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Abstract
H5N1 virus infection results in ~60%mortality in patients primarily due to respiratory failure,

but the underlying causes of mortality are unclear. The goal of this study is to reveal respira-

tory disorders occurring at the early stage of infection that may be responsible for subse-

quent respiratory failure and death. BALB/c mice were intranasally infected with one of two

H5N1 virus strains: HK483 (lethal) or HK486 (non-lethal) virus. Pulmonary ventilation and

the responses to hypoxia (HVR; 7% O2 for 3 min) and hypercapnia (HCVR; 7% CO2 for

5 min) were measured daily at 2 days prior and 1, 2, and 3 days postinfection (dpi) and

compared to mortality typically by 8 dpi. At 1, 2, and 3 dpi, immunoreactivities (IR) of sub-

stance P (SP-IR) in the nodose ganglion or tyrosine hydroxylase (TH-IR) in the carotid body

coupled with the nucleoprotein of influenza A (NP-IR) was examined in some mice, while

arterial blood was collected in others. Our results showed that at 2 and 3 dpi: 1) both viral

infections failed to alter body temperature and weight,V
�
CO2

, or induce viremia while produc-

ing similarly high lung viral titers; 2) HK483, but not HK486, virus induced tachypnea and

depressed HVR and HCVR without changes in arterial blood pH and gases; and 3) only

HK483 virus led to NP-IR in vagal SP-IR neurons, but not in the carotid body, and increased

density of vagal SP-IR neurons. In addition, all HK483, rather than HK486, mice died at 6 to

8 dpi and the earlier death was correlated with more severe depression of HVR and HCVR.

Our data suggest that tachypnea and depressed HVR/HCVR occur at the early stage of

lethal H5N1 viral infection associated with viral replication and increased SP-IR density in

vagal neurons, which may contribute to the respiratory failure and death.

Introduction
Patients infected by highly pathogenic avian influenza (HPAI) H5N1 viruses have a spectrum
of clinical abnormalities, ranging from mild symptoms to respiratory failure and death [1,2]. In
all fatal cases (60% mortality), patients present with cough, dyspnea, pulmonary inflammation
and infiltration during the first 6 days postinfection (dpi) and subsequently develop respiratory
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failure (hypoxemia), leading to death several days later [1,3–6]. The current unavailability of
effective vaccine coupled with the continuous zoonotic transmission of endemic H5N1 viruses
in domesticated birds makes widespread epidemics highly plausible, particularly if viral muta-
tions lead to more sustainable human-to-human transmission. Thus, both determinations of
the lethality of the infection at the early stage and development of corresponding effective treat-
ments to prevent the subsequent respiratory failure are urgently needed.

Previous studies have shown that two virus isolates from human cases in an H5N1 outbreak
in 1997 have dissimilar outcomes in experimental murine infection, despite nearly identical
genetic compositions. BALB/c mice infected with lethal and non-lethal H5N1 viruses isolated
from patients have shown similar viral titers in lungs and pulmonary inflammation; however,
only the former is neurotropic and lethal, inducing death 6–8 dpi in mice [7,8], ferrets [9], and
cats [10]. Though respiratory failure is the major causative factor of H5N1 viral infection lead-
ing to death in the clinical setting, the respiratory pathophysiology at the early stage of the
infection is unexplored. It is generally accepted that hypoxic and hypercapnic ventilatory
responses (HVR and HCVR) are crucial in maintaining life in mammals. Their depression or
deficit is responsible for the respiratory failure in many fatal diseases, such as SIDS [11–13],
COPD [14,15], congenital central hypoventilation syndrome [16,17], and Leigh syndrome
[18]. Therefore, we hypothesized that depressed HVR and HCVR would occur in the early
stage of lethal H5N1 viral infection and could be correlated with the death.

Our study has shown HVR and HCVR depression at the early stage in lethal rather than
non-lethal H5N1 viral infected mice, raising a fundamental question as to how the lethal H5N1
virus induces these disorders. It is established that HVR is mediated predominantly by stimu-
lating carotid chemoreceptors [19]. Moreover, the evidence is accumulating that activation of
bronchopulmonary C-fibers (PCFs) could abolish HVR [20,21] and CO2 chemoreception of
the retrotrapezoid nucleus [22], a key medullary region in generating HCVR [23]. PCFs exert
these modulatory impacts likely via their projections to the commissural subnucleus of the
nucleus tractus solitarius (comNTS), where neurons not only receive inputs from the carotid
body [24,25] but also project to neurons in the retrotrapezoid nucleus [22]. Over-expression of
C-fibers and vagal (PCF) sensitization [14,26,27] depresses HVR and/or HCVR. Thus, we fur-
ther hypothesized that lethal H5N1 virus was able to infect both the carotid body and PCFs,
which may contribute to the development of HVR and HCVR depression.

Materials and Methods

Animals
The present study was approved by the Institutional Animal Care and Use Committee
(IACUC) and Institutional Biosafety Committee of the Lovelace Respiratory Research Institute.
All facilities were accredited by the Association for Assessment and Accreditation of Labora-
tory Animal Care (AAALAC) International. BALB/c female mice experiments were conducted
in the Animal Biosafety Level 3 enhanced (ABSL-3+) facility. Guidelines for mice housing,
environment, and comfort described in the Guide for the Care and Use of Laboratory Animals
(7th Edition, National Research Council) were strictly followed. Euthanasia was performed
under the guidance of the American Veterinary Medical Associations (AVMA) Guidelines on
Euthanasia.

Mice handling/care and identification
Eighty pathogen-free mice were purchased from Charles River Laboratories, Inc. (Wilmington,
MA) and quarantined for 2 weeks before the experiments. Mice had access to food and water
ad libitum. They were 4–5 weeks of age at the day of infection, which is similar to our previous

Viral Infection and Breathing in Mice

PLOS ONE | DOI:10.1371/journal.pone.0147522 January 25, 2016 2 / 17



studies [7]. Temperature and humidity ranged from 16 to 22°C and 30 to 65%, respectively,
and the light cycle was 12 hr on and 12 hr off. Ventilation in the study room was 0.15 air
exchanges per hour. All mice handlers were vaccinated for circulating seasonal influenza
strains and were not permitted to enter mice quarters if they exhibited any symptoms of upper
or lower respiratory infection. Mice were identified by an IPTT-300 implantable programma-
ble temperature and identification transponder (Bio Medic Data Systems, Inc, BMDS, Seaford,
Delaware). These chips also provided subcutaneous body temperature data using a BMDS elec-
tronic proximity reader wand (WRS-6007, BMDS). The mice subjected to the survival study
were monitored twice daily in the morning and in the evening. Their behavior and health con-
ditions were checked. Their body weights and body temperatures were measured. The humane
endpoints were set as body weight lose> 30% or body temperature drops to< 32 degrees or
appeared moribund. Animals met the criteria were humanely sacrificed via injection of Eutha-
sol (200 mg kg-1, ip). No analgesics and anesthetics were used.

Viruses and cells
Avian influenza A H5N1 viruses were obtained from the Centers for Disease Control and Pre-
vention (CDC) (Atlanta, GA). A/Hong Kong/483/97 (HK483) was isolated from a pharyngeal
swab from a five-year-old female patient who died of the disease in the Hong Kong outbreak in
1997, while A/Hong Kong/486/97 (HK486) came from a 13-year-old female patient who was
discharged from the hospital during that event [28]. All manipulations with these viruses and
use of viral infected mice were conducted in the ABSL-3+ at the Lovelace Respiratory Research
Institute. These viruses were propagated from the CDC stock in eggs twice to produce working
stocks, aliquoted, titrated by plaque assay on Madin-Darby Canine Kidney (MDCK) cells, and
stored at -80°C.

Viral infection of mice and clinic observation
After anesthesia with isoflurane, 50 μl of vehicle, HK483 or HK486 virus (100 PFU) was intrana-
sally given via dropwise application to the nares as previously reported [7]. The mice were closely
monitored until recovery of normal postural reflexes and placed separately in their home cage.
They were divided into three groups: Ctrl, HK486 and HK483. Clinical observations were con-
ducted twice daily during -2 to 3 dpi and included temperature readings from the BMDSmicro-
chip and recording of the onset, severity, and duration of all visible changes such as abnormal
respiration (cough and sneezing), excretions, behavioral characteristics, and neurological signs
(i.e., paresis, torticollis, seizures, and paralysis). Mortality was counted over 8 dpi.

Animal habituation
Mice were habituated to handling and two types of chambers. They were individually placed in
a 60 ml syringe chamber (with the plunger removed) for 10 min and then moved into a whole-
body unrestrained plethysmograph chamber (PLY3211, Buxco Electronics Inc., Troy, NY)
with a bias flow (0.5 L min-1) for ~45 min. The same habituation was applied once a day for
three continuous days.

Measurements of metabolism and V
�
M

After habituation to both chambers, V
�
CO2

was first measured. As reported before [29], the indi-

vidual mouse was placed in the syringe chamber with an open end that was closed by a plug
with an inlet connected to a flow regulator (Bias flow regulator, Buxco Research Systems, Wil-
mington, NC). CO2 concentration (by using a CO2 analyzer, Hewlett Packard 78356A),
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temperature, and humidity in the air out of the syringe were continuously measured to deter-
mine V

�
CO2

. The animal was then placed in the plethysmograph chamber that was continuously

flushed with normoxic (21% O2 and 79% N2) gas mixtures at 0.5 L min-1. The temperature
inside the chamber was maintained at ~30.0°C as reported before [30,31] through adjusting a
heating lamp outside of the chamber, by which the animal body temperature was maintained
at ~36.5°C. Calibrations for flow rate and gas concentrations were made before and after each
experiment. All studies were performed during 9:00 and 17:00 hours to avoid any influence
from the circadian rhythm.

Blood sample collections and measurements of pH and blood gases
Some mice were anesthetized with urethane (1200 mg kg-1, ip). As needed, supplemental ure-
thane (300 mg kg-1, ip) was administered to completely eliminate eye-blink and limb-with-
drawal reflex. The right femoral artery was isolated and cannulated, and arterial blood was
sampled (100 μl) for measurements of baseline pH and blood gases using a blood gases ana-
lyzer (GEM Premier 3000, Instrumentation Lab., Lexington, MA).

Detection of viremia with real-time quantitative PCR
After the anesthesia, the animal was subsequently euthanized (Euthasol 150 mg kg-1, i.p.). The
blood sample was centrifuged (13,000 rpm, 4°C for 5 min) and serum was collected and placed
in a -80°C freezer. Viral RNA was extracted using the Qiagen QIAamp Viral RNAMini Kit
(cat No: 52904) and was performed by H5N1-specific (NP gene) real-time quantitative PCR.
PCR standards of RNA genomic copy numbers were used to determine the gene copy numbers
of serum samples. All assays were repeated in triplicate on the ABI 7300 real-time PCR system
(Applied Biosystems, Life Technologies Corp., Carlsbad, CA). The quantitative PCR results
were analyzed with the software provided.

Assay for viral titers in the lungs
Plaque assay was performed in MDCK cells to quantify the multiplicity of viral infection in the
lungs. In brief, after euthanasia, the lungs from each mouse were harvested and homogenized
in 1.0 ml of PBS with one 5 mm stainless steel bead and homogenized with a Qiagen TissueLy-
ser (Qiagen Inc., Valencia, CA) for 2 min at 30 Hz/sec. Homogenized material was spinned
down and 100 μl supernatant with ten-fold series dilution was applied to preseeded 12-well
plates of MDCK cells (95% confluent) and then overlaid with agar containing 3 μg/ml of tryp-
sin (Sigma–Aldrich, St. Louis, MO). Three days later, the plaque-forming unit (PFU) was
counted after fixation, removal of the agar and staining with 1.6% w/v crystal violet.

Immunofluorescence
Formalin-fixed and paraffin-embedded tissues of the carotid body and nodose ganglion were
sectioned (10 μm thick), deparaffinized, rehydrated, washed, and permeabilized and non-spe-
cific sites were blocked for immunofluorescence. The sections were incubated with the solution
containing the primary antibody or antibodies mixture to specifically target the nucleoprotein
of H5N1 influenza A (NP, mouse anti-influenza A monoclonal IgG 1:1000, EMDMillipore,
Billerica, MA), substance P (SP, guinea-pig anti-substance P polyclonal IgG 1:1000, EMD
Millipore) in the nodose ganglion or tyrosine hydroxylase (TH, rabbit anti-tyrosine hydroxy-
lase polyclonal IgG 1:1000, EMDMillipore) in the carotid body respectively. The antibody con-
centrations and incubation durations were determined and optimized prior to the experiment.
The secondary antibodies were raised in goat and conjugated with Alexa Fluor 350 (blue), 488
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(green), and 594 (red) alone or in combination (1:200, Life Technologies). For multilabeling,
antibodies raised from different animal species were selected. The immunoreactivity was visu-
alized using an epifluorescent microscope (Axioskop FS 2 plus, Zeiss, Germany) equipped with
a CCD digital camera (Zeiss Axiocam HRm, Zeiss) and images were captured using Axiovision
4 software (Zeiss).

Experimental protocols
Three Study Series were performed in this study.

Series I was designed to determine the effects of H5N1 viral infection at the early stage on
body weight, body temperature, metabolism (V

�
CO2

), ventilation (HVR and HCVR) and the cor-

relation between the depression of HVR/HCVR and the death date. After measuring baseline
V
�
CO2

, Ctrl (vehicle), HK483, and HK486 mice (n = 6, 15, and 7 respectively) were individually

placed in the plethysmograph at -2, -1, 1, 2, and 3 dpi to record baseline V
�
M and baseline respi-

ratory intervals (RR). The Ctrl, HK483 and HK486 mice came from two sets of experiments
(n = 3, 7, and 4 in the first set and 3, 8, 3 in the second set). The RR is a more sensitive index
than respiratory frequency to reflect a change of respiratory control [32]. We applied the Poin-
care analysis in which the duration of each breath was plotted versus the duration of the next
breath as previously reported [27]. The width of the variation was calculated perpendicularly
to (SD1) and along the line of identification (SD2). The ventilatory responses to hypoxia (7%
O2 balance with N2 for 3 min) and hypercapnia (7% CO2 + 40% O2 balance with N2 for 5 min)
were measured subsequently at these days. The mice were observed twice daily up to 8 or 9 dpi
to define the mortality and death date.

Series II was conducted to collect arterial blood for testing the viral effect on blood gases/pH
and venous blood and the lungs for detecting viral titers in the three groups of mice. Mice
(n = 7 in each group, 4 and 3 for the first and second set, respectively) were anesthetized to col-
lect arterial blood samples from femoral artery at 3 dpi, and euthanized for harvesting the
lungs and determine the viral replication.

Series III was performed to identify if HK483 or HK486 viruses were able to replicate in
vagal sensory neurons and the carotid body at the early stage of infection. Additional Ctrl,
HK483 and HK486 mice (in the second set) were euthanized at 1 (n = 5/per group), 2 (n = 3/
per group), and 3 (n = 2/per group) dpi. Following fixation via intracardiac perfusion of 4%
paraformaldehyde in PBS, the nodose ganglia and the carotid body were extracted and pre-
pared for immunofluorescence. Immunoreactivities (IR) of SP (SP-IR) and TH (TH-IR) were
utilized to mark vagal sensory neurons in the nodose ganglia and glomus cells in the carotid
body, respectively, while co-staining with NP-IR was employed to detect viral replication.

Data acquisition and statistical analysis
Raw data of the airflow and CO2 concentrations were digitized, monitored, and recorded by
PowerLab/8sp (model ML 785; ADInstruments Inc., Colorado Springs, CO) and a computer
with the LabChart Pro 7 software. Respiratory variables including VT, fR, and V

�
M; breathing

variations (RR) were derived by the online calculations of the airflow signals. Body tempera-
tures, body weight, arterial blood pH and gases were measured. All variables were expressed as
absolute values with the exception that HVR and HCVR were presented as Δ% change from
the baseline values. The baseline values were determined by measuring the variables for 1 min
immediately before hypoxia or hypercapnia. HVR and HCVR were measured at the peak V

�
M

response. Owing to the similarity of the results obtained from the first and second set of the
experiments, the data from the two sets were grouped together for statistical analysis. Group data
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were reported as means ± SE. Correlations between HVR and HCVR in -2 to 3 dpi and between
the depression of HVR and HCVR and the death date in HK483 mice were analyzed by using
Pearson’s linear correlation analysis. Two-way ANOVA with repeated measures was used to ana-
lyze the significant differences among the three groups. If an overall test was significant, Tukey’s
test was utilized for specific comparisons between individual groups. Comparisons of mortality
among the three groups were performed with the Fisher exact probability test followed by multi-
ple comparisons using Bonferroni’s test. P-values< 0.05 were considered significant.

Results

HK483 and HK486 viral infection have little effect on behaviors at the
early stage of infection
At the early stage of infection, the mice infected by HK483 or HK486 showed no discernible
behavior abnormalities, such as agitation and loss of appetite as compared to uninfected mice.
We compared body temperature, body weight, and V

�
CO2

from -2 to 3 dpi and found no signifi-

cant differences in these parameters among the three groups (Fig 1).

HK483 but not HK486 virus induces tachypnea and reduces the RR
variation
We examined eupneic breathing and RR variation at -2 to 3 dpi among the mice inoculated
with vehicle (Ctrl), HK483 or HK486 virus. The eupneic breathing and RR in HK486 mice
were similar to those observed in Ctrl mice at -2 to 3 dpi and no changes were found in these
variables until 2 dpi in HK483 mice (Figs 2 and 3). At 2 and 3 dpi, HK483 mice, compared to
Ctrl and HK486 mice, presented a unique tachypnea with fR elevated by ~17% (Fig 2) and sig-
nificant diminution of the variation of respiratory cycle including SD1 and SD2 (Fig 3).

HK483 virus uniquely induces depressed HVR and HCVR that correlate
to the death date
With respect to HVR and HCVR, HK483, but not HK486, infection led to a striking depression
of both HVR (50% and 70%# for 2 and 3 dpi) and HCVR (20% and 40%# for 2 and 3 dpi)
(Fig 4). Depressed HVR was mainly the result of lowered fR response with little change in VT

response, while depressed HCVR was exclusively associated with a distinct reduction in VT

response. All of the responses (HVR and HCVR) disappeared within 3 min after cession of the

Fig 1. Effects of H5N1 viral infection on animal body temperature (BT), body weight (BW), and
metabolism (V

�
CO2

). In each mouse of the three groups (n = 6, 15, and 7 for Ctrl, HK483 and HK486mice), the

samemeasures (BT, BW, V
�
CO2

) were repeated at 2 and 1 days before and 1, 2, and 3 days after intranasal
inoculation (Day -2, -1, 1, 2, and 3). Mean ± SE. As the results show, there is no significant difference of BT,
BW and V

�
CO2

among the three groups.

doi:10.1371/journal.pone.0147522.g001
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challenge similarly in all mice tested. No coughing and sneezing were observed throughout the
experiment in all of the mice tested. The decrease in HVR caused by the viral infection was
accompanied by a corresponding decrease in HCVR in HK483 mice as shown by the close cor-
relation between the HVR and HCVR values over the experiment days (Fig 5). All HK483
mice, but none of the Ctrl and HK486 mice, died at 6–8 dpi (Fig 6A). The degrees of HVR and
HCVR depression were significantly correlated with the time to death, i.e., the mice with the
larger decrement in HVR or HCVR died earlier (Fig 6B and 6C).

HK483 and HK486 viruses fail to alter arterial blood gases/pH and
produce similar lung virus titer
We compared arterial blood gases/pH at 3 dpi and found no significant difference among the
three groups (Fig 7). It is possible that the tachypnea and reduced breathing variation masked
blood gases/pH changes. Anyway, the occurrence of HVR and HCVR depression observed in
HK483 mice at 2 and 3 dpi was not due to baseline change in blood gases and pH. Additionally,
at 3 dpi, the virus titer (log PFU/g ± SD) in the lungs of HK483 and HK486 mice was similar:
7.1 ± 0.5 and 6.8 ± 0.6. Viremia was not detected in both infected groups (Table 1). These find-
ings suggest that the respiratory ventilation changes observed in HK483 are not the result of
changes in lung viral load in this experimental system.

HK483 virus induces virus replication and up-regulated SP expression in
vagal sensory neurons
Considering the important role the carotid body and PCFs play in control of HVR and HCVR,
we tested whether lethal H5N1 virus was able to infect both the carotid body and PCFs. NP-IR
was utilized to detect virus replication, while co-labeled SP-IR or TH-IR was applied to deter-
mine specific virus replication in vagal sensory neurons (C-neurons) or glomus cells in the
carotid body, respectively. As the results show, NP-IR was undetectable in the nodose ganglia
of HK486 mice, but began to appear in the vagal nodose ganglionic SP-IR neurons of HK483
mice at 2 dpi (Fig 8A and 8B). Interestingly, all NP-IR was co-expressed with SP-IR neurons,
indicating a selective virus replication in vagal C-neurons (but not other types of neurons). In
addition, HK483 infection failed to markedly elevate SP-IR density in the nodose ganglion
until 2 dpi (Fig 8B), implying a stimulating effect of this strain of virus on these vagal sensory
neurons to synthesize SP. Surprisingly, NP-IR was not denoted over the early stage of infection
in the carotid body of HK483 or HK486 mice (Fig 8C).

Fig 2. Comparison of viral infection effects on baseline V
�
M among Ctrl, HK483, and HK486mice. V

�
M

was daily measured in the individual mouse at 2 and 1 days before and 1, 2, and 3 days after intranasal
inoculation (Day -2, -1, 1, 2, and 3). V

�
M, minute ventilation; fR, respiratory frequency; and VT, tidal volume.

Mean ± SE. n = 6, 15, and 7 for Ctrl, HK483 and HK486 mice. * P < 0.05 compared to the data obtained in
previous day(s) and † P < 0.05 compared to Ctrl and HK486 mice at the same time-point. Tachypnea
(elevation of minute ventilation) is induced in HK483 but not HK486 mice at 2 and 3 dpi.

doi:10.1371/journal.pone.0147522.g002
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Fig 3. Effects of H5N1 viral infection on the variation of the baseline respiratory intervals (RR).RRwas daily measured in the individual Ctrl, HK483
and HK486 mouse at 2 and 1 days before and 1, 2, and 3 days after intranasal inoculation (Day -2, -1, 1, 2, and 3). A: Poincare plots of RR in an HK486 and
an HK483 mice before inoculation (Day -1) and at 1 and 3 days after intranasal inoculation (Day 1, 3). The area of the ellipse describes the distribution of the
points with the width of the variation perpendicular to (SD1) and along the line of identify (SD2) [27]. B: Group data of the variability of baseline respiratory
intervals (2500 intervals) in each group. Mean ± SE. n = 6, 15, and 7 for Ctrl, HK483 and HK486 mice. * P < 0.01 compared to the previous time-points;
† P < 0.01, compared to Ctrl and HK486 at the given day. A less RR variation is observed after HK483 but not HK486 viral infection at 2 and 3 dpi.

doi:10.1371/journal.pone.0147522.g003
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Discussion
Previous studies have shown that intranasal inoculation of lethal H5N1 viruses in mice [7,8],
ferrets [9], and cats [10] induces pulmonary infection and infiltration [2,7,33,34] followed by
death at 6–8 dpi [2,7,8,35,36]. However, the impact of lethal viral infection on breathing has
not been investigated. One of the novel findings of this study is that HK483 but not HK486

Fig 4. Comparison of viral infection effects on HVR (A) and HCVR (B) among Ctrl, HK483, and HK486mice.HVR and HCVR were measured daily in
individual mouse at 2 and 1 days before and 1, 2, and 3 days after intranasal inoculation (Day -2, -1, 1, 2, and 3).V

�
M, minute ventilation; fR, respiratory

frequency; and VT, tidal volume. Mean ± SE. n = 6, 15, and 7 for Ctrl, HK483 and HK486mice. * P < 0.05 compared to the data obtained in previous day(s)
and † P < 0.05 compared to Ctrl and HK486 mice at the same time-point. HK483 rather than HK486 viral infection produces HVR and HCVR depression at 2
and 3 dpi.

doi:10.1371/journal.pone.0147522.g004
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virus induces tachypnea and greatly reduced breathing variation at 2 and 3 dpi. Normal vari-
ability of breath duration reflects an optimal breathing control ranging from an absence of any
variability to a clearly periodic breathing pattern [26] as the result of excitatory and inhibitory
inputs from many neural feedback loops at different states. Both respiratory frequency and
breathing variation are under neuronal control. This information, along with the lack of
changes in body weight and temperature, V

�
CO2

and arterial blood gases at 2 and 3 dpi of

HK483 virus, implies that NK483 virus infects the nervous system at the early stage to induce
these respiratory abnormalities. The lack of a cough in our study is similar to other reports in
which lethal H5N1 virus did not evoke coughing in ferrets and cats [9,10], likely due to the
weaker or lack of cough reflex in these animal species as compared to humans.

The most important finding in the present study is that HK483 viral infection induces sig-
nificant depression of HVR and HCVR at 2 and 3 dpi. In addition, HK483 virus induces these
respiratory disorders without changes in body weight and temperature, V

�
CO2

, and blood gases/

pH and without a difference in virus titers of the lungs as compared to HK486 virus. The lack

Fig 5. Correlation of HVR and HCVR values (V
�
M) in HK483mice. The values of HRVmeasured at -2, -1, 1, 2, and 3 days after intranasal inoculation were

plotted against those of HCVR at the same times. n = 15 HK483mice for each day (total 5 days, 75 data points). The significant correlation suggests that a
poor HVR is often associated with an inadequate HCVR in HK483 mice.

doi:10.1371/journal.pone.0147522.g005
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of significant difference of virus titers in the lungs between the two virus strains at 3 dpi is con-
sistent with our previous report [7]. On the other hand, viral titers in the lungs were reportedly

Fig 6. The time to death after viral infection and its correlation with the severity of HVR/HCVR depression. A: Mortality of Ctrl, HK483, and HK486
mice over the infection period (up to 9 dpi). B and C: HVR and HCVR of individual HK483 mice were plotted against their corresponding death day (at 6, 7,
and 8 dpi). Mean ± SE. A: n = 6, 15, and 7 for Ctrl, HK483 and HK486 mice, respectively. B and C: n = 15 HK483 mice. HK483 but not HK486 viral infection
led to death at 6–8 dpi and the mice with the larger decrement in HVR or HCVR died earlier.

doi:10.1371/journal.pone.0147522.g006
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higher in HK483 than HK486 mice at 1 or 2 dpi [7,37], which raises a concern as to if this dif-
ference facilitates replication of HK483 virus in vagal C-neurons to precede the changes in
HVR and HCVR. However, this assumption is not supported by our recent study (unpublished
observation by Zhuang and Xu) showing the failure to detect HK486 viral replication in the
vagal C-neurons 6 dpi (3 days after HK486 viral infection reaching the same level of HK483
viral titers in the lungs). Our findings suggest blunted ventilatory chemoreflexes by H5N1 viral
infection in mice, which again supports the notion that lethal H5N1 viral infection is able to
impact the nervous system at the early stage of infection. Given that HVR and HCVR depres-
sion occurred during the course of influenza, we further analyzed the correlation between the
severity of these disorders and the death date in these animals. Interestingly, HK483 mice, who
presented more severe depression of HVR and HCVR at 2 and 3 dpi, died earlier. This close
correlation points to a possible contribution of HVR/HCVR depression at the early stage of
lethal H5N1 viral infection to developing respiratory failure and death by lethal H5N1 viral
infection (see Fig 6B and 6C). In fact, influenza viral infections by other strains, such as H1N1
and H3N2, could also develop hypoxemia, neurological symptoms with brain infection or
lesion [38,39], and respiratory failure in some patients [38–41]. It is interesting to determine in
future whether infection with H1N1 or H3N2 influenza virus at early stage is able to cause sim-
ilar HVR and HCVR depression.

In our subsequent experiments, we probed the infection of lethal H5N1 virus on the carotid
body and PCFs, two key peripheral nerve systems in control of breathing. We found absence of
viremia and virus replication in the carotid body, which is not supportive of the carotid body
involvement. Surprisingly, HK483 virus affected vagal sensory neurons at 2 and 3 dpi with fol-
lowing characteristics. First, NP-IR was undetectable in the nodose ganglia of HK486 mice, but
abundantly appeared in the vagal nodose ganglionic SP-IR neurons of HK483 mice. In

Fig 7. Effects of viral infection on pH and blood gases. Arterial blood was sampled at 3 dpi in anesthetized Ctrl, HK486 and HK483 mice (n = 7/each
group). Mean ± SE. There is no difference in blood gases/pH among the three groups at 3 dpi.

doi:10.1371/journal.pone.0147522.g007

Table 1. Virus titer in the blood and lungs at 3 dpi (log10 pfu/g, mean ± SD).

Group Blood Lungs

Ctrl - -

HK486 - 7.1 ± 0.5

HK483 - 6.8 ± 0.6

"-": not detectable. n = 7.

doi:10.1371/journal.pone.0147522.t001
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agreement, the neurotropic nature of lethal H5N1 virus has been reported in peripheral nerves
(Auerbach’s plexus of the enteric nervous system) and the CNS [7,8] in mice. Second, all
NP-IR was co-expressed with SP-IR neurons. In other words, NP-IR was only expressed in
vagal sensory C neurons marked by SP-IR without NP-IR expression outside of these neurons
in the nodose of ganglion. Considering that H5N1 virus is intranasally inoculated and its titers
were found in lungs, some of co-labeled neurons in the nodose ganglion (Fig 8A), at least in
part, are vagal pulmonary C-neurons (PCFs). Consistent with our finding, HSV-1 is reported
to replicate faster in C- (<36 h) than Aσ-fibers (>66 h) [42]. These data suggest that HK483
but not HK486 virus is neurotropic and first infects vagal C-neurons, rather than Aσ-neurons,
at the early stage of infection. Third, HK483 but not HK486 viral infection profoundly elevated
SP-IR density in the nodose ganglion, suggesting a stimulating effect of this strain virus on
vagal sensory neurons and overexpression of C-fibers (plasticity). Taken together, our morpho-
logical data lead to the conclusion that lethal H5N1 viral infection at the early stage is able to
infect and stimulate vagal (pulmonary) sensory neurons without viremia and viral replication
in the carotid body. Because of the absence of NP-IR in the brainstem 2 and 3 days after lethal
H5N1 viral infection in mice [7,8], we do not expect that NP-IR would be expressed in the
brainstem at 2 and 3 dpi in our HK483 mice.

There are two lines of evidence from this study pointing to PCFs’ involvement in the respi-
ratory disorders noted at 2 and 3 dpi. We found that tachypnea and reduction of breathing var-
iation uniquely occurred in HK483 but not HK486 mice. These respiratory disorders are

Fig 8. Expression of nucleoprotein-immunoreactivity (NP-IR, orange) in substance P
immunoreactivity (SP-IR) neurons (green) in the nodose ganglion and tyrosine hydroxylase
immunoreactivity (TH-IR) neurons (cyan) in the carotid body. A: At 2 dpi, nodose ganglion NP-IR
appears in a HK483 (right) but not HK486 mice (left) and HK483 virus increases the density of SP-IR in the
nodose ganglionic neurons. In contrast, NP-IR is undetectable in the nodose ganglion of infected HK483 and
HK486 mice at 1 dpi (data not shown). B: The density of SP-IR in the nodose ganglion is not significantly
changed by HK483 virus until 2 dpi. Because of the similarity of the SP-IR data at 2 and 3 dpi (N = 3 and 2,
respectively) in either HK483 (64 ± 11 vs. 69 ± 15) and HK486mice (40 ± 9 vs. 41 ± 11), they were grouped.
C: No viral replication in the carotid body of a HK483 mouse in which glomus cells are marked by TH-IR
(cyan) at 3 dpi in a HK483 mice. N = 5 for each group; * and † P < 0.05 compared HK483 data to Ctrl and
HK486 data respectively.

doi:10.1371/journal.pone.0147522.g008
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independent of varied pulmonary inflammation because our previous study has shown a simi-
lar pulmonary inflammation induced in HK483 and HK486 mice [7]. Tachypnea is thought to
be induced by activation of PCFs under the pulmonary disorders (see reviews [43,44]), thus,
our data support PCF involvement in the tachypnea and reduction of breathing variation. We
also found that HK483 viral infection markedly increased SP-IR expression of vagal C-neurons
at 2 dpi temporally coincident with appearance of respiratory disorders (tachypnea, lowered
respiratory variation, depressed HVR and HCVR), supporting vagal C-fiber activation and/or
sensitization. PCF activation could depress HVR [20,21,45] and CO2 chemoreception of the
retrotrapezoid nucleus [22] in the animals. Therefore, our data suggest that lethal H5N1 virus
infects and stimulates vagal pulmonary C-neurons (PCFs) likely to contribute to the respira-
tory disorders denoted at 2 and 3 dpi.

In summary, HK483 but not HK486 virus induces respiratory disorders including tachyp-
nea, reduction of breathing variation, and decreases in HVR/HCVR at 2 and 3 dpi concomitant
with viral replication and upregulated SP expression in vagal sensory neurons. Given that PCFs
are responsible for control of respiratory frequency and inhibition of HVR and HCVR, the
lethal H5N1 viral infection-induced respiratory disorders in this study may result from PCF
sensitization and/or activation by the lethal viral replication.

Perspective
Patients infected by lethal H5N1 virus initially present cough, dyspnea, pulmonary inflamma-
tion, and infiltration and subsequently show respiratory failure and death several days later,
primarily due to respiratory failure [3–6,46–51]. Owing to the lack of an effective vaccine, it is
important to develop corresponding effective treatments applied at the early stage of infection
to prevent the subsequent respiratory failure. However, it has not been explored if the respira-
tory disorders occur at the early stage of the lethal viral infection and to what extent the disor-
ders are correlated to the respiratory failure (death). Our results reveal, for the first time, the
presence of respiratory disorders (tachypnea, reduction of breathing variation, and decreases
in HVR/HCVR) at the early stage of HK483 virus and the close relationship between depres-
sion of HVR/HCVR and the death, which is clinically relevant and has a three-folded signifi-
cance. Our results of HVR/HCVR depression observed at 2 and 3 dpi in HK483 mice may
provide a potential predictor for the lethality of H5N1 viral infection at the early stage of infec-
tion in the clinical setting. Their correlation to the death gain insight into the mechanisms
underlying the development of the respiratory failure. More importantly, confirmation of these
respiratory disorders in our HK483 mice may be beneficial to developing therapeutic interven-
tion with respiratory failure after the lethality of H5N1 viral infection. Lethal H5N1 viruses are
known to be neurotropic with replication in peripheral afferents 3 dpi and the CNS thereafter
in mice [8]. Our finding that HK483 virus replicates and up-regulates SP expression in vagal
sensory neurons at 2 and 3 pdi not only extends the existing knowledge of neurovirology of the
H5N1 virus, but also provides morphological evidence of vagal pulmonary neural plasticity
(activation) induced uniquely by lethal H5N1 virus. Further studies are necessary to determine
i) whether lethal H5N1 virus induces PCF sensitization/activation, and if so how; ii) if PCF sen-
sitization/activation is causal to the lethal H5N1 virus-induced respiratory disorders and fail-
ure; and iii) what potential treatments applied at the early stage of lethal viral infection are able
to prevent the respiratory disorders and minimize the mortality.
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