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ABSTRACT: Molecular generative artificial intelligence is drawing significant attention in the drug design community, with several
experimentally validated proof of concepts already published. Nevertheless, generative models are known for sometimes generating
unrealistic, unstable, unsynthesizable, or uninteresting structures. This calls for methods to constrain those algorithms to generate
structures in drug-like portions of the chemical space. While the concept of applicability domains for predictive models is well
studied, its counterpart for generative models is not yet well-defined. In this work, we empirically examine various possibilities and
propose applicability domains suited for generative models. Using both public and internal data sets, we use generative methods to
generate novel structures that are predicted to be actives by a corresponding quantitative structure−activity relationships model
while constraining the generative model to stay within a given applicability domain. Our work looks at several applicability domain
definitions, combining various criteria, such as structural similarity to the training set, similarity of physicochemical properties,
unwanted substructures, and quantitative estimate of drug-likeness. We assess the structures generated from both qualitative and
quantitative points of view and find that the applicability domain definitions have a strong influence on the drug-likeness of
generated molecules. An extensive analysis of our results allows us to identify applicability domain definitions that are best suited for
generating drug-like molecules with generative models. We anticipate that this work will help foster the adoption of generative
models in an industrial context.

■ INTRODUCTION
Recent years have seen growing interest in generative models for
drug design.1−3 The first application of generative models is the
design of libraries of compounds with desired physicochemical
properties.3 This approach, which is referred to as distribution
learning,4 can be seen as an alternative to virtual screening.
Generative models have also been used for designing molecules
with a desired profile according to predictive models, e.g.,
molecules with high predicted activity on a therapeutic target.2

This approach is referred to as goal-directed generation. Goal-
directed generation searches for compounds that maximize a
user-defined scoring function, which reflects the desirability of a
compound in a drug discovery project. The scoring function is
usually a combination of predicted biological and physicochem-
ical properties, determined using both machine learning models
and computed properties (e.g., clogP5). Nonetheless, this focus
on generating high-scoring molecules has sometimes been made

at the detriment of generating molecules that would be
considered for synthesis in a drug design project (for reasons
relating directly to synthesizability or apparently unstable, toxic,
or reactive moieties). Low drug-likeness of generated com-
pounds has been reported for SMILES-based methods and
genetic algorithms,6 as well as for graph-based methods (e.g., in
Mercado et al.,7 Figure I2, where molecules with conjugated non
aromatic rings are shown). Indeed, generated molecules can
contain reactive fragments, long heteroatom chains, or macro-
cycles.6,8 While some works9,10 have included metrics such as
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the quantitative estimate of drug-likeness11 (QED) or the
percentage of de novo fingerprints bits12 to ensure the
generation of drug-like molecules while generating molecules
with good docking scores, concerns remain regarding the drug-
likeness of molecules generated using artificial intelligence
algorithms. As we will discuss below, drug-likeness is difficult to
define in absolute terms.13 Nevertheless, preventing the
generation of the most blatant non-drug-like molecules would
be welcome and would foster the adoption of generative models
in drug discovery. This leads us to search for a way to enforce the
generation of drug-like molecules by translating the applicability
domain (AD) concept, which is generally associated with
quantitative structure−activity relationship (QSAR) models, to
generative models. Applicability domains for QSAR and ML
predictive models are well-studied.14−17 In the context of QSAR
modeling, it is defined as follows: “The applicability domain of a
(Q)SAR model is the response and chemical structure space in
which the model makes predictions with a given reliability”.18

The need for QSAR models to be associated with an
applicability domain is the third principle of the five OECD
Principles for (Q)SAR validation18 and was formalized in the
REACH initiative for toxicology assessment of new chemical
entities.19

In this work, we evaluate AD definitions in the context of goal-
directed generation, based not their ability to define whether a
reliable prediction can be made but instead on their ability to
discriminate against non-drug-like molecules in the context of
generative modeling. By analogy with the definition of AD for
QSAR models, we investigate the relevance of a generative
applicability domain defined as the chemical structure space in
which the generative model makes structures with a given
reliability in terms of drug-likeness. As a start, it is appealing to
use the ADs of the QSAR models that are used for orienting the

generation and to apply them directly to generative algorithms.
This can even happen silently if the QSAR models used to bias
the generation give a null prediction to generated molecules that
fall beyond their AD, leading the generated structure to be
discarded. Nonetheless, this method might not be sufficient to
guarantee that the generated structures are drug-like: when
QSAR models are used in a lead optimization context, they are
applied on molecules that are generally proposed or selected by
experienced researchers and notions of reactivity, synthetic
access, and drug-likeness were already taken into account when
designing the molecules, while it is not the case when molecules
come from generative models. On the other hand, as some non-
drug-like features of generated molecules can be related to a
specific part of its structure, if the AD is based on similarity
metrics, their similarity to the training set molecules can be high
enough for them to end up in the AD of the QSAR model.
Focusing on goal-directed generation algorithms in the

context of lead optimization, we thus investigate in this work
the validity of the concept of applicability domains for generative
models. First, we highlight several difficulties associated with the
drug-likeness concept and how the drug-likeness of generated
molecules can be evaluated. Then, by combining different
criteria used for QSAR AD model definitions, we derive several
generative AD definitions. Studying data sets that span diverse
lead-optimization scenarios, we use these definitions to
constrain the output of generative algorithms. We then analyze
the influence of these definitions on the molecules sets that are
generated, especially in order to identify whether those
definitions are suited for generating drug-like molecules in the
context of lead optimization. An overview of the workflow used
for this evaluation is provided Figure 1. Finally, we validate our
analysis on the difference in drug-likeness between different AD
by performing a molecular Turing test on one of our data sets.

Figure 1. Overview of the workflow used for evaluating an AD. During generation, the AD is taken into account in the reward function as a
multiplicative term that yields 0 if the molecule generated is out of the AD and 1 otherwise. The colors used for the arrows are related to the different
subsets of the data set that are used at different stages of the process: green for the activity model training set, blue for set used for AD definition and
generative model pretraining, and orange for the test set.
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Drug-Likeness. The understanding of drug likeness20 and
its prediction21 is a long-standing research topic in drug design.
However, as stated by Shultz, “The term ‘drug-like’ is universally
known, utilized by many and precisely defined by no one. There
are several inherent problems with the term ‘drug-like’, including
the definition of ‘drug’ and what level of similarity is implied by
‘like’”.22 Approaches for drug-likeness prediction include the
comparison of drug databases to selections of chemicals that are
supposed not to be drug-like (typically random subsets of the
ACD21) and the identification of a drug-like property space as in
the case of the “rule of 5”23 (keeping in mind that this rule
reflects statistical trends on the permeation or absorption of oral
drugs at the end of the twentieth century rather than an absolute
rule,22,24 especially about drug-likeness in general), which can be
combined with a desirability function for building the QED
metric,11 with functional group filters as in REOS,25 or using a
fragment based approach.20 Another approach has been to use
the feedback from several chemists about the drug-likeness of a
large set of molecules for building classification models.26 In the
specific context of de novo design, the evaluation of drug-
likeness is often associated with computing the quantitative
estimate of drug-likeness (QED),27 the Synthetic Accessibility
Score (SAS),28 or the synthetic complexity.29

Drug-likeness is also a context-dependent concept. In Figure
2, the rightmost molecule (ivermectin30) is a marketed drug
derived from a natural product. Despite being a marketed drug,
its macrocycle would disqualify it for many contemporary small-
molecule drug discovery programs. The molecule at the center
(medroxyprogesterone acetate, a steroid) is also a marketed
drug; however, the steroid scaffold bears a risk of biological
unspecificity, which could disqualify this structure as a starting
point for current medicinal chemistry programs. Those
examples show that whether a molecule is drug-like depends
on the context of the drug discovery program.
Finally, drug-likeness is also dependent on the personal

experience of researchers who assess the molecule and is prone
to subjective bias;26,31,32 to the point that, according to
Bickerton et al., “As beauty is in the eye of the beholder, so
chemical attractiveness is in the eye of the chemist”.11 In this
Article, we will use “drug-likeness” in the following sense: drug-
like molecules are molecules likely to be considered for synthesis
by a drug discovery team, which includes both assessment of
synthesizability and medicinal chemistry heuristics. It is context-
dependent (depending on the training set) and prone to
subjectivity (assessment of drug-likeness can vary from one
therapeutic area and one researcher to another). We can
nonetheless measure it using a molecular Turing test. The
molecular Turing test has already been described by researchers
from GSK.33 In this procedure, generated molecules are shown

to researchers along the training set, and they are asked whether
they would consider them for synthesis or not. It is then possible
to compare the acceptance rate of molecules generated
compared to the acceptance rate of test set compounds, which
are designed by humans. Drug-like compounds, in the context of
this work, refer to molecules whose acceptance rates in this
molecular Turing test are of the same magnitude as those of
human-generated compounds.

■ METHODS
An empirical approach to identifying AD definitions for
generative models requires making several modeling choices.
In this section, we explain the rationale behind the choices we
make regarding AD definitions studied, data sets, generative
models, and evaluation of the results.
Existing Applicability Domain Definitions. The main

methods for defining an predictive QSARAD can be classified as
follows: chemical-physical, structural, fragment-based, and those
based on the response domain.17 Most methods based on
chemical-physical and structural description rely in fine on some
form of similarity metric with respect to the model’s training set.
Appreciation of the structural similarity to the training set is
dependent both on the molecular descriptors and on the
measure of similarity used. To restrict our search space of an AD
definition for generative models, we make several choices to
focus on the descriptors and AD definitions that we estimate to
be the more relevant in practice. For example, some classical
approaches we have left apart for AD definition, such as using
structural fragment-based approaches or k-nearest neighbor
similarity,17 could also be of interest for improving the drug-
likeness during generation.

Descriptors. We explore three main families of molecular
descriptors that relate to different kinds of molecular
descriptions. The first ones are extended-connectivity finger-
prints (ECFP),34 implemented within the RDKit35 using the
Morgan algorithm.36 In those fingerprints, features represent the
presence or absence of given substructures in the molecule.
ECFP descriptors can be either count-based or binary. When
count-based, a feature takes the value of the number of times the
substructure is found in the molecule. When binary, the features
can be set to either 0 or 1, denoting only the presence or absence
of the substructure. As shown in Figure 3, count-based
fingerprints can discriminate between molecular structures
that binary fingerprints cannot discriminate. We explore both
count-based and binary fingerprints, in addition to different radii
for the Morgan algorithm (2 and 3, which correspond to ECFP4
and ECFP6 descriptors, respectively) for the fingerprints. The
second kind of molecular descriptors we consider are atom-pair
(AP) fingerprints37 as implemented in the RDKit. In AP

Figure 2. From left to right: chemical structures of clopidogrel, medroxyprogesterone acetate (a steroid), and ivermectin (a drug derived from a natural
product). The diversity in chemical features of these three drugs (e.g., presence of macrocycles, number of cycles, and number of chiral centers) shows
how much drug-likeness is context-dependent.
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fingerprints, features denote the presence or absence of a given
pair of atoms. We also assess the quantitative estimate of drug-
likeness score11 as a potential descriptor. The QED is a scale for
gauging the drug-likeness of a molecular structure that is widely
used,9 even if it is known that lower QEDs in drugs do not
necessarily translate into worse PK parameters.38 Finally, we also
explore molecular descriptors based on a combination of
physicochemical descriptors: the number of hydrogen bonds
donors and acceptors, the number of rings, the number of
rotatable bonds, the total polar surface area, Crippen
descriptors5 (clogP and molar refractivity), the molecular
weight, the fraction of sp3 carbons, the ratio of atoms in the
Murcko scaffold on the total number of heavy atoms, the
number of heavy atoms, the maximum and minimum ring size,
the minimal, maximal and total charge, and the number of chiral
centers.

Similarity Measures. Several similarity measures have been
explored for defining applicability domains based on chemical-
physical and structural description in the context of QSAR
modeling.16,17 Here, we explore both range-based and distance-
based methods. As an exhaustive exploration of all similarity
measures is not feasible, we restrict ourselves to two similarity
measures. The principal range-based AD definitions are the
bounding box approach and the convex hull approach.16 The
bounding-box approach checks whether the individual values of
each feature lie within the range observed for this given feature in
the training set, while the convex hull method defines the
interpolation space as the smallest convex area that contains the
descriptors from the training set. In practice, computing the
convex-hull has an algorithmic complexity in Ω(nd), where n is
the number of molecules and d the number of descriptors.39

This makes it quickly impractical as soon as the number of
descriptors used grows. Thus, the bounding-box approach is
often used to approximate the convex hull.40 This led us to select
the bounding-box approach as a representative range-based AD.
By default, we defined the bounding box using theminimum and
maximum value of the descriptors, but it is also possible to use
measures more robust to outliers such as percentiles (e.g., first
through 99th percentiles). For distance-based approaches, we
use an AD definition based on the Tanimoto similarity, which is
widely used in cheminformatics.41 We determine whether a
molecule is within the AD by assessing whether the maximum
similarity value to molecules of the training set is above a
prespecified threshold.

Applicability Domains. Using these descriptors and
similarity measures, we define several applicability domains
using either a similarity measure and a set of descriptors (e.g.,

range of ECFP4) or a combination of a pair of descriptors and
similarity measures (e.g., range of ECFP4 and range of
physicochemical descriptors). We also investigate SMILES
validity as a baseline applicability domain. Indeed, SMILES-
based generative models can produce invalid SMILES chains,
which do not correspond to a valid molecular structure. The
simplest applicability domain for generative models is therefore
an applicability domain that only checks whether the SMILES
chain corresponds to a valid structure. As a second baseline, we
also include for JAK2 an AD that checks the presence of
undesirable fragments published with the ChEMBL database42

and curated by P. Walters.43 The full list of applicability domain
definitions and the names by which we refer to them is given in
Table 1.

Experimental Setting.The generative model we focus on is
a SMILES-based long short-term memory network
(LSTM).44,45 A SMILES-based LSTM models the conditional
probability distribution over SMILES strings (conditioned on
the beginning of a SMILES). It can be used to generate
sequentially novel SMILES strings. The LSTM is optimized with
a hill-climbing algorithm.4 At each time step, the LSTM
generates novel structures and the hill-climbing algorithm fine-
tunes the LSTM on the best molecules of the batch. Molecules
that fall outside of the applicability domain have their score set at
0, which effectively discards them from being selected by the hill-
climbing algorithm. This generative approach was chosen

Figure 3. Limitations of binary fingerprints to discriminate unusual
chemical moieties. (Top) Binary. (Bottom) Count.

Table 1. Applicability Domain Definitions Used Throughout
This Work

name definition

SMILES validity proposed SMILES string corresponds to a valid molecular
structure, as computed by the RDKit35

filters validity structure contains none of the substructures flagged in
ChEMBL42

maxsim ECFP4 maximumTanimoto similarity (Morgan fingerprints, radius
2) between a structure and the training set is >0.5

maxsim ECFP6 maximumTanimoto similarity (Morgan fingerprints, radius
3) between a structure and the training set is >0.5

maxsim AP maximum Tanimoto similarity (atom-pair fingerprints)
between a structure and the training set is >0.5

range QED QED of the structure is within the range of the QED of the
training set

range ECFP4 Morgan fingerprints of radius 2 of the structure are within
the range of those of the training set

range ECFP4
counts

count-basedMorgan fingerprints of radius 2 of the structure
are within the range of those of the training set

range physchem physicochemical descriptors of the structure are within the
range of those of the training set

range physchem
+ range AP

checks if the structure is in “range physchem” and atom-pair
fingerprint bits of the structure are within the range of
those of the training set

range physchem
+ range ECFP4

checks if the structure is in “range physchem” and in “range
ECFP4”

range physchem
+ range ECFP4
counts

checks if the structure is in “range physchem” and in “range
ECFP4 counts”

range physchem
+ range ECFP6

checks if the structure is in “range physchem” and in “range
ECFP6”

range physchem
+ maxsim
ECFP4

checks if the structure is in “range physchem” and valid
according to “maxsim ECFP4”

range physchem
+ maxsim
ECFP6

checks if the structure is in “range physchem” and valid
according to “maxsim ECFP6”

range physchem
+ maxsim AP

checks if the structure is in “range physchem” and valid
according to “maxsim AP”
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because it is widely studied, popular in the field, and prone to
generating compounds that would not be considered as drug-
like.6 Therefore, this approach is adapted for the development of
a generative applicability domain. In order to assess whether our
results are transferable to other generative methods, we also ran
our study using two of the generative approaches from the
Guacamol baselines4 on the JAK2 data set.
For the predictive models, we use random forest classifiers,46

where the predicted probability of being active is used as the
reward for the reinforcement learning of the generative model,
but the generation can be performed with predictive models
coming from other machine learning algorithms. Random forest
models have been shown to be robust to adversarial examples.47

The descriptors used are folded ECFP fingerprints34 of size 1024
and radius 2. The implementation is done with the python
library scikit-learn48 and the RDKit.35 As described in Figure 1,
the data sets are split at random in a 75:25 fashion to build a
training set and a test set. The training set itself is split in a 75:25
fashion; the largest set is used to build the QSARmodel, and the
smallest is used to pretrain the generative algorithm and define
the applicability domain. The test set is therefore unseen by the
generative algorithm during the whole process, and the AD
definition is not related to the training set of the activity model.
We study potential generative applicability domains on three

lead optimization-like data sets and one hit-finding like data set,
whose characteristics are listed in Table 2. The first one, the

JAK2 data set, is a public data set extracted from ChEMBL.49

Molecules with a pIC50 greater than 8 were labeled as actives.
The second and the third ones, the Renin data set50−52 and the
11βHSDdata set, respectively, are extracted from internal Sanofi
research programs. These three data sets are diverse in size
(small for Renin, medium sized for JAK2, and large for
11βHSD), in type of therapeutic target (JAK2 is a kinase,
Renin a protease, and 11βHSD a dehydrogenase), and in origins
(coming from both public and corporate databases). Fur-
thermore, the JAK2 and Renin data set are comprised of a single
chemical series, while the 11βHSD data set contains two distinct
chemical series, ureas and oxathiazines. By studying these three
data sets, we provide insight as to how the generative
applicability domain performs in different lead optimization
situations. As our results can be of interest for applications of
generative AI to other stages of drug discovery than lead
optimization, we also investigate a 11βHSD data set extracted
from ChEMBL. It features some of the molecules from the
internal data set that were published but spans a more
heterogeneous chemical space. Every AD definition is assessed
on all data sets, except for the filters validity. Indeed, as this AD
produces molecules that are not drug-like on the JAK2 data set,
and as its runtime is long compared to the other AD definitions,
we do not assess it on the other tasks.

Evaluating Applicability Domains. To evaluate each AD
definition, we first perform 10 runs where the 128 best scoring
molecules are kept for each of the 150 epochs of the generation.
We then compute several metrics related to diversity, recovered
actives, physicochemical descriptors, and drug-likeness metrics.
It is important to note that those metrics are not necessarily
objectives in themselves (otherwise we could include them
directly in the scoring function) but rather serve as proxies to
evaluate whether generated molecules are drug-like or not.
While our final objective is to evaluate the capacity to generate
molecules that would be selected for synthesis by a drug
discovery project team, running a molecular Turing test to
measure this outcome is time- and resource-consuming and
cannot be performed for each AD definition on each data set.
Thus, this set of metrics allows us to evaluate extensively all the
AD on all data sets before confirming the results with a
molecular Turing test. In the next section, we will describe how
the evaluation of the applicability domains were performed and
illustrate it with examples from the JAK2 data set.

Visualization of Generated Molecule Sets. The most basic
way to evaluate the generated molecules as a set is the
comparison of this set with the training data set in a common
chemical space. A principal component analysis (PCA) is
performed on the Morgan fingerprints of the data set. PCA is a
dimensionality reduction technique that allows us to project the
high-dimensional fingerprints to a space of reduced dimension
for visualization. It was performed using the scikit-learn48

implementation with default parameters and the number of
components set to 2. Then, both the data set and generated
molecules are projected on the first two principal components.
This allows for visual comparison of the generated molecules
with the original molecules, as shown in Figure 4. This
visualization is nonetheless dependent on the descriptors used
and might not be sufficient to assess the drug-likeness and
diversity of generated molecules. Indeed, the addition of an
incorrect small substituent to a correct structure will likely not be
captured in this visualization. Nevertheless, the three ADs
represented in the top row show a different distribution than
those in the middle and bottom rows; this indicates that more
diverse molecules are generated by the former compared to the
latter, and that some of the generated molecules come close to,
or fall into, three clusters where known actives are located.

Diversity. An important aspect of evaluating the output of
generative models is the diversity of generated compounds.53 In
order to quantify the diversity of the output when using each
applicability domain, we first measure its internal diversity based
on the Tanimoto similarity coefficient (computed for ECFP
fingerprints of radius 2 and with 1024 bits). Internal diversity of
a set of molecules is defined as 1 minus the average Tanimoto
similarity between two molecules of the set. While this measure
indicates the chemical diversity of the set of molecules, it also
bears inherent limitations, as it summarizes the distribution of
the intermolecule Tanimoto similarity to its mean. It is also
dependent on the similarity measure used. We also define a
second diversity metric described in Figure 5 to evaluate the
generated sets. The training set is clustered with the k-means
algorithm.54 After the parameter search on the three data sets,
the number of clusters was set to five, as this hyperparameter
yielded a qualitatively reasonable clustering on the three data
sets. Then, each generated molecule is assigned to one of the
clusters obtained. The entropy of the generated molecules’
repartition within the clusters is used as another measure of
diversity. As shown in Figure 5, the less even the distribution of

Table 2. Datasets Used for Benchmarking Generative
Applicability Domainsa

JAK2 Renin 11βHSD ChEMBL11βHSD
molecules 667 142 1409 166
actives 140 32 792 8
origin ChEMBL Sanofi Sanofi ChEMBL
internal diversity 0.47 0.54 0.79 0.82
aInternal diversity is computed as the average of the intermolecule
Tanimoto distance on Morgan fingerprints (with 1024 bits and a
radius of 2) for the dataset.
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molecules within the clusters, the lower the entropy. Maximal
entropy is reached when generated molecules are distributed
evenly across the clusters and therefore span roughly the same
chemical space as the training set.
Finally, we also compute the number of clusters found on the

generated set using the Butina algorithm55 with a 0.5 Tanimoto
cutoff. As for internal diversity, these measures are limited both
by the descriptors used to represent molecules and by the
clustering algorithm used. Nonetheless, coupling the three
measures yields good insight on the molecular diversity of the
generated sets.

Recovered Actives. Goal-directed generation in the context
of lead optimization is aimed at discovering novel bioactive

molecules. For each generative applicability domain, we assess
whether the generative algorithm can retrieve actives from the
test set (that were held-out during the training of the QSAR
model and the pretraining and reinforcement of the generative
algorithm). We report the percentage of actives for which there
was a generated molecule with a Tanimoto similarity above 0.9
(i.e., the generative algorithm found a very close analog) and
with a Tanimoto similarity of 1 (exact match). Assessing
whether the generative algorithm can retrieve unseen known
actives constitutes the best proxy that we have for its ability to
generate novel actives.

Measures of Drug-Likeness. Different scores have been
developed to assess the drug-likeness of a molecule in a

Figure 4. JAK2: Projection ofmolecules generated with the LSTM-HCmodel on the original data set using the first two dimensions of the PCA of their
Morgan fingerprints. Blue dots represent generatedmolecules, green dots represent actives from the test set, and red dots represent inactives. The three
AD metrics in the top row lead to more diverse molecules than the ones in the middle and bottom rows.
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medicinal chemistry context. We use the QED11 and the SAS28

to evaluate the generated compounds. As these values are
dependent on the chemical series explored by the generative
algorithm, we compute the most extreme values found in the
data set both for SAS and QED and compare them with the
distribution SAS and QED of all the molecules generated during
the different runs, as described in Figure 6. We also report the
mean and the standard deviation of the percentage of molecules
generated at each run that fall between these extreme values.

Proxy Drug-Likeness Descriptors.We examined the 50 best
scoring compounds generated by the generative process using
the different ADs. Through this qualitative analysis, we
identified several simple descriptors that weremarkedly different
between the training set and the generated set when an
inappropriate AD was used during generation on JAK2. Those
descriptors are the following: the number of halogen atoms, the
number of sulfur atoms, the number of unpaired electrons in
their valence shell, the number of heteroatom−heteroatom

Figure 5. Entropy as ameasure of the coverage of the training set diversity. Themore homogeneous the repartition of the generatedmolecules between
clusters is, the higher the entropy will be. Generated molecules too far from the training set are set apart. This example displays molecules from the
JAK2 data set.

Figure 6. QED distribution of generated molecules for different applicability domain definitions on the JAK2 data set. The vertical green lines
correspond to the minimum and maximum values for QED found in the training set, where higher is better.
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bonds, the maximum ring size, and the molecular weight (see
Figure 7). For each AD, we computed the distribution of those
properties. In a similar fashion to SAS and QED, we also
compute the most extreme values found in the data set for each
of those properties and report the mean and standard deviation
of the percentage of molecules generated at each run that fall
between those values. It is to note that the presence of
heteroatom-heteroatom bonds in a molecule is not a problem
per se but that bad ADmight lead to great number of them in the
generated structures.
The distributions of these descriptors have been used to

quickly sort out bad AD for all data sets before double-checking
the relevance of the AD and of the proxy descriptors by visual
inspection of the generated structures. Figure 7 shows the results
produced by a bad applicability domain definition. One can see
that molecules generated have on average a molecular weight
close to 1000 Da, while it is 500 Da in the data set. Figure 7 also
shows a much higher number of sulfur atoms and heteroatom−
heteroatom bonds in generated molecules. Those results point
to the fact that the generated molecules are poorly drug-like.
This first analysis allows us to discard obviously bad AD
definitions in order to focus on those that pass this filter. It is to
note that most applicability domains, even the best ones, can
sometimes generate peculiar patterns of problematic structures,
and that bad ADs very often lead to the generation of specific
structural patterns as illustrated in Table S1 and Table S2.

■ RESULTS
In this section, we report the systematic evaluation of the
different applicability domains definitions on each data set. For
each data set, we identify the best applicability domains
according to the evaluation metrics described in the previous
section.
JAK2Data Set.On the JAK2 data set (see Table 3 for the full

results), most AD definitions fail to generate molecules with
molecular weights, ring sizes, number of heteroatoms, and
number of radicals within the range of the training set. Three
ADs stand out: “range physchem + range ECFP4”, “range
physchem + range ECFP6” and “range physchem + range
ECFP4 counts”. These three methods produce overall
molecules in the range of the training set for the different
proxy metrics and retrieve the same proportion of unseen
actives. The AD definition “range physchem + range ECFP4
counts” stands out with the highest percentage of generated
molecules in the same QED range as the training set and a high
diversity of generated molecules.
For the JAK2 data set, we also explore the impact of AD for

other goal-directed generation approaches from the set of
Guacamol baselines.4

Graph GA. For the Graph GA algorithm (Table 4), there are
more AD definitions for which the generated set scores highly on
the evaluation metrics. Noteworthy, we see that the metrics
identified in section Proxy Drug-Likeness Descriptors are almost

Figure 7.Comparison of data set and generated molecules on the JAK2 test case (here with the maximum similarity on atom-pair descriptors) with the
distributions for properties identified as important through qualitative analysis.
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satisfied for 100% of molecules for every AD. Overall, in addition
to the ones identified above for the LSTM-HC method, the
“range ECFP4”, “range ECFP4 counts”, and “range physchem +
range AP” AD definitions show good results. This suggests that
the efficiency of AD in keeping the generation in a drug-like
chemical space is in part dependent on the generative method.

SMILES GA. Interestingly, the results for the SMILES GA
algorithm (Table 5) show the same AD definitions performing
well as for the Graph GA algorithm.
Overall, results across Guacamol’s goal-directed generation

algorithms suggest that the most stringent AD definitions (e.g.,
“range physchem + range ECFP4 counts”) seem to perform well
across algorithms. They also show that the LSTM-HC approach
(perhaps due to its high flexibility as it operates directly on the
space of all SMILES strings) requires a more stringent AD than
its graph or SMILES based genetic algorithm counterparts.
On the other hand, the evolution of scores when generating

molecules under the constraint of a stringent AD (“range
physchem + range ECFP4 counts”, see Figure 8) shows that
LSTM-HC reaches far higher scores than the Graph GA and
SMILES GA. Generative models have been suspected6 of
overoptimizing their scoring functions, thereby producing
unrealistic molecules. Generation under the constraint of a
well-chosen AD (as displayed in Figure 8) prevents this behavior
and shows the ability of a generative approach to generate

optimized molecules while maintaining their drug-likeness. In
this respect, LSTM-HC seems to have an edge over its
counterparts, reaching higher scores. On the other hand, the
other goal-directed generation algorithms generally display
better statistics than LSTM-HC with respect to the proportion
of actives recovered and in terms of valid compounds generated.
Renin Data Set. On the Renin data set (see Table 6), the

same three ADs (“range physchem + range ECFP4”, “range
physchem + range ECFP6”, and “range physchem + range
ECFP4 counts”) still lead to the highest values on the evaluation
metrics. Nonetheless, two other AD, “range of physchem +
range AP” and “range ECFP4 counts”, also lead tomolecules sets
that are well scored using the proxy descriptors and are largely in
the same range of SAS andQED as the training set. Among those
different applicability domains definitions, “range physchem +
range ECFP4 counts” and “range of physchem + range AP”
stand out due to the high percentage of identified actives and
high diversity of generated molecules.
On the Renin data set, there are more applicability domain

definitions that produce drug-like molecule sets in comparison
to the JAK2 data set. This could be explained by the smaller size
of the Renin data set. Indeed, with less molecules in the training
set, an applicability domain definition will become more
stringent. This can explain that an AD that is not sufficiently

Table 3. Evaluation of the Molecule Sets Generated with the Different Applicability Domains on the JAK2 Dataseta

aThe three first columns are measures of the diversity of generated molecules, while the following columns are measures of the quality of generated
molecules. For all columns, higher is better, and therefore darker shades indicate better performances. For each column with a name that starts with
“% valid”, the reported number is the percentage of molecules for which the value for the property falls in the range observed in the training set for
this property. The standard deviations over ten replica are indicated between parentheses. We see that applicability domains that combine a range
of physicochemical descriptors and a range of Morgan fingerprints perform best.
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Table 4. Evaluation of the Molecule Sets Generated with the Graph GA Algorithm and the Applicability Domains on the JAK2
Dataseta

aFor the “range QED” AD definition, the score for the QED is below 100%. This is due to the fact that molecules should fall between the 5th and
95th percentiles to have a valid QED, while the AD checks if the QED is between the most extreme values. Thus, the AD definition is less stringent
than the evaluation metric.

Table 5. Evaluation of the Molecule Sets Generated with the SMILES GA Algorithm and the Different Applicability Domains on
the JAK2 Dataset

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00883
ACS Omega 2023, 8, 23148−23167

23157

https://pubs.acs.org/doi/10.1021/acsomega.3c00883?fig=tbl4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00883?fig=tbl4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00883?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00883?fig=tbl5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


strict on the JAK2 data set can still lead to the generation of drug-
like molecules on the Renin data set.
11βHSD Data Set. As the 11βHSD data set is made of two

chemical series, three series of results are presented, two
featuring an AD defined using representatives of one of the two
series and one where the training set of the AD contains
representatives of both series. On the urea chemical series (see
Table 7 for full results), only “range physchem + range ECFP4”
and “range physchem + range ECFP4 counts” ADs yield the
highest evaluationmetrics, with the latter giving better results on
the SAS and QED metrics.
On the oxathiazine series (see Table 8), the two same ADs

produce high evaluation metrics, as well as the “range ECFP4
counts” AD.
Surprisingly, on the full data set (see Table 9 for full results),

even the best applicability domain (“range physchem + range

ECFP4 counts”) yields molecules with low SAS and QED
metrics and low diversity. This could be explained by the fact
that an AD defined with two distinct chemical series leads to a
broader chemical space, imposing less constraints on the
generative model and allowing the generation of non-drug-like
structures.
ChEMBL 11βHSD Data Set. The ChEMBL 11βHSD data

set allows us to evaluate AD definitions in a different context
than lead-optimization. It could for instance mimic a hit-finding
scenario, starting from a diverse data set to design novel actives.
A first analysis of the results from Table 11 yields surprising
results: the drug-likeness of generated molecules using the best
AD definitions, according to the various proxies, is better than
that for the 11βHSD internal data set. The fact that the
ChEMBL data set is more diverse, with various chemotypes
represented, would suggest the opposite.

Figure 8.Comparison of scores reached by different algorithms when optimizing JAK2 predicted activity while staying in the “range physchem + range
ECFP4 counts” AD. LSTM-HC reaches higher optimization scores and recovers slightly more active compounds than Graph GA and SMILES GA.

Table 6. Evaluation of the Molecule Sets Generated with the Different Applicability Domains on the Renin Dataset
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Table 7. Evaluation of the Molecule Sets Generated with the Different Applicability Domains on the 11βHSD Urea Series
Dataseta

aAll generated molecules belong to the same cluster, so entropies are 0.

Table 8. Evaluation of the Molecule Sets Generated with the Different Applicability Domains on the 11βHSDOxathiazine Series
Dataset
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Nonetheless, if we look at the optimization scores displayed in
Figure 9, we see that scores do not even cross the threshold for
being predicted active for all AD definitions that feature the
range of physicochemical descriptors and the range of
fingerprints. Additionally, while AD definitions combining
range of physicochemical descriptors with similarity using

fingerprints produce good results according to Table 11, visual
inspection shows molecules that are not drug-like (Table 10).
AD definitions are therefore either too stringent (leading to a
failure of optimization) or not stringent enough, leading to
molecules that are obviously non-drug-like, such as the ones
displayed in Table 10.

Table 9. Evaluation of the Molecule Sets Generated with the Different Applicability Domains on the Full 11βhsd Dataset

Table 10. ChEMBL-Extracted 11βHSDDataset: Typical Problematic Structures Generated with the Three ADs That Are Able to
Optimize the Scoring Function while Producing High Scores on Evaluation Metricsa

aAs reported in Table 11.
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Molecular Turing Test.We validate our results by running a
molecular Turing test. We restricted ourselves to the JAK2 data
set, and to four different AD definitions: “range QED”, “maxsim
ECFP4”, “range physchem + maxsim ECFP4”, and “range
physchem + range ECFP4 counts”. We then asked Sanofi
researchers working in early drug discovery (e.g., drug discovery
project team leaders, medicinal chemists, and computational
chemists) to discriminate, among molecules generated with
those four AD as well as for molecules from the test set, those
that they would not consider for synthesis in a drug discovery
program. Twenty molecules were selected at random in each set.
The 100 structures were shuffled and shown to the anonymous
participants. The rejection rates are shown as a boxplot for each
set of molecules in Figure 10. The molecular Turing test
confirms that ADs traditionally used in QSAR modeling
(“maxsim ECFP4”) or based on existing drug-likeness scores
(“range QED”) fail at generating drug-like molecules. Indeed,
their average rejection rate is 100%. Results for the “range
physchem + maxsim ECFP4” AD are also poor, with a rejection
rate on average of 90%, showing that ADs with intermediate
performance according to our proxy metrics (Table 3) also fail
to generate drug-like molecules. Finally, the AD definition that
we identified as the best (“range physchem + range ECFP4
counts”) shows rejection rates similar to those of molecules from
the data set. Interestingly, rejection rate of molecules from the
test set (that were thus selected, synthesized and tested in a drug
discovery project) is around 15%, confirming that a large part of
subjectivity remains when choosing which molecules to select
for synthesis.

■ DISCUSSION
Our results highlight the influence of the applicability domain
definition on the drug-likeness of the molecules generated de
novo. Indeed, some of the classic applicability domain
definitions used in QSAR modeling, such as ensuring similarity
to the training set (corresponding to the applicability domain
definitions “maxsim ECFP4”, “maxsim ECFP6”, and “maxsim
ap”), fail to generate an high enough proportion of drug-like
molecules. Other approaches such as filtering unwanted
substructures or using drug-likeness scores (“filters validity”
and “range qed” ADs) are not very efficient either. More
stringent definitions based on bounding-box approaches (“range
ECFP4”, “range ECFP4 counts”, “range physchem”) can
sometimes lead to drug-like molecule sets, but they do not
perform well across all tasks. The best results are obtained
through a combination of physicochemical descriptors and
fingerprints (“range physchem + range ECFP4”, “range
physchem + range ECFP6”, “range physchem + range ECFP4
counts”, “range physchem + maxsim ECFP4”, “range physchem
+ maxsim ECFP6”, and “range physchem + maxsim ap”), while
the only applicability domain that performs well throughout all
tasks is the “range physchem + range ECFP4 counts” definition.
Figure 11 represents a tree map56 of the results obtained on

the Renin data set with a good AD definition (i.e., “range
physchem + range ECFP4 counts”) and a bad AD definition
(i.e., “Maxsim ECFP4”) together with the original Renin data
set. In terms of chemical diversity, good applicability domain
definitions tend to generate sets of molecules that are
qualitatively similar to the original data set used, while
applicability domains that are not stringent enough generate
sets of molecules that overfit to specific regions of chemical

Table 11. Evaluation of the Molecule Sets Generated with the Different Applicability Domains on the Chembl 11βHSD Dataset
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space. Interestingly, good applicability domain definitions lead
to higher diversity in addition to better drug-likeness for
generated molecules.
Figure 12, which shows the fraction of actives and inactives

close to generated compounds for different similarity thresholds,
also highlights the better coverage of the training set’s chemical
space by good AD definitions. Good applicability domains
explore the vicinity of the original training set, with close
neighbors of generated molecules showing an enrichment
toward the actives of the data set.
Counterintuitively, good applicability domains are associated

with lower scores, as shown in Figure 13. In this figure, the
evolution of scores throughout training of the generative model
is shown for both a good AD definition and a bad AD definition.
These results suggest that an applicability domain definition that
is not sufficient to constrain generative algorithms leads to the
overexploitation of narrow regions of the chemical space, often

with the addition of non-drug-like patterns to a high-scoring
molecular structure. This reward hacking behavior57 is
prevented by good AD definitions: the constraints associated
with good applicability domains prevent generative algorithms
for overexploiting a specific region of chemical space, leading to
a wider distribution of scores.
Another interesting takeaway from our results is that different

well performing applicability domain definitions can lead to the
exploration of different regions of the chemical space. Figure 14
compares the average Tanimoto similarity between sets
generated with good AD definitions and shows that different
well performing applicability domains lead to the exploration of
different regions of chemical space.
Table 12 displays two patented molecules on the oxathiazine

series of the 11βHSD data set that were not seen during model
building or generation, as well as highly similar generated
molecules. This showcases the fact that good applicability

Figure 9. Comparison of scores reached by the LSTM-HC under the constraint of different AD definitions on the ChEMBL 11βHSD data set.
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domain definitions are also capable of retrieving unseen actives.
This highlights the ability of generative algorithms to produce
valuable molecules in an industrial drug discovery context.
Finally, our results also highlight the importance of choosing a

carefully curated training set. Indeed, the set that we used for
training the generator and the QSAR models was also used to
define the applicability domain for generation. This implies that
the training set needs to have only molecules that a practitioner
considers as drug-like. If this is not the case (for instance, if the
training set includes results from a high-throughput screening
campaign, all of which would not be deemed acceptable starting
points for a lead-optimization program), the applicability
domains defined with respect to the training set might be
insufficient to generate only drug-like molecules. Such an effect
can be seen in the full 11βHSD data set (see Table 7): as the
training set is composed of two distinct chemical series, the
applicability domains defined are less restrictive and lead to an
overall lower drug-likeness of generated compounds. Those
findings underline the importance of curating an adequate
training set for generative models.
Finally, another approach for generating drug-like compounds

would be to include the output of more sophisticated
retrosynthesis tools59,60 within our scoring function. A limitation
of this approach is the computing time associated with the
evaluation of a single molecule, although this could be addressed
through enhanced sample efficiency.61 Retrosynthesizability
could also be achieved using generative models of forward
synthesis pathways.62,63 While the integration of synthesizability
is a very promising avenue of research,62 it is beyond the scope of
this work. We acknowledge that several choices we made in this
work are ad hoc and would deserve to be explored further, such
as the other AD definitions, the choice of other metrics or
similarity thresholds. Nevertheless, when we have employed the
best-performing AD in the four data sets and in lead
optimization projects, the qualitative improvement in the
generated structures was such that it discouraged investigating
systematically other possible options.

Figure 10. Results of the molecular Turing test for each of four different AD definitions (“range QED”, “maxsim ECFP4”, “range physchem +maxsim
ECFP4”, and “range physchem + range ECFP4 counts”) and for the JAK2 training set. The black bar denotes themean, and the box denotes an interval
with 90% of the values. Results were obtained with 15 different participants.

Figure 11. Tree map plot of the Renin test set (in green), molecules
generated with a good applicability domain (“range physchem + range
ECFP4 counts”, in blue), and molecules generated by an applicability
domain showing poor results (“maxsim ECFP4”, in purple). The
molecules from the good AD and the test data set (blue and green,
respectively) mainly fall on the same trees and share connections,
suggesting that the two sets could be similar and the generated
molecules relevant. In contrast, the molecules from the bad AD are all
located on a separate tree, suggesting that they are dissimilar from the
test set and probably irrelevant. The molecule generated with the bad
AD that is closest to the test data set (purple arrow) is still dissimilar to
the closest molecules from the test data set (green arrow) or from those
generated with a good AD (blue arrow). The tree map is generated
using the TMAP library56 with default settings.
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■ CONCLUSION
In this work, we highlight methods that improve the drug-
likeness of molecules designed by generative models. For this,
we defined several different applicability domains and evaluated
them on different data sets. An analysis allows us to identify
valuable AD definitions for molecular generative algorithms.
Our analysis shows that classic applicability domains metrics
used in QSAR modeling (e.g., Tanimoto similarity on ECFP4
fingerprints) are not sufficient to discriminate molecules
generated using generative artificial intelligence algorithms.
Furthermore, measures of drug-likeness commonly used, such as
QED, can be optimized in unintended ways and do not
constitute a valid applicability domain for generative models
either. Even applicability domains based on the combination of
physicochemical descriptors, which intuitively could be most
adapted to distinguish between drug-like and non-drug-like
molecules, fail at this task. This highlights the need to distinguish

between applicability domains used in QSAR modeling and
applicability domains used for the generative algorithm, as
applicability domains performing well in the case of QSAR
modeling do not necessarily perform well for generative models.
Nonetheless, by combining physicochemical descriptors and
fingerprint-based similarity in the “range physchem + range
ECFP4 counts” AD, it is possible to obtain a definition that
performs well for the different data sets we have considered. The
molecules generated using this applicability domain definition
are generally drug-like, and moreover show a higher diversity
and coverage of chemical space than using other applicability
domain definitions. It is an important feature as novelty is often a
challenge in lead-optimization. We leave for future work the
exploration of how other parameters of the AD (such as using

Figure 12. Fraction of actives and inactives among the Renin training set molecules close to the generated molecules at different similarity thresholds.
Results are shown for the “range physchem + range ECFP4 counts” and “maxsim ECFP4” applicability domains. They show that good applicability
domains generate molecules closer to the actual training set, with a clear enrichment toward active molecules.

Figure 13. Renin data set: evolution of generated molecules’ scores
throughout the optimization epochs for a good applicability domain
(“range physchem + range ECFP4 counts”) and for an applicability
domain showing poor results (“maxsim ECFP4”). The scores of the
molecules generated with the good applicability domain are more
spread out and lower than those generated with the other applicability
domain (while most are still in the correct range, between the predicted
active threshold and the maximum score among the test set molecules).
This illustrates that poorly performing ADs leave room for reward
hacking by the generator.57

Figure 14. Average Tanimoto similarities (computed on ECFP4
fingerprints) for generated sets of molecules using a good applicability
domain definition on the JAK2 data set. Different applicability domains
can lead to the exploration of different portions of chemical space.
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percentiles instead of span to define the AD) might impact the
generation results. As our results were obtained in a lead-
optimization context, where the chemical space explored is
focused on a narrow set of chemical series, the applicability
domains that we explore and identify in this work as yielding the
largest proportion of drug-like molecules could behave differ-
ently in a different context. For instance, when using generative
algorithms in distribution learning tasks,4 where the goal is to
generate libraries of compounds for downstream task, other
applicability domains definitions could be more suitable. For
example, while novelty (in the sense of generating molecules
with a similarity to the training set below a given threshold) is
not a critical feature in the context of lead optimization, it could
be desirable in distribution learning tasks. Indeed, lead
optimization searches for novel molecules within a very limited
chemical space, while distribution learning aims at exploring a
diverse chemical space. Nevertheless, our results show that using
an adequate applicability domain definition for generative
models can greatly improve the drug-likeness of the structures
generated. As this is a key aspect for the adoption of generative
models in a drug discovery setting, we hope that our results will
benefit practical applications of generative models for drug
design.
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