (the Hanshin-Awaji earthquake, the

Japanese banking crisis, the dot-com crisis, the 2008 financial crisis and the 2011 Great Earth-

quake), Japanese banks became less stable, exhibiting a lower solvency ratio (Fig 2(b)) and

higher loan losses (Fig 2(d)). Moreover, their performance was much lower, as reflected by the

decreases in ROA and PnL growth, Fig 2(a) and 2(c). Fig 3(a) depicts the 1-year dynamics of

the PLL-to-loans ratio after the 2008 Lehman Brothers bankruptcy, and Fig 3(b) displays the

same statistics in the aftermath of the 2011 Great Earthquake. Both figures show a positive

effect on the PLL-to-loans ratio, which reflects higher expected NPL. This ratio increased by

Fig 1. The dynamics of the IIP of Japan after two negative shocks. Lehman Brothers bankruptcy in September 2008

and the 2011 Great Earthquake. The initial IIP is treated as the reference. Source: The Ministry of Economy, Trade and

Industry.

https://doi.org/10.1371/journal.pone.0239293.g001
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9.4% on average following the 2008 economic disaster and only 1.2% following the 2011 natu-

ral disaster, which also exhibited a faster recovery.

The data used in the credit-based ARIO model

Two networks are considered in the credit-based ARIO model: the production network

of Japanese listed firms and their corresponding bank-firm network. Fig 4 is a schematic

Fig 2. Some risk and performance ratios for Japanese banks from 1990 to 2012. Return on assets (ROA) in Fig 2(a), equity to assets ratio in Fig 2(b),

profit and loss (PnL) growth in Fig 2(c) and provision for loan losses (PLL) to loans ratio in Fig 2(d). All negative shocks are characterized by a higher

risk level for banks with lower performance. Source: Bank of Japan statistics.

https://doi.org/10.1371/journal.pone.0239293.g002

Fig 3. The dynamics of the provision for loan losses to loans ratio. The 2008 Lehman Brothers bankruptcy (a) and the 2011 Great Earthquake (b). The

grey line represents the level of NPL before the negative shock. Source: Bank of Japan statistics.

https://doi.org/10.1371/journal.pone.0239293.g003
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representation of the considered economy. In the following, we present the data and discuss

the initialization of the intermediate goods flows and firms’ balance sheets.

The Japanese production network consists of 1,247,521 firms and 5,488,484 distinct links

representing customer-supplier trading for the year 2016. Data are collected by Tokyo Shoko

Research (TSR), Inc., one of the leading credit research agencies in Japan, and are commer-

cially available. TSR collects information about the 24 major suppliers and clients of each firm

through questionnaires. However, the number of suppliers and customers of each firm is not

limited to 24 because large firms are designated by many other firms as suppliers or customers.

Each firm belongs to an industrial sector. We use the 190 basic sector classifications of the IO

tables for Japan in 2016 obtained from the Ministry of Economy, Trade, and Industry. Analysis

of the Japanese production network is discussed in several works, such as [25–30].

The other data set used here is the bank-firm network. It represents the lending-borrowing

relationships between listed Japanese firms and banks and their annual financial statements.

The data set is collected yearly by Nikkei Media Marketing, Inc. and is also commercially avail-

able. We use the 2016 bank-firm network and consider the subset of listed firms from the TSR

production network. Accordingly, the production network considered in the remainder of this

paper has 2,169 firms and 8,841 production trading links, while the considered bank-firm net-

work has 165 banks (including 88 listed banks), 2,169 firms and 18,535 lending-deposit links.

Although the number of listed firms is small compared to the total size of the production net-

work, they represent 22% of the total net sales of Japanese firms. A recent analysis of this net-

work is provided in [31].

The production network is initially unweighted, and the bank-firm network has informa-

tion about loans only (no information on deposits between individual firms and banks is avail-

able). Thus, based on the 2016 IO table for Japan and firms’ balance sheets, we calibrate the

initial weights of the model as described in the model validation section. A schematic represen-

tation of the data structure is given in Fig 16 of Appendix A.

The credit-based ARIO model

We first describe the model and discuss our assumptions. We then present the details of the

framework. The credit-based ARIO implementation is publicly available on Github (The

Fig 4. A schematic representation of the production network and the bank-firm network considered in the credit-

based ARIO. Links between firms in the production network are weighted by the amount of the daily trading flows of

intermediate goods Aij between firms i and j. Links between firms and banks are weighted by the daily amounts of

loans Lij,t and depositsDij,t between firm i and bank j.

https://doi.org/10.1371/journal.pone.0239293.g004
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framework can be tested with pretend data. Real data cannot be shared publicly. The credit-

based ARIO model is developed under C++ programming language. Github: https://github.

com/hazem2410/SNSE). For clarity, Fig 15 (Appendix A) shows a schematic representation of

the credit-based ARIO model associated with the different equations discussed hereafter.

Assumptions and model description

We assume a closed credit-based economy, where agents are firms, banks, and final consum-

ers. Several macroeconomic agent-based models (ABMs) assume, e.g., [33], that the absence of

a foreign market makes the model simpler and better able to focus on the spread of negative

shocks within the economy. To relax this assumption, we need to model the interactions with

foreign economies via international trade. This would capture the effects of local negative

shocks on net export activity.

The modelled economy has short-term dynamics (1 year). Thus, we assume that firms keep

their commercial partners identified in the real data from before the negative shock and that

banks keep their borrowing-lending links with their pre-shock clients. Therefore, firms and

banks do not create new connections within 1 year of a shock based on the fact that it is diffi-

cult to obtain new trade contracts during economic contractions with a lower level of solvency;

see [11]. Moreover, it is assumed in the short run that final consumers maintain the same level

of demand for final goods, which is supported by the empirical findings in [32]. This strong

assumption should be relaxed to extend the model for the mid- and longer-term impact.

Each firm produces a specific product defined by its industrial sector, i.e., firms from same

industrial sectors produce the same intermediate goods. Firm i initially produces Pini,i using

intermediate goods Aij from all its suppliers j. Customer i in the production network purchases

a quantity of intermediate goods Aij on day t from its suppliers j. Then, customer i pays each of

its suppliers j the amount Aij. Customer i pays its obligations to its suppliers out of its total

deposits; see Eq 26. If deposits cannot cover production expenses, customer i seeks a short-

term loan from its banks.

For simplicity and without loss of generality, we suppose that banks are only risk managers,

as in [33]. Indeed, our model focuses only on the effects of loan supply and the possible impact

of negative shocks on credit default. Thus, banks are homogeneous in their behaviour and are

not asset-liability optimizers, i.e., they do not attempt to optimize their credit portfolios. In

addition, because we focus only on the supply of loans, the credit market between firms and

banks is the only modelled financial market in the economy. Thus, no interbank market is

considered, and no central bank is represented in the model. Because of the latter assumption,

our model cannot capture the contagion effects between banks, as in the case of a financial cri-

sis (see [34]), which could lead it to underestimate or overestimate the indirect losses related to

exogenous negative shocks. However, because we are studying the short-run dynamics post-

economic shock on the production network, we could assume that the contagion effect

between banks will be delayed in time. Consequently, the absence of an interbank market will

not significantly change the conclusions in this framework. To study longer-term economic

dynamics, this assumption should be relaxed in future development of the model.

Firm production after a negative shock

The production process is given as follows: demand for intermediate goods, production pro-

cess, trading, and inventory dynamics.

Demand for intermediate goods. At the beginning of day t, regardless of whether the

economy has been damaged by a shock, each firm i desires a quantity of each intermediate
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good from its different suppliers j. As introduced in [11], the desired quantity is given by:

Qdij;t ¼ Aij �
PRi;t� 1

Pini;i
þ

1

t
� ni � Aij �

PRi;t� 1

Pini;i
� Sij;t

 !

ð1Þ

Eq 1 has the following interpretation: Sij,t is the inventory held by firm i of the intermediate

good produced by firm j on day t. Firm i seeks to maintain a level of inventory that allows the

utilization of good j for ni days. Firms use a very simple forecasting rule, i.e., production at

time t is predicted to be equal to the realized production at time t − 1 denoted by PRi;t� 1
. Accord-

ingly, firm i demands consumption of product j as the fraction
PRi;t� 1

Pini;i
(fraction between realized

and initial production) from its initial input level Aij. Demand is adjusted by the current level

of inventory Sij,t and the objective level of inventory, which depends on the number of days

ni. The gap between the current and the target inventory is filled gradually by the ratio 1/τ.
QDi;t ¼

P
jQ

d
ij;t is the aggregate of goods desired by firm i on day t.

Production process. We assume that the full production capacity of firm i over one year

cannot exceed its initial production Pini,i. Accordingly, as in [11], the production capacity of

firm i on day t is defined as:

Pci;t ¼ ð1 � di;tÞ � Pini;i ð2Þ

δi,0 represents the direct damage that affects firm i. Direct damage can be physical damage

or financial damage. After a natural disaster, damaged firms suffer from the destruction of

buildings, machines, and so forth, which is considered physical damage. During a financial

crisis, firms face constrained financial resources, which reduces their production capacity.

Although Japanese banks were resilient after the 2008 Lehman Brothers bankruptcy, Japanese

firms’ production suffered, as explained in [20]. We assume that δi,0 is the same for all directly

affected firms. However, the dynamics of δi,t depend on the recovery capacity of the company,

as will be explained below.

The inventory of intermediate good s held by firm i on day t is given by:

Ssi;t ¼
X

j2Nsi

Sij;t ð3Þ

Ns
i is the set of suppliers of firm i that produce product s. In addition, the initial input of the

intermediate good s is given by:

Asi ¼
X

j2Nsi

Aij ð4Þ

Therefore, the production of firm i on day t could be limited by the available quantity of

product s, which models the indirect effect after the negative shock due to the shortage of sup-

ply given by:

Psi;t ¼
Ssi;t
Asi
� Pini;i ð5Þ
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Thus, the maximum production based on inventories of products si used by firm i is given

by:

Pmax
i;t ¼ minðPci;t;min

si
ðPsii;tÞÞ ð6Þ

Furthermore, a firm does not produce more than the demand it receives from its customers

and final consumers. Final consumers demand a constant aggregate quantity Ci. Then, the

total received demand is given by:

Qri;t ¼ Ci þ
X

j

Qdji;t: ð7Þ

Finally, the production of firm i on day t is defined by:

Pi;t ¼ minðPmax
i;t ;Q

r
i;tÞ ð8Þ

Trading process. At each day t, firms engage in trade. Suppliers sell intermediate goods,

and customers pay their obligations.

Selling and rationing. When received demand Qri;t (see Eq 7) is equal to production Pi,t,
supplier i can satisfy all of its client demand. Otherwise, if Qri;t > Pi;t, supplier i needs to ration

goods. We follow the algorithm introduced by [13, 14].

First, supplier i calculates the ratio of pre-to-post negative shock orders for each client j
rj;t ¼ Qdji;t=Aji; note that this ratio remains 1 for final consumers. The minimum of the calcu-

lated ratios rmin
j;t is applied to all received demand Qri;t. If the new aggregate demand remains

greater than the remaining production capacity, supplier i shares its product equally among all

its clients. Otherwise, supplier i begins by satisfying the demand of all its clients following rmin
j;t .

Then, the ratio of each client j is updated, r�j;t ¼ rj;t � r
min
j;t , and the same procedure is applied

until the remaining production capacity is equal to 0. At the end of the rationing procedure,

firm i defines the effective realized demand Q�ji;t and C�i . Then, the possible total sales are given

as follows:

Yei;t ¼ Pi;t ¼ C
�
i þ

X

j

Q�ji;t ð9Þ

Payment process and inventory dynamics. Following the improvement of the ARIO

model described in [11, 13, 14], we propose including additional indirect economic losses due

to the demand shortage effect. If the total deposits of customer i, Di,t, are greater than its total

realized goods, Q�i;t ¼
P

jQ
�
ij;t, trading is completed. Otherwise, customer i seeks a short-term

loan from its banks to cover its funding needs, as will be explained in greater detail below.

If the customer secures bank lending, it can pay its suppliers, and therefore it purchases all

demanded goods. Otherwise, the customer should re-define its demand based on its current

deposits. Because products are inelastic substitutes, the customer reduces the quantity of all its

demanded goods by an equal amount. Let us assume that mQi;t ¼ ðQ�i;t � Di;tÞ=Q
�
i;t. The final

obtained goods j are given as QFij;t ¼ m
Q
i;t � Q�ij;t. We assume that final consumers are always

able to meet their obligations and do not need loans. This could be justified by the empirical

findings of [32], who show that households keep their level of consumption during a crisis and

are not affected by a shortage in the loan supply because they rely on drawing down liquid

assets. This strong assumption is motivated by the short-run dynamics of the model. However,

it should be relaxed to extend the model for longer-term dynamics. Consequently, the effective
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realized sales by supplier j are given by:

Yj;t ¼ Yej;t �
X

i

ðQ�ij;t � Q
F
ij;tÞ ð10Þ

Finally, the inventory of product j in firm i evolves as follows:

Sij;tþ1 ¼ Sij;t þ QFij;t � Aij �
Pi;t
Pini;i

ð11Þ

The VA generated by each firm is equal to the difference between the used goods and the

realized sales. Thus, the VA of the economy is given by:

VAt ¼
X

i

Yi;t �
X

j

Aij �
Pi;t
Pini;i

" #

ð12Þ

Short-term bank lending

Each firm imay seek a loan from its banks depending on its demand Q�i;t and its current

deposit level Di,t. If deposits cannot cover its expenses, firm i seeks a total amount of short-

term loans given by:

Ldi;t ¼ Q
�
i;t � Di;t ð13Þ

The demanded loan Ldi;t is divided equally among all its banks from the bank-firm network,

i.e., for simplicity, we assume that bank-firm relationships are homogeneous. All short-term

loans have the same maturity Ts. We further assume that all banks apply the same interest rate

given by:

rsi;t ¼ ð1 �
Yi;t
Pini;i
Þ � r ð14Þ

r is the market interest rate and is assumed to be constant, r = 1%. Following Eq 11, in the

pre-shock situation, Yi,t = Pini,i, loans are supplied at a 0 interest rate. In an analysis of the

short-term lending market, [35] confirms that the interest rate elasticity of loan demand is sig-

nificant. Thus, we expect that the interest rate increases when demand for loans increases. In

the credit-based ARIO model, when firms face greater damage and lower sales Yi,t, their depos-

its decrease because of their lower profits. Thus, these firms increase their loan demand.

Accordingly, based on Eq 13, when sales decrease, loan demand and the interest rate on short-

term loans both increase. In addition, Eq 14 reflects that the banks in our model follow risk-

based pricing for the interest rate, as discussed in [36]. In fact, the more strongly affected firms

have lower production, generate less profit and have higher risk of default, which increases the

interest rate pricing based on Eq 14.

Banks have access to the financial statements of their clients, which is reflected by the lever-

age ratio calculated as in [33]:

li;t ¼
Ldi;t þ Li;t� 1

Ei;t� 1 þ Ldi;t þ Li;t� 1

ð15Þ

The leverage ratio is used as a proxy to evaluate the risk level of the firm when applying for

funding. In our credit-based ARIO, we simulate three models. The first model assumes that

banks prioritize economic recovery. In this case, banks are not concerned about the risk levels of
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firms and lend to them to reduce the indirect demand shortage effect of the negative shock. The

second simulated model assumes that banks are risk averse and fund those firms below a limit

set on the leverage ratio, λi,t� λ. The third model requires third-party intervention; banks are

risk averse, as in the second model, but when there is a loan shortage for risky firms, the govern-

ment or an insurance company provides the necessary funding to avoid and indirect demand

shortage effect from the negative shock. We do not discuss the mechanisms of the third-party

intervention in this paper: its role is solely to fund risky firms to support economic recovery.

The recovery process of damaged firms

In the credit-based ARIO model, we assume that directly damaged firms recover by using a

reconstruction loan Lci;0 that has a maturity Tc. First, we assume that all directly damaged firms

in the aftermath of the negative shock secure reconstruction loans from their banks. Recall

that the direct damage is modelled as a loss to the initial production capacity in the amount of

δi,0. We suppose that the amount of the reconstruction loan is equal to the lost production

capacity, which is given by:

Lci;0 ¼ di;0 � Pini;i ð16Þ

The recovery is modelled as a reduction in the magnitude of the damage over time, where:

di;t ¼ ð1 � gi;tÞ � di;t� 1 ð17Þ

γi,t is the recovery factor and defined in our model based on the financial health of the

directly damaged firms. Let Lci;t be the remaining reconstruction loan of firm i on day t, i.e., the

remaining loan after each period’s reimbursement, as discussed in the balance sheet dynamics

section. The recovery factor is calculated as follows:

gi;t ¼
Di;t
Lci;t

ð18Þ

Eq 18 reflects that the recovery of firm i is faster when it has more deposits (the recovery of

production) and when the amount of the reconstruction loan decreases through regular daily

payments to banks. This assumption is motivated by the fact that a firm becomes more finan-

cially robust when its deposits increase, which facilitates reconstruction in the event of a natu-

ral disaster or the resolution of financial resource constraints in the event of a financial crisis.

The recovery factor γi,t is linearly rescaled into the interval [γmin, γmax] 2 [0, 1]2. The values of

γmin and γmax are calibrated by simulation experiments, as discussed below, i.e., higher values

of [γmin, γmax] imply a faster recovery.

The updating of firm balance sheets

After trading on day t, all firms update their balance sheets. First, firms calculate their gross

profits given as a fraction of their realized sales:

pGi;t ¼ ai � Yi;t ð19Þ

The gross profit represents the total sales after paying production expenses, such as technol-

ogy or labour costs. αi is the ratio of the gross profit to total sales for firm i. Then, for each

period until maturity, firms make payments on all the loans accumulated post shock Li,t − Li,0.

For example, suppose that firm i has N loans j 2〚1, N〛: Lji;t with interest rate rji;t and matu-

rity T. We assume a linear constant amortization of the loans, which yields the following
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periodic payment:

Mj ¼
Ls;ji;t � r

j
i;t

1 � ð1þ rji;tÞ
� T ; j 2〚1;N〛 ð20Þ

The periodic amountMj is formed by interest and capital;Mj = Ij + κj, where kj ¼
Ls;ji;t
Ts

.

Accordingly, the stock of loans in the balance sheet of firm i is updated as follows:

Li;tþ1 ¼ Li;t� 1 þ Ldi;t �
X

j

Ls;ji;t
Ts
� IðLs;j

i;tÞ �
Lci;t
Tc
� IðLc

i;tÞ ð21Þ

where IðLs;j
i;tÞ is an indicator function of whether the current loan is paid, i.e., if paid, the value

is equal to 0, and 1 otherwise. If a firm cannot pay its loan over consecutive periods Tdefault, the

loan is considered nonperforming until it can be repaid again. The firm continues its activity

and accumulates additional wealth to recover and repay its unpaid loans. After paying the

banks, each firm calculates its profit as follows:

pi;t ¼ p
G
i;t �

X

j

Mj ð22Þ

Accordingly, deposits are updated as follows:

Di;tþ1 ¼ Di;t þ pi;t ð23Þ

Finally, equity capital is updated by:

Ei;tþ1 ¼ OAþ Di;tþ1 � ðOLþ Li;tþ1Þ ð24Þ

Simulation experiments and model validation

Our aim is to validate the proposed credit-based ARIO model. First, we discuss model input

validation. Then, we focus on model output validation. See [37] for a deep discussion of the

validation approaches in agent-based models.

The validation of the model inputs

The behavioural rules of the credit-based ARIO model. The behavioural rules are one

of the most important inputs of our model. They include equations and all assumptions. We

rely on previous works to validate them. Tables 3 and 4 in Appendix B offer a summary of the

foundations of our implemented behavioural rules.

Initialization of the credit-based ARIO model. We estimate the volume of intermediate

goods between suppliers and customers as in [14]. The procedure consists of two steps. The

first step provides a tentative volume of intermediate goods. Each supplier’s sales are divided

among its customers in proportion to their sales. Using the 2016 IO table for Japan, the second

step allows us to obtain an aggregate tie-level volume per sector equal to the IO table informa-

tion. First, we aggregate the tentative volume of intermediate goods at the sector level, and we

multiply the obtained total flow to obtain the real exchange value between sectors as in the IO

table. Then, the IO table displays the amount of final goods sold from each sector to final con-

sumers (households). The amount of final goods per sector is distributed among all firms from

that sector. Accordingly, each supplier i sells intermediate goods to its customers j denoted by

Aji and final goods to its final consumer denoted by Ci. Therefore, the initial production (total
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sales) of firm i is given by the following equation:

Pini;i ¼ Ci þ
X

j

Aji ð25Þ

We suppose that the balance sheet of firm i is given by the following dynamics:

OAþ Di;t ¼ OLþ Li;t þ Ei;t ð26Þ

where OA and OL are the other assets and other liabilities, respectively, which are assumed to

be constant in the model motivated by the short-term post-shock dynamics. Di,t and Li,t are

the total deposits and loans of firm i on day t, where Di,t = ∑b Dib,t and Li,t = ∑b Lib,t are respec-

tively the sum of deposits and loans of firm i with bank b on day t. Ei,t is the equity capital

of firm i on day t. To initialize the firms’ balance sheets, we define the sales multiplier

mSi ¼ Pini;i=Sales
BS
i , where SalesBSi represents the total sales of firm i from its real profit and loss

(PL) statement in 2016. Then, the deposits, loans and equity capital from the balance sheet of

each firm are multiplied by the sales multiplier to define Eq 26 (OA and OL are initialized by

satisfying the fundamental accounting Eq 26).

The final step of the calibration of the initial values of the model is to weight the bank-firm

network links. From the real data set, the bank-firm network is weighted by the values of the

loans. We define the loan weight for each firm mLi ¼ Loanib=Loan
BS
i , where Loanib is the real

amount of total loans from bank b to firm i given in the bank-firm network in 2016, and

LoanBSi is the loan amount in the liabilities statement of firm i in 2016. The initial loans and

deposits for each bank considered in the model are the result of multiplying the loan weight

by the total loans and total deposits estimated in Eq 26. We assume that firm i has an initial

deposit in bank b proportional to its initial loan with that bank.

Based on Eq 19, for each firm i, the rate αi is calculated as the average over 5 years (2011—

2016) of the real gross profit to total sales based on the PL statements.

Design of experiments and exploration of the parameter space. Table 1 shows the

ranges of the parameters in our model. n is the average number of days that inventory is held.

The number of days for each firm is generated as a Poisson distribution of the average n
instead of constant. This parameter also requires empirical support, if it is possible as future

developments. We assume that firms cannot exceed 1 month (30 days) of inventory (goods

could be perishable) and cannot take a substantial production risk by holding inventory for

fewer than 10 days. The magnitude of the initial damage δi,0 can be small, 10% of initial pro-

duction losses, or very large, 100% of initial production losses. Through simulation experi-

ments, the values of γmin, γmax are chosen between 0.001 for a slow recovery and 0.055 for a

fast recovery. For values less than 0.001, the economy may not recover. When values higher

Table 1. The possible values of the main parameters of the proposed credit-based ARIO model.

Parameters Values 2008 Fin. crisis 2011 earthquake

n 〚10, 30〛 29 19

δi,0 [0.1, 1] 0.51 0.95

[γmin, [0.001: 0.045, 0.001 0.015

γmax] 0.003: 0.055] 0.004 0.025

λ [0.02, 0.3] 0.05 0.05

Ts 〚30, 60〛 53 53

Tc 〚300, 400〛 399 399

The calibrated values are defined using the DoE procedure.

https://doi.org/10.1371/journal.pone.0239293.t001
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than 0.055, the economy will recover much faster than we observe in Fig 1. When banks are

risk managers, they could be very risk averse, λ = 2%, or have a relaxed risk policy by allowing

firms with 30% leverage to obtain loans. The maturity of short-term loans used to purchase

intermediate goods varies between 1 and 2 months, while the reconstruction loans are longer

term and can have a maturity extending to the end of the year after the shock. Throughout the

following simulations, we assume that 10% of the firms are initially damaged.

Although we have 7 main parameters, the model space is quite large. We use the approach

called the design of experiments (DoE) introduced in [38]. The DoE uses Latin hypercube

sampling, which was introduced by [39], and indicates how to vary the parameters in a com-

plex simulation model to capture the best response of the system; see [24] for a recent applica-

tion. For a simulation model with 7 parameters, we need at least 33 samples, as suggested in

[24, 38]. To cover the maximum number of points in our model space, we simulate the model

for 200 sample combinations of our set of parameters.

The validation of the model output

Based on the exploration of the parameter space, we have 200 combinations of the considered

7 parameters. Each combination is simulated 1000 times. All simulations are conducted using

independent parallel computing on the K supercomputer to reduce the run time (The K com-

puter is the first 10-petaflop supercomputer; it was developed by RIKEN and Fujitsu under a

Japanese national project. The system includes 82,944 compute nodes connected by Tofu

high-speed interconnects. For further details, see [40]).

Calibration of the credit-based ARIO and reproduction of the real IIP of Japan. Let

O
s1 ¼ fns1 ; ds1i;0; g

s1
min; g

s1
max;T

s1
s ;T

s1
c g be the set of parameters used in the experiments s1. After

1000 simulations with different random seeds for design s1, we calculate its simulated VA and

define its daily percentage of the initial VA as bVAs1 ;t
¼

VAs1 ;t
VAs1 ;0

. To calibrate our model based on

the explored parameter space, we look at minimizing the distance between the simulated and

the real output by using the Japanese IIP. As a distance measure, we employ the generalized

subtracted L-divergence (GSL-div) introduced by [41], which measures the degree of similarity

between the temporal series produced by the model and the real temporal dynamics.

To compare the impact of indirect production losses on risk in the banking system, we

assume that banks follow the same policy in 2008 and 2011. Thus, we calibrate, first, the

parameters of the system based on the 2011 Great Earthquake. These results are reported in

the last column of Table 1. Therefore, the calibration of the credit-based ARIO for the period

after the Lehman brothers bankruptcy uses the same values for the leverage ratio λ and loan

maturities Ts and Tc. Only the production parameters are sampled based on the DoE proce-

dure, and the model is calibrated based on 200 simulation experiments, i.e., the same calibra-

tion procedure explained previously. The third column of Table 1 reports the parameter values

that reproduce the short-term economic dynamics after the 2008 financial crisis.

The credit-based ARIO model is calibrated using the third lending policy model (see the

previous section). Here, we assume that banks are risk managers and consider the leverage

ratios of firms through the limit value λ. In addition, when firms cannot obtain loans, they

receive exogenous funding at the required amount from a third party. The reason for this

choice is explained in the next section.

Table 1 shows the calibrated parameters of the model obtained by minimizing the GSL-div

measure. Then, based on these parameters, Fig 5 reproduces the dynamics of the Japanese

economy after the 2008 Lehman Brothers bankruptcy (Fig 5(a)) and the 2011 Great Earth-

quake (Fig 5(b)). The main differences between the two crises are as follows: the inventory

strategy of firms n, the magnitude of the initial damage δi,0, and the capacity of firms to recover
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γmin, γmax. During the 2008 financial crisis, the initial damage is much smaller; a natural disas-

ter reaches its maximum damage after 40 days. Moreover, during financial crisis, firms are

more risk averse. They are aware that a crisis exists, and they improve their strategy by holding

inventory for longer. In contrast, a natural disaster, especially an earthquake, is a surprise,

which is why firms employ a softer inventory policy. Finally, after a natural disaster, the recov-

ery is much faster. In fact, the effect of the 2008 financial crisis is delayed: it has lower initial

damage but a longer recovery time.

Fig 6 compares the cumulative distribution functions (CDFs) of the generated NPL defined

as the ratio of defaulted loans to current loans. The NPL rate increases more after the 2008

financial crisis than after the 2011 natural disaster. On average, after the natural disaster, the

simulated NPL increased by 3.5%, against 13.5% post financial crisis. Based on the real data

depicted in Fig 3, after the 2011 Great Earthquake, the ratio of PLL to total loans increased by

1.2% on average over 1 year. However, the ratio increased by 9.5% on average after the 2008

Lehman Brothers bankruptcy.

Sensitivity analysis of the model. [24] discuss the kriging-based approach to analysing

the sensitivity of ABMs through the exploration of parameter space using the DoE. This

approach interpolates the sampled points to obtain a smooth representation of the parameters

and to overcome the issue of ordinary least squares regression (OLS) with low frequency

observations. In our exploration of parameter space, we sampled 200 combinations that give

Fig 5. Comparison between simulated and real value added of the Japanese economy. The case of the 2008 Lehman Brothers bankruptcy (a)

and the case of the 2011 Great Earthquake (b).

https://doi.org/10.1371/journal.pone.0239293.g005

Fig 6. The generated defaulted loans after negative shocks. A comparison between the 2008 Lehman Brothers

bankruptcy and the 2011 Great Earthquake cases. The figure compares the CDFs of the percentage of the additional

NPL.

https://doi.org/10.1371/journal.pone.0239293.g006
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us smooth variation of the parameters and large time-scale observations. Therefore, we hereaf-

ter use the OLS regression of the following second-order polynomial model presented in [24]

to analyse the sensitivity of the credit-based ARIO model:

YðxÞ ¼ b0 þ
Xk

g¼1

b1;gxg þ
Xk

g¼1

b2;gx
2

g þ
Xk

g¼1

X

h>g

b3;gxgxh þ � ð27Þ

Y(x) is the simulated VA, xg ; x2
g and xg xh are the first order, second order, and combined

order parameters, respectively, and βi,g are the model coefficients to be estimated. All results

of the OLS estimation are in Table 5 in Appendix C. At the first and second order, the model

dynamics are influenced only by the magnitude of the initial damage δi,0. Thus, the observed

total losses in the economy are mainly related to the initial intensity of the negative shock.

Then, in a second level, the total losses in the economy depend on other factors expressed

via the combined effect of the magnitude of the initial damage and other parameters. In fact,

the recovery process modelled with γ significantly influences the total economic losses post

shock (γ × δi,0). Moreover, the inventory policy of firms based on the number of days nmay

influence the total output losses as expressed by the variable n × δi,0. The maturity of short-

term loans after the negative shock may also be an instrument to mitigate the effects of the

damage (Ts × δi,0). Finally, the credit-based ARIO model shows that the financial policy post-

damage may affect the recovery and the total output losses via the variable γ × λ. With the sen-

sitivity analysis in Table 5, we show that the total losses depend first on the magnitude of the

damage. Then, the financial support of the banking system and the recovery process could mit-

igate or aggravate the total output losses.

Analysis of the effects of negative shocks on the economy using

the credit-based ARIO model

We first study the effect of the bank lending strategy on economic recovery. Then, we study

the effect of a financial crisis simulated on different Japanese industrial sectors using the cali-

bration of the 2008 financial crisis. Finally, we simulate natural disasters with the calibration of

the 2011 Great Earthquake on different prefectures to compare the risks based on geographic

location.

Analysis of the effect of different bank lending models on economic

recovery after negatives shocks

The three models described previously are compared below. The results are the outcomes of

1000 simulations with different random seeds. Simulations are performed using the parame-

ters for the 2011 Great Earthquake shown in Table 1. The results are compared on the basis of

VA losses, the generated NPL and the liquidity ratio (total loans over total deposits).

After a negative shock and due to supply shortages, wealth accumulation decreases, and

firms need loans to produce and survive. Accordingly, when banks follow a risk-averse policy

(model 2), some firms cannot continue production because they cannot purchase intermediate

goods due to their high leverage. Then, the economy is damaged by a second, loan-related

wave of the crisis and bottoms out 70 days after the initial negative shock; see Fig 7. In model

2, banks seek to minimize their risk. The liquidity ratio is successfully minimized, in contrast

to model 1, where banks do not follow a risk-averse strategy; see Fig 8(a). However, Fig 8(b)

shows that the NPL rate increases drastically in model 2. In fact, firms were initially in good

financial condition, had low leverage and could secure loans. Then, when banks stop making

loans because firms were highly leveraged, the overall economy is significantly damaged, and
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firms default on past loans, which then remain unpaid. Model 1 is also problematic despite the

fact that NPL growth is not very high. Banks supply a high volume of loans compared to what

they can earn as deposits because production decreases after the negative shock. This situation

is too risky for banks because it places them in a liquidity disequilibrium, which affects their

asset and liability management and could lead to a serious financial crisis. See [42, 43]; i.e.,

in the real world, the liquidity issue is closely related to the function of the central bank (we

Fig 7. The value-added losses after a negative shock. Three models are simulated based on the 2011 Great

Earthquake parameters. Outcomes from models 1 and 3 are very similar, and we cannot distinguish between the two

curves in the plot.

https://doi.org/10.1371/journal.pone.0239293.g007

Fig 8. The simulated financial losses after a negative shock. Three policies are analyzed based on the 2011 Great

Earthquake parameters. (a) The evolution of the liquidity ratio for banks; (b) the generated non-performing loans.

https://doi.org/10.1371/journal.pone.0239293.g008
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intentionally do not introduce a central bank in this model). Model 3, as shown in Figs 7 and

8, allows for the complete recovery of the economy, the maintenance of a low liquidity ratio

(lower than that in model 2) and low NPL growth (lower than that in model 1). Accordingly,

banks must collaborate with other institutions, such as insurance companies and governmen-

tal institutions, to fund firms during the first year after the shock to boost recovery and

maintain a low level of financial risk. In all experiments hereafter, model 3 is used with the cali-

bration given in Table 1.

Economic losses when varying the initially damaged industrial sectors

We consider 8 sectors: chemical and petroleum manufacturing; machinery manufacturing;

plastic, metal and ceramic product manufacturing; food manufacturing; construction; trans-

port; wholesale trading and retail trading. We simulate the initial damage to the industrial sec-

tors using the 2008 financial crisis parameters (see Table 1). The results present the impact of

the initial damage to the entire economy as the average of 100 simulations with different ran-

dom seeds.

Fig 9 indicates that the total economic losses differ based on which industrial sectors are ini-

tially damaged. Little damage is observed when the construction sector is initially hit by a neg-

ative shock, i.e., non-significant indirect losses and a rapid economic recovery. When a crisis

initially hits food manufacturing or retail trading, the economic losses are also limited in size,

i.e., a maximum of 12% of the initial VA is lost. However, significant losses are observed when

the following sectors are initially damaged: chemical and petroleum manufacturing; machin-

ery manufacturing; plastic, metal and ceramic product manufacturing; and wholesale trading.

Finally, the largest impact is observed when the transport sector is initially damaged; the econ-

omy loses up to 30% of its production capacity over 1 year.

In terms of NPL, in Fig 10(a), industrial sectors can be placed into two categories. The

first is industrial sectors with a limited impact on the banking system: construction, food

manufacturing and retail trading (sectors with lower economic losses), i.e., when firms from

these sectors are damaged initially, the banking system suffers fewer defaulted loans. The sec-

ond category is industrial sectors with significant impacts on the banking system: all other

sectors generate high NPL, as summarized in Table 2, i.e., column 2 shows the average NPL

generated in this case. The exogenous funding needed by firms is calculated as a part of the ini-

tial VA generated by the economy, and the CDFs are displayed in Fig 10(b). When the con-

struction sector is damaged, the economy requires the least exogenous funding (less than 0.1%

Fig 9. The post-crisis losses in value added simulated using the 2008 financial crisis parameters. Initially, damaged

firms are chosen at random from one industrial sector. The 8 major industrial sectors in the production network of

Japanese listed firms are considered.

https://doi.org/10.1371/journal.pone.0239293.g009
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of the initial VA) to recover. However, when firms from the chemical and petroleum industries

are damaged initially by the effects of a financial crisis, the required amount of exogenous

funding is the highest: 9.7% of the initial VA of the economy on average, and it could reach

18.6% of the initial VA of the economy.

Table 2. Properties of the initially damaged sectors.

Sectors NPL Ex. funding Initial VA In–strength Out-strength Degree Clustering Knn

Chemical&Petroleum manuf. 33.1% 9.7% 36,396 74.9 142.4 802 0.41 33.1

Wholesale trading 18.8% 2.8% 32,075 17.9 50.3 2,849 0.15 21.0

Machinery manuf. 20.4% 1.0% 28,714 22.7 15.8 1,628 0.32 29.9

Food manuf. 0.6% 2.3% 23,814 25.9 14.9 322 0.24 27.5

Construction 0.1% 0.1% 19,595 32.2 0 627 0.16 26

Retail trading 1.5% 1.2% 17,698 64.2 0.3 598 0.21 24.5

Plastic, metal&ceramic manuf. 29.5% 1.3% 12,960 33.3 30.8 1,567 0.37 33.2

Transport 25.1% 1.7% 4,765 14.6 13.8 505 0.48 38.9

Columns 2 and 3 report the average of the simulated generated NPL and exogenous funding to initial value added. Industrial sectors are classed by their value added in

column 4. Columns 5 and 6 show the average in-strength and out-strength of each sector. Column 7 shows the total unweighted degrees. Columns 8 and 9 report the

clustering coefficient and the Knn of each sector in the sector-based production network.

https://doi.org/10.1371/journal.pone.0239293.t002

Fig 10. The post-crisis financial losses simulated using the 2008 financial crisis parameters. Initially, damaged

firms are chosen at random from one industrial sector. The 8 major industrial sectors in the production network of

Japanese listed firms are considered. Graphs show the generated non-performing loans (a) and the necessary

exogenous funding under policy 3 required for the economy to recover (b).

https://doi.org/10.1371/journal.pone.0239293.g010

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0239293 September 23, 2020 19 / 30

https://doi.org/10.1371/journal.pone.0239293.t002
https://doi.org/10.1371/journal.pone.0239293.g010
https://doi.org/10.1371/journal.pone.0239293


Table 2 reports the properties of each industrial sector to explain their systemic risk. Sectors

are classified in Table 2 in descending order with respect to their initial VA; see column 4 of

the table. Columns 2 and 3 report the average of the generated NPL and the exogenous funding

required, respectively. Columns 5, 6 and 7 report the average in-strength and out-strength (the

sum of money in- and outflows, respectively) and the total unweighted degrees (the sum of all

firm-firm links) in each sector. Then, the sector-based production network is considered, i.e.,

if a firm from sector A is connected to a firm from sector B, a link from sector A to sector B is

considered. The sector-based production network is weighted based on the aggregate flow of

intermediate goods from our production network of listed firms. Columns 8 and 9 report the

clustering coefficient and the average nearest neighbour degrees Knn. Knn computes the aver-

age degrees of the neighbours of a node in the network. It is useful to know whether a node is

connected to highly or less connected neighbours. of each sector in the sector-based produc-

tion network to specify the centrality of each sector in the economy.

In terms of NPL growth after the crisis, the riskiest sectors are chemical and petroleum

manufacturing (33.1%), plastic, metal and ceramic product manufacturing (29.5%), trans-

port (25.1%), machinery manufacturing (20.4%), and wholesale trading (18.8%). The chemi-

cal and petroleum manufacturing sector has the highest initial VA. Although the two latter

sectors have the lowest initial VA, their impact on the economy leads to a higher growth rate

of defaulted loans than the construction sector, which generates only 0.1% of additional NPL

despite an initial VA four times higher than that of the transport sector, i.e., 19,595 for the

construction sector compared to 4,765 for the transport sector. The riskiest sectors in terms

of defaulted loans have a central position in the production network. In fact, some of them

supply large amounts of intermediate goods based on out-strength (chemical and petroleum

manufacturing, wholesale trading, and plastic, metal and ceramic product manufacturing).

Other risky sectors are connected with highly connected sectors (higher Knn) and display

high clustering coefficients, such as transport and plastic, metal and ceramic product

manufacturing. Moreover, we can explain the largest losses to the economy by the initial

damage to the transport sector resulting from its central position in the supply chain. With a

clustering coefficient of 0.48, this sector forms triangles with other sectors, which accelerates

the spillover of the crisis. In addition, Knn = 38.9 implies that the transport sector has, on

average, the neighbours with the highest degrees, which stimulates the contagion effect in

the event of a crisis. However, as shown in Table 2, sectors such as construction and retail

trading have a very low impact on the production network of Japanese listed firms. The con-

struction sector has no customers in the production network. The retail trading sector has

few customers in the production network, but its outflow of money (out-strength) is too low.

Therefore, initial damage to the construction or retail trading sectors causes a small supply

shortage effect. In terms of strength, machinery manufacturing and food manufacturing

have similar properties. However, the former has a larger impact on the economy, which

is explained by its higher number of partners, 1,628, compared to only 322 for food

manufacturing (which has the fewest partners in the production network). Accordingly, by

jointly considering the financial and network properties of industrial sectors, we can under-

stand their systemic risk.

Economic losses when varying the initial damaged geographic locations

Here, we simulate a natural disaster with the properties of the 2011 Great Earthquake. The aim

is to identify the most vulnerable Japanese prefectures. First, the economic effect on VA losses

is depicted in Fig 11. Most headquarters are located in Tokyo prefecture, and our data consider

headquarters locations and not branch locations. To avoid having effects driven by the size of
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each prefecture (the total number of firms), we consider the same number of initially damaged

firms per prefecture, i.e., 4% of the total number of firms in the supply chain.

As expected, when Tokyo prefecture is directly damaged, the economy faces the highest

losses. When Aichi or Hyogo prefectures are initially damaged, a smaller effect on the econ-

omy is observed. Fig 12 depicts the financial effects of the simulated natural disaster across Jap-

anese prefectures. In terms of generated NPL (see Fig 12(a)), the effect of initial damage in

Aichi and Hyogo prefectures is the lowest, i.e., 3.2% and 2.3%, respectively. This finding is con-

firmed in Fig 12(b), where the economy requires a small amount of additional exogenous

funding to recover when these latter prefectures are initially damaged, i.e., 1.4% and 1.5% for

Aichi and Hyogo prefectures, respectively. Although initial damage to Tokyo causes the high-

est production losses, Fig 12(a) and 12(b) show that damage to Osaka prefecture causes the

greatest financial losses.

To analyse this difference among prefectures, Fig 13 shows the business structure of each

prefecture, i.e., the weights of the top 5 industrial sectors in each prefecture. Transportation

equipment manufacturing is the dominant industrial sector in Aichi prefecture, as shown in

Fig 13(c); Toyota’s headquarters is in Aichi prefecture. This sector causes little damage to the

production network because it has only 25 customers, i.e., limited risk of supply shortages post

disaster based on our previous analysis. Approximately 35% of firms in Hyogo prefecture are

in the food manufacturing and food and beverage services, as shown in Fig 13(d), which are

not sectors at high risk of supply shortages (low number of customers in the production net-

work of listed firms). Tokyo and Osaka prefectures have similar business structures (see Fig

13(a) and 13(b)), with a higher weight of chemical and petroleum manufacturing in Osaka

prefecture. In terms of VA, Tokyo prefecture contributes 10 times more than Osaka, which

explains why we observe the greatest impact on economic losses when Tokyo is initially dam-

aged. Fig 14 represents the CDF of the ratio αi included in the credit-based ARIO model to

calculate the profit of firm i after selling its intermediate goods. We recall that this ratio is cal-

culated based on the real PL statements of Japanese listed firms (gross profits divided by total

sales); see the explanations in the model section. Fig 14 shows that, on average, firms in Tokyo

prefecture generate more profit from their sales than do firms in Osaka prefecture. This

implies that firms in Osaka prefecture have lower profitability and that their deposits grow

more slowly than the deposits of firms in Tokyo prefecture. Consequently, based on our

model, firms in Osaka prefecture will demand more loans, which explains the higher NPL rate

and the higher need for exogenous funding there. Thus, although Tokyo and Osaka have simi-

lar business structures in terms of industrial sectors, the difference in the financial efficiency of

Fig 11. The post-disaster value-added losses simulated using the 2011 Great Earthquake parameters. Initially,

damaged firms are chosen at random from one industrial sector. The 8 major industrial sectors in the production

network of Japanese listed firms are considered.

https://doi.org/10.1371/journal.pone.0239293.g011
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firms explains the higher financial damages faced by the economy when firms from Osaka pre-

fecture are initially damaged.

Discussion and conclusion

[22] discusses the effect of financial crises and natural disasters, which are recurrent phenom-

ena, on the economy and households’ coping strategies. Although they have different mecha-

nisms, the two types of negative shocks have similar impacts on the economy, i.e., slowed

production and greater financial risk, as shown in Figs 1, 2, and 3, and modified household

behaviour, as discussed by [22]. In the economic literature, the two types of negative shocks

are often considered separately; see [34] for financial crises and [8] for natural disasters. The

first contribution of the current paper was to propose a credit-based ARIO framework that

permits the simulation of different types of shocks. Using a calibration procedure employing

Latin hypercube sampling, we reproduced the economic dynamics of Japan after the 2008 Leh-

man Brothers bankruptcy and the 2011 Great Earthquake. The firms’ strategies differ between

these two negative shocks. During the 2008 financial crisis, firms had prior information about

the recession because it began in the U.S. and reached Japan after a delay. The uncertainty

Fig 12. The simulated post-disaster financial losses simulated using the 2011 Great Earthquake parameters.

Initially, damaged firms are chosen at random from one industrial sector. The 8 major industrial sectors in the

production network of Japanese listed firms are considered. Graphs show the simulated non-performing loans (a) and

the exogenous funding under policy 3 required for the economy to recover (b).

https://doi.org/10.1371/journal.pone.0239293.g012
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faced by firms increased, which is sometimes reflected in a stronger inventory policy, i.e., plan-

ning to hold sufficient inventory for a longer period. However, the initial direct damage of the

2011 natural disaster was much stronger. The direct damage to Japan during the 2008 financial

crisis was due to the financial resource constraints faced by firms. Thus, production was able

to continue, albeit with lower capacity, i.e., there was no material damage to Japanese firms.

However, after the 2011 Great Earthquake, the directly damaged firms may have suffered from

Fig 13. The business structure of the considered Japanese prefectures. Tokyo prefecture (Fig 13(a)), Osaka prefecture (Fig 13(b)), Aichi prefecture (Fig 13(c)), and

Hyogo prefecture (Fig 13(d)).

https://doi.org/10.1371/journal.pone.0239293.g013

Fig 14. Comparison between the CDFs of the gross profit to sales ratio αi. The case of firms in Tokyo and Osaka

prefectures.

https://doi.org/10.1371/journal.pone.0239293.g014
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the destruction of buildings or roads used for transportation, for example. Therefore, produc-

tion could have halted in the aftermath of the disaster.

During the 2008 financial crisis, the economic recovery was slower. In the credit-based

ARIO model, the slow recovery is captured by the calibration of the parameters γmin and γmax.
In reality, the slower recovery from a financial crisis may be due to various causes, such as eco-

nomic uncertainty or a negative demand shock to the domestic market; see [44]. These mecha-

nisms demand more complex modelling of the recovery, which represents a direction for

future research.

We considered three models. The first and second models are harmful to the economy.

When banks supply loans without any risk policy, they face serious liquidity problems due to

firms’ inability to generate sufficient value added and increase the aggregate deposits in the

economy. Moreover, when banks follow a strict risk policy by monitoring firms’ leverage

ratios, the economy cannot recover after a negative shock, and banks face substantial amounts

of defaulted loans, which dramatically increases their non-performing loans ratio. Therefore,

we showed through simulation that the economy needs exogenous funding, expressed as a per-

centage of the pre-shock value added generated by the economy. Indeed, when risky firms

exceed the leverage allowed by banks, intervention by a third party in the form of offering pro-

duction loans to firms helps the economic recovery, reduces the non-performing loans in the

banking system and holds the liquidity ratio (loans to deposits) at a low level. We note that the

Fig 15. Schematic representation of the credit-based ARIO model. This diagram describes the different model

components and their associated equations.

https://doi.org/10.1371/journal.pone.0239293.g015

Fig 16. Data structure of the credit-based ARIO model. The figure shows how data of the credit-based ARIO model

are constructed from four databases: i) the TSR production network; ii) the Nikkei bank-firm network; iii) the Nikkei

firms’ balance sheets; iv) the IO table.

https://doi.org/10.1371/journal.pone.0239293.g016
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simulation of the third model may transfer credit risk to a third party. Strategies for credit risk

sharing could be addressed in future work.

The credit-based ARIO model was used to understand the systemic risk of the most impor-

tant Japanese industrial sectors in the supply chain and their impact on the bank-firm network.

The model was simulated based on the calibration for the 2008 financial crisis and considered

initial damage from a particular sector to measure the effect on the overall economy. The main

results showed that industrial sectors are risky because they can have a high outflow of inter-

mediate goods, such as chemical and petroleum manufacturing, or occupy a central position

in the supply chain, such as the transport sector. Industrial sectors with low outflows of inter-

mediate goods have a small impact on the economy when they are initially damaged, for exam-

ple, the construction and retail trade sectors. Then, we estimated the model with parameters

calibrated based on the 2011 Great Earthquake to understand the systemic risk of the most

important prefectures in terms of industrial weight. Tokyo and Osaka prefectures were identi-

fied as the riskiest prefectures; this was explained by their business structures, which are

formed by risky industrial sectors such as chemical and petroleum companies and wholesale

trade companies. We found that Osaka prefecture causes higher financial damage than Tokyo

prefecture because of the lower profit efficiency of its firms, which increases non-performing

loans and funding needs when it is initially damaged.

In a nutshell, our study shows that the spread of economic losses in the aftermath of nega-

tive exogenous shock depends on four factors, besides the magnitude of the initial shock: i) the

centrality of directly damaged firms in the production network, i.e., importance of economic

sectors; ii) the firms’ inventory strategies; iii) the recovery capacity of firms; vi) the initial

financial condition of firms in the production network.

This work is a first step in the development of ARIO modelling to consider a larger econ-

omy and estimate the more complex indirect losses following a negative shock in the short

term. The results demand further reflection. First, it is important to consider the reactions of

banks to the shock and how they manage their portfolios of defaulted loans and the difficult

liquidity conditions to maintain their market efficiency. For this reason, it will be essential to

consider interbank linkages in our model. Second, we intend to model the behaviour of house-

holds after the negative shock to obtain better estimates of the global indirect losses, which

include shocks to final consumption.

Appendix A: A schematic representation of the credit-based ARIO

model

Fig 15 offers a diagram of the credit-based ARIO. It shows the different model components

and processes. Each process is related to the equations discussed in the main text of manu-

script. More details on the equations are given in Tables 3 and 4. Fig 16 shows the data struc-

ture of the credit-based ARIO model.

Appendix B: The behavioural rules of the credit-based ARIO

Tables 3 and 4 regroup all the equations of the credit-based ARIO model. Table 3 exposes the

behavioural rules of the production equations, and Table 4 exposes the behavioural rules of the

finance equations.

Appendix C: Estimation results of the sensitivity analysis

Table 5.
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Table 3. The behavioural rules of production in the credit-based ARIO.

Equations Economic foundation Literature

Eq 1 Customer i decides its consumption of intermediate good j, based on its pre-shock levels

of consumption and production, its past level of production, its level of inventory of

intermediate good j, and the number of days its inventory holds.

[11, 13,

14]

Eq 2 Direct damaged suppliers lose their initial production capacity, i.e., initial supply shock. [11, 13,

14]

Eq 3 Supplier i calculates its inventory of intermediate good s. [13, 14]

Eq 4 Supplier i determines its pre-to-post shock ratio of inventory of intermediate good s. [13, 14]

Eq 5 Possible production based on intermediate good s is the proportion of the pre-shock

production in the pre-to-post shock ratio of inventory of intermediate good s as calculated

in Eq 4.

[13, 14]

Eq 6 Maximum production is the minimum between the production capacity, Eq 2, and

inventory-based production, Eq 5.

[13, 14]

Eq 7 Supplier i calculates the received demand from all its customers in the supply chain

network.

[13, 14]

Eq 8 Production does not exceed the received demand. Although the supplier could recover, the

level of production depends also on the recovery of its customers in the supply chain.

[13, 14]

Eq 9 If the received demand by supplier i, Eq 7, is higher than its production, Eq 8, its

customers from the production network are rationed based on their pre-to-post shock

demand ratio. The possible realized sales are equal to production from Eq 8.

[13, 14]

Eq 10 Customers could have a funding gap as explained in [33]. If deposits cannot meet the

demand for goods, a customer asks for a loan based on its connections in the bank-firm

network. If funding is not available, the customer reduces its consumption, as discussed

empirically [15].

[15, 33]

Eq 11 Inventory dynamics: the new inventory is equal to the past inventory plus the purchased

goods minus the used goods for production

[13, 14]

Eq 12 The value added is measured as the total output minus the total used input. [13, 14]

Column 1 presents the behavioural rules through the implemented equations in the model. Column 2 discusses the

economic foundation of the behavioural rules. Column 3 refers the literature discussing the behavioural rules.

https://doi.org/10.1371/journal.pone.0239293.t003

Table 4. The behavioural rules of finance in the credit-based ARIO.

Equations Economic foundation Literature

Eq 13 The funding gap as the difference between the level of deposits and the total demand of

intermediate goods.

[33]

Eq 14 Risk-based pricing of the interest rate. Firms with lower production have a weaker

financial condition and then receive higher interest rates for loans.

[35, 36]

Eq 15 The leverage ratio of firms is defined as the weight of the loans to that of equity. [33]

Eqs 16 to

18

The recovery process in Eq 17 follows the model of [13, 14]. In our model, we relate the

dynamics of the recovery process to the financial condition of damaged firms. When the

financial condition is improving, with higher deposits and lower loans, the firm recovers

faster.

[13, 14]

Eqs 19 to

24

Balance sheet dynamics and accounting rules. [33]

Column 1 presents the behavioural rules through the implemented equations in the model. Column 2 discusses the

economic foundation of the behavioural rules. Column 3 refers to the literature discussing the behavioural rules.

https://doi.org/10.1371/journal.pone.0239293.t004
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