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Abstract

Pathologists generally pan, focus, zoom and scan tissue biopsies either under microscopes

or on digital images for diagnosis. With the rapid development of whole-slide digital scan-

ners for histopathology, computer-assisted digital pathology image analysis has attracted

increasing clinical attention. Thus, the working style of pathologists is also beginning to

change. Computer-assisted image analysis systems have been developed to help patholo-

gists perform basic examinations. This paper presents a novel lightweight detection frame-

work for automatic tumor detection in whole-slide histopathology images. We develop the

Double Magnification Combination (DMC) classifier, which is a modified DenseNet-40 to

make patch-level predictions with only 0.3 million parameters. To improve the detection per-

formance of multiple instances, we propose an improved adaptive sampling method with

superpixel segmentation and introduce a new heuristic factor, local sampling density, as the

convergence condition of iterations. In postprocessing, we use a CNN model with 4 convolu-

tional layers to regulate the patch-level predictions based on the predictions of adjacent

sampling points and use linear interpolation to generate a tumor probability heatmap. The

entire framework was trained and validated using the dataset from the Camelyon16 Grand

Challenge and Hubei Cancer Hospital. In our experiments, the average AUC was 0.95 in the

test set for pixel-level detection.

Introduction

In the past 100 years, pathologists have used microscopy to observe glass slides for clinical and

pharmaceutical research, and more importantly, for providing definitive disease diagnoses to

guide patient treatment and management decisions [1]. With the rapid development of whole-

slide digital scanners for histopathology, computer-assisted digital pathology image analysis

has increasingly attracted clinical attention [2]. In this rapidly growing field of digital pathol-

ogy, computer-assisted image analysis systems have been confirmed to help pathologists diag-

nose tumors and cancer subtypes. In clinical practice, accurately distinguishing regions

(normal and tumor) in digital pathology images is an important task that helps pathologists

perform basic examinations and complement their opinion [3]. Thus, the workload of
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pathologists would be greatly reduced without any loss in sensitivity at the patient level.

Pathologists can focus on making more complex and detailed diagnoses to ultimately provide

more accurate results [4, 5].

Whole-slide digital scanners have become more prevalent in clinical hospitals and make it

easier to digitize, store, share, visualize and analyze histopathology slides. Moreover, as one of

the newest forms of “big data”, whole-slide images (WSIs) in histopathology are constantly

being produced every day. Typically, each WSI could have a full spatial resolution of

80K × 80K pixels and is approximately 2 GB in compressed storage size at 40× magnification.

This high volume of data requires the development of a fast and effective processing pipeline

for analyzing digital image data.

In recent years, there has been increasing interest in developing computer-assisted image

analysis methods in pathology. A variety of competitions have emerged to promote intelligent

algorithm research on digital tumor histopathology. The early competition task was to perform

cell segmentation and image-related feature extraction. The tasks are the classification and

grading of more complex whole-slide pathological images.

The classification and grading of pathological images is the last step in the automatic analy-

sis of pathological sections, and it is also a crucial step. In recent years, with the powerful tool

of deep learning, researchers have applied CNNs in various cancer detection tasks and

achieved good results. The champion team of Camelyon16, Wang [6], obtained an area under

the receiver operating characteristic curve (AUC) of 0.925 for WSI classification using Goo-

gLeNet and random forest classifier with feature engineering. Cruz-Roa [7] proposed HASHI

based on a patch-based classifier with a 2-layer CNN, probability gradient from a heatmap,

and Quasi-Monte Carlo sampling for WSI. The adaptive sampling algorithm used in this

paper is derived from this method.

Han [8] proposed a multiclassification task to identify subordinate classes of breast cancer

that uses a combination model of CNNs to analyze breast cancer histopathological images

from the BreaKHis dataset. Valkonen [9] extracted a large number of quantitative descriptors

of image texture, spatial structure, and distribution of nuclei and applied a random forest

model to output confidence values indicating the likelihood of cancer cells. Xu [10] used a pre-

trained AlexNet to extract the features of input patches and trained a linear SVM for segmenta-

tion in the MICCAI brain tumor challenge. Wan [11] constructed combinations of feature

sets, including pixel-, object-, and semantic-level features derived from CNN, and utilized

multiple SVM classifiers to determine breast cancer grades. Bayramoglu [12] proposed a mul-

titask CNN to predict both malignancy and image magnification levels simultaneously to

improve performance on the BreaKHis dataset. Alsubaie [13] proposed a deep CNN under

multi-resolution to perform lung adenocarcinoma pattern classification. Sirinukunwattana

[14] presented a segmentation performance comparison of 10 different network architectures

for histology image classification problems.

In the BACH challenge of ICIAR 2018, one of the tasks consisted of performing pixel-wise

labeling of clinical hematoxylin-eosin-stained histopathological WSIs in four classes. Many

new methods for the automatic classification of breast cancer biopsies were proposed, and

CNN dominated the challenge [15]. In [16], a fully convolutional network based on DenseNet

[17] was proposed for performing pixel-wise labeling of WSIs. In [18], a two-stage patch-based

approach was proposed, which consisted of an autoencoder to extract image features and an

image-wise CNN to perform the classification of the whole image. In [19], an ensemble of four

modified Inception-V3 models was proposed for increasing the generalization capability of

different networks trained on random subsets of training data. For WSI, a sliding window was

used to uniformly extract patches, and a refined heatmap using ResNet-34 was used to reduce

potential misclassifications. [20] used an ImageNet pre-trained on DenseNet-161 for the
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segmentation of WSIs. [21] used an encoder-decoder network. The encoder is composed of

five convolutional processing blocks that integrate dense skip connections, group and dilated

convolutions, and a self-attention mechanism following SENet [22], and the decoder follows

the U-Net [23] structure with skip connections between the down-sample and up-sample.

Li [24] proposed a neural conditional random field (NCRF) deep learning framework to

detect cancer metastasis in WSIs. NCRF considers 9 spatially adjacent patches through a fully

connected CRF, which is incorporated on top of a CNN feature extractor based on ResNet.

Tokunaga [25] aggregated three expert CNNs based on U-Net by using three different magni-

fication images and used a modified Xception [26] model to adaptively change the weight of

each expert network depending on the input image. Li [27] developed a graph convolutional

neural network to learn global topological representations of WSI for providing more accurate

survival risk predictions. Wang [28] proposed a recalibrated multi-instance network for adap-

tively aggregating the patch information to image-level prediction of whole slide gastric image,

which improved image-level classification accuracy by assigning different weights to each

instance. Sun [29] applied U-Net to extract pixel-level features and adopt multiple classic fine-

tuned CNN to obtain patch-level features, then jointed them by a hierarchical conditional ran-

dom field method to localize abnormal (cancer) regions in gastric histopathology images.

In recent years, deep learning in solving image classification tasks, such as classification on

ImageNet, has been greatly successful. Deep convolutional neural network (DCNN) models

have been reported to surpass human performance. These models are typically used to process

relatively small-sized natural images (200 × 200 pixels), but WSI is over hundreds of times the

size of a natural image. Therefore, most pathology image analysis methods take a patch-based

classification approach that first segments a large image into small patches and then classifies

each patch. This piecemeal approach has limited their analysis to small regions of interest

(ROIs) within the larger WSI. Thus, the overall size of the neural network can be allocated in

the GPU memory. The issue associated with this approach is the need to use a sampling mech-

anism to traverse the entire pathology image. Dense uniform or regular sampling is one of the

practical options, but the efficiency is not high. Even if there is no overlap between sample

patches, a full detection process for the WSI is required to extract tens or hundreds of thou-

sands of patches. In contrast, the adaptive sampling method is a more effective strategy for

dealing with WSIs because it adaptively chooses regions with high uncertainty of a tissue patch

being cancerous or not. For regions wherein the predictor has a greater uncertainty about can-

cer and normal tissue classification, more patch samples will be classified to improve the confi-

dence of the adaptive sampling method for those regions of ambiguity [7].

To establish a complete WSI processing pipeline, there are still some issues to discuss after

the patch-based classification and adaptive sampling mechanism are selected, such as, how to

develop an efficient and accurate classifier, what is the more appropriate convergence condi-

tion of the iterative sampling process, how to use images under a wider range of

magnifications?

Here, we present a deep learning-based approach for the identification of tumor metastasis

on WSIs from the Camelyon16 dataset [30]. In summary, the main contributions of our study

are as follows:

• Based on High-throughput Adaptive Sampling for Whole-slide Histopathology Image analy-

sis (HASHI) [7], we propose an improved adaptive sampling method with superpixel seg-

mentation and introduce a new heuristic factor, with local sampling density as the

convergence condition of iterations to improve the detection effect of multiple instances.

• We develop the Double Magnification Combination (DMC) classifier, which is a modified

DenseNet-40 to make patch-level predictions to discriminate tumor patches from normal
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patches. The lightweight network use 20× and 40× magnification images with only 0.3 mil-

lion parameters, and uses the large-margin Gaussian Mixture (L-GM) loss function [31] to

improve the generalization performance.

• In postprocessing, we train a CNN model with 4 convolutional layers to regulate the patch-

level predictions based on the predictions of adjacent sampling points.

The source code for our approach has been made publicly available at https://gitee.com/

w3STeam/Pathological-images and https://github.com/JustinRuan/Pathological-images.

Materials and methods

Our tumor metastasis detection framework consists of a patch-based classifier, an improved

adaptive sampling method, and a postprocessing filter. The complete pipeline is divided into

two stages, namely, the sampling stage and the postprocessing stage, as shown in Fig 1.

Patch extraction and preprocessing

Our model was trained with the Camelyon16 dataset, which consists of 400 WSIs total, split

into 270 WSIs for training and 130 WSIs for testing. Here, the extraction of patches was

divided into two cases: extraction for generating a training set and extraction in adaptive sam-

pling for detection.

To focus our training data set on regions of the slide most likely to contain tumor metasta-

sis, we first identified tissue within the WSI and excluded background white space. There are

many methods based on threshold segmentation, such as [6, 9, 11]. We adopt a fixed-level

threshold segmentation method in the HSV color space to exclude the obvious background

region. The final mask images were generated by combining the masks from the S and V

Fig 1. An overview of our proposed workflow.

https://doi.org/10.1371/journal.pone.0251521.g001
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channels. The constraint of effective coverage is that the threshold of the V channel is between

0.2 and 0.8, and the threshold of the S channel is greater than 0.1.

According to the detection results and pathologist’s annotation, we extracted four types of

patches: normal, tumor, edge inner, and edge outer. The labeling of a patch is determined by

the proportion of the tumor area within the patch. When the proportion of tumor area is less

than 50%, this patch is normal (Label 0); otherwise, it is tumor (Label 1). For the labeling

under the combination of double magnifications, we adopted the "or" logic here. Here We

used morphological methods to extract edge regions and increased the number of training

samples at the edge of annotations to improve the performance of the classifier. Because the

patches at the edge of annotations are usually transitional regions from tumor tissue to normal

tissue, most of the “hard examples” are concentrated in these positions.

At a sampling point, we simultaneously extracted two patches under 20× and 40× mag-

nifications, and the size of the patches was 256×256, as shown in Fig 2. Preprocessing and nor-

malization were not applied to these saved patches to preserve the inherent fluctuation

characteristics caused by staining. These are also what the classifier needs to fit. We obtained a

total of 1,694,228 patches, with 1,336,704 labeled as normal, 230,966 labeled as tumor, 57,384

Fig 2. Extract two magnification patches at a sampling point.

https://doi.org/10.1371/journal.pone.0251521.g002
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labeled as edge inner, and 69,174 labeled as edge outer. It is worth noting that we balanced the

number of positive and negative samples in a WSI. The sampling interval in the normal

regions is larger than that in the tumor region. In this way, the number of negative samples in

a WSI does not exceed 5~6 times the number of positive samples. Then, we constructed several

balanced training sample sets (1:1) through random sampling for improving the performance

of the patch-based classifier.

For sampling and predicting, we first used the threshold segmentation method mentioned

above to calculate the effective region of the slide. Then, we directly extracted the 20× and 40×
patches at pseudo-random sampling points and input them into the patch-based classifier. As

in training, these extracted patches do not require any preprocessing or normalization.

Architecture of the patch-based classifier

To explore the appropriate classifier structure, We chose nine classic pre-trained ImageNet

networks to test the patch-based classifier under three magnifications. We replaced the origi-

nal top layer with a new one to connect each feature extraction part, which consists of a Global

Average Pool (GAP) and two fully-connected (FC) layers. We used the prepared patches on

three different magnifications to fine-tuning the top layer of each transfer model and tested

the accuracy of these models. All testing results of transfer-learning are shown in S1 Table in

S1 Appendix. According to the results of transfer-learning, the DenseNet family has the best

feature extraction performance for pathological image blocks. The patches under 20× have the

best distinguishable characteristics that can be extracted by CNN, as a result of the balance of

the texture details and texture range in view. Although the 10× patches have a larger field of

view, they are down-sampled to the same size resulting in the loss of texture and degradation

of classification performance. Compared to 20×, the classifiers under 10× are a little worse.

Under 40×, the field of view in a patch becomes very small in a patch. When the patches are

extracted from the transitional zone from tumor to normal near the edge of annotations, these

patches under 40× are no significant and typical texture features, and even look the same as

the patches in normal regions. So, it is difficult to train a better classifier under this magnifica-

tion individually. On the other hand, the patch-based classifier calculates a tumor feature

based on an entire 256 × 256 image, and the calculated patch-level prediction is stored in a

tumor feature map based on the central coordinate of this patch. Thus, with the same image

size, the prediction under higher magnification can more accurately represent the tumor fea-

ture (probability) at the sampling point (the center of a patch). From the perspective of spatial

location, we argue that the prediction of a patch with the same size under 40× is more accu-

rately express the tumor feature at the center of the patch, and facilitate the generation of more

detailed segmentation boundaries. Moreover, in the pixel segmentation experiment, the accu-

racy under the 20× and 40× magnifications alone is better than that under the 10× alone.

Pathologists usually check images by changing their magnification and scope in the WSI.

Ways to use images under a wider range of magnifications are worth studying. Inspired by

this, we investigated the patch-based classifier with multiple magnifications. We finally chose

the combination of patches under 20× and 40× as inputs at the same sampling coordinates.

Our patch-based classifier was derived from DenseNet40 (= 3x6x2+2x1+1+1 = 40). The

network consists of three dense blocks defined in DenseNet. Each block consists of 6 dense lay-

ers that each contains two convolution layers. Between two adjacent dense blocks, there is a

translation layer that consists of one convolution layer. And only two transport layers are used

here. The network also contains a convolutional layer at the input and a fully connected layer

at the top. We called it the Double Magnification Combination (DMC) patched-based classi-

fier. The network contains two inputs and three outputs, as shown in Fig 3. Our modified
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network has only 0.3 million parameters. The growth rate (‘k’ in [17]) is set to16 to reduce the

parameters of the model by using very narrow layers, at the same time, keeping up with the

performance of our patch-based classifier.

To improve accuracy and generalization, the same network was used to process two types

of patches under 20× and 40×. The two patches at the corresponding sampling points are put

into the same batch in a fixed order. Each three-channel image generated separately a

384-dimensional feature by DenseNet. Because each sampling point includes two input images

(patches), we stitch the two-output feature of the same sample point into a 696-dimensional

vector and consider it as the fusion feature of the sampling point.

After the output features are continuously stitched and split, the main classifier uses dou-

ble-magnifications patches at the same sampling point for prediction, while the outputs of the

auxiliary classifier under single magnification are only used as additional outputs for training.

We used the regularization term to drive the output features of the auxiliary classifier under

20× and 40× to obey the same Gaussian mixture distribution. The final outputs here are

2-dimensional features, not probabilities. The “SoftMax” layer is not included in the network

because our adaptive sampling algorithm mainly uses feature space.

Fig 3. DMC patch-based classifier architecture.

https://doi.org/10.1371/journal.pone.0251521.g003
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Training

We used the training data set with two magnifications to train our patch-based classifier. To

encourage the robustness and generalization of our network, we used two loss functions with

three prediction outputs (~y20, ~y40, and ~y). Among them, ~y20 corresponds to the predictions of

patches only under 20×, ~y40 corresponds to the predictions under 40×, and ~y refers to the pre-

diction of the fusion feature. Here, y refers to the ground truth under double magnification,

y20 and y40 and so forth.

The first loss function uses only the cross-entropy loss between ~y and y. Here, LCE is the

cross-entropy loss function.

loss1 ¼ LCEð~y; yÞ ð1Þ

Through loss1, the accuracy of the main classifier is improved, and the fusion features under

double magnification can be better discovered and utilized. After loss1 is backpropagated, the tem-

porarily generated graph used to compute the gradient of the network needs to be preserved.

Next, we perform the backpropagation of the second loss in (2), which consists of the average of

cross-entropy loss under single magnification and a regularization term based on the large-margin

Gaussian Mixture (L-GM) loss [31]. The regularization term simultaneously drives the deep

model to generate the same Gaussian mixture-distributed features under two different magnifica-

tions. Because of its use, the generalization capability of the trained model is improved.

loss2 ¼ 0:5 � ½LCEð~y20; y20Þ þ LCEð~y40; y40Þ� ð2Þ

þw � LGMð½~y20 ~y40�; ½y20 y40�Þ

Here, the coefficient of the first term is 0.5 indicates that the two cross-entropy losses at both

magnifications have the same weight, that is, the classification error is reflected in their average

under both magnifications. L-GM loss includes a nonnegative hyper-parameter α for controlling

the expected margin between two classes in the training set. And its default value is 1.0 in [31].

We followed this setting. And w is the weight of the regularization term LGM, which is 0.001 by

default. Without data amplification, we trained the whole network for 40 epochs with a learning

rate of 1 × 10−3 and 40 epochs with a learning rate of 1 × 10−4. The training was performed using

PyTorch.

Improved adaptive sampling method

HASHI [7] provided a feasible solution for slide-level scanning and prediction on WSIs. After

training a patch-based CNN classifier, HASHI extracts patches from the WSI using Quasi-

Monte Carlo sampling and predicts the tumor probabilities of these patches. These predictions

are used to build an interpolated probability map, which is used to identify suspicious regions

for further sampling. The newly sampled patches are used to produce an improved probability

map estimation. The iterative process does not end until the limit of the maximum iterations

is reached, and the final probability map is produced.

Our inspiration comes mainly from HASHI, and the main objective of our improved

method is to try to optimize the following aspects.

• Change in the algorithmic structure. At the initial sampling, a regular sampling process

based on superpixel segmentation is added. After an adaptive sampling of the full slide, an

iterative process based on the partial superpixels is added.

• Change in the selection conditions of the sampling points. The original algorithm sorts by

the gradient of the probability map, then select the coordinates within the larger half for
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sampling. Our algorithm uses a cluster-based heuristic factor to select sampling points based

on feature gradients.

• Change in the convergence condition. Compared to the maximum number of iterations in

the predecessor, we introduced a new statistical factor, local sampling density, to judge

whether the iterations should be terminated.

Regular sampling during initialization. For the detection of whole-slide images, the gen-

eral standard multiple instance assumption needs to be considered. In HASHI, sampling

points are more likely to be enriched near a larger area of the tumor region. A larger area has a

longer edge, which corresponds to a tumor probability gradient change. The adaptive sampling

algorithm preferentially detects these locations where the tumor probability gradient changes

are large. In contrast, small tumor areas do not have significant tumor gradient changes, which

may result in under-sampling in certain suspicious regions. Also, when the areas of the tumor

regions in the WSI are small, the iterative sampling process may untimely terminate due to the

limit of the number of iterations. To avoid this, we have to increase the number of maximum

iterations or the number of samples per iteration, which means that it is necessary to guarantee

a minimum number of samples.

We extracted the thumbnail I of a WSI X under 1.25× magnification (Level 5) and separated

it using the SLIC [32] algorithm (compactness = 20). The boundaries B of the segmented

superpixel regions S were extracted. Then, we performed regular sampling at uniform spatial

intervals on the boundaries of S. Here, the number of superpixels S is proportional to the area

of the WSI. The area of each superpixel S is approximately 1000 pixels under 1.25×, which is

equivalent to the area of four 256×256 patches under 20×. In this way, a set of center coordi-

nates CR of patches is obtained and used to generate the first gradient map in the feature space.

Unlike the original algorithm, our gradient maps are based on features rather than probabili-

ties. Because the feature space has a larger dynamic range than the probability space, more

edge details are obtained.

Adaptive sampling within full scope. The first stage strategy extracts the random coordi-

nates CA of NA sampling points using Quasi-Monte Carlo sampling and merges them with the

previous regular coordinates CR. Here, we chose Halton sequences [33–35] to generate the

coordinates of the sampling points. The patches were extracted in pairs under double magnifi-

cation and put into our two-input classifier. The predications of these patches produced an ini-

tial coarse estimation of a linear interpolated feature mapMfeat. Then, we generated a gradient

mapMgrad of the estimated feature map using the Sobel algorithm. Next, Mini Batch K-Means

clustering [36] was applied onMgrad to partition the feature gradients into two clusters. At

least one of the cluster centers μ0 of gradients is close to zero, which corresponds to flat regions

in the gradient map (typical tumor or normal regions in the WSI). If another cluster center μ1

is also close to zero, no significant edges are found in the currentMgrad. The edges ofMgrad cor-

respond to the regions with large gradient change, that is, the uncertain or suspected tumor

regions. The cluster center μ1 corresponding to the possible gradient edge should have a larger

value.

Here, we introduced a new heuristic factor fgrad to determine whether the edges ofMgrad are

found, as shown in (3). The value range of fgrad is from 0 to 0.3.

fgrad ¼ minð0:5 � ðm0 þ m1Þ; 0:3Þ ð3Þ

If fgrad is greater than the threshold Tgrad (0.03), our adaptive sampling algorithm only
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focuses on the position where the feature gradient is greater than fgrad. Otherwise, the sampling

algorithm continues to pseudorandomly search sampling coordinates in the full image.

In summary, the generation algorithm of the sampling points is divided into three cases.

The first case is to randomly generate sampling points using a Halton sequence in the full

scope of a WSI. The second case is that none of the uncertain or suspected tumor regions have

been found inMgrad. The generation algorithm pseudorandomly searches sampling coordi-

nates and preferentially selects sampling coordinates with higher gradients in its 16×16 neigh-

borhood under 1.25×. This is equivalent to reducing the size of the gradient mapMgrad to the

original one-sixteenth size through maximum pooling. The generation algorithm searches for

sampling coordinates based on this reduced gradient map to enhance its overall discovery

capabilities. The third case is that the generation algorithm focuses on searching for suspicious

regions when fgrad is greater than Tgrad. At this time, only the coordinates whose corresponding

gradient is greater than fgrad will be selected. If the algorithm cannot find enough sample points

that satisfy the constraint at once, then it will look again in the neighborhood of the sample

points just selected.

Through iterative adaptive sampling,Mgrad is continuously refined until the convergence

condition of the first sampling stage is reached. Here, we introduced a new statistical factor,

local sampling density ρ, which is the number of previous sampling points in the neighbor-

hood of a new sampling point. There are two forms of neighborhoods here. One of them, ρdt,
is to define the range of the neighborhood by distance. The other, ρsp, is defined by belonging

to the same superpixel, which is only used in the second stage.

rdtðciÞ ¼
X

Ið_cjjk_cj � cik < εÞ ð4Þ

rspðciÞ ¼
X

Ið_cjjci; _cj 2 skÞ; sk 2 S ð5Þ

Here, ci is the coordinate of the sampling point i in the current iteration. _cj is the coordinate

of j in previous iterations. The symbol k�k is a distance function, such as Chebyshev Distance.

ε indicates the size of the neighborhood of sampling points. sk is a superpixel in the segmenta-

tion results S.
When the average of ρdt of the current iteration is greater than the threshold Tρ, the sam-

pling process will enter the second stage. An adaptive sampling process similar to the first

stage is performed in a part of the superpixels. We usually set Tρ to 1 or 2, since setting it to a

larger value has little effect on the results but takes more time. See the S1 Appendix for this

algorithm pseudocode.

Adaptive sampling within enabled superpixels. Once the average of ρdt reaches the

threshold Tρ, the adaptive sampling algorithm will further explore regions where the sampling

density is low but the tumor probability is high. Therefore, we excluded part of a WSI based on

the superpixels obtained earlier. We counted the number of sample points contained in each

superpixel, that is, the local sampling density ρsp. Based on the interpolation feature map and

the gradient map, the two maximums f̂ maxðsiÞ and ĝmaxðsiÞ in the ith superpixel were also calcu-

lated. Here, we used three thresholds Tρ, T
sp
f and Tspg to determine which regions need further

inspection.

Senable ¼ ðsijrspðsiÞ < Tr ^ f̂ maxðsiÞ > T
sp
f ^ ĝ maxðsiÞ > T

sp
g Þ ð6Þ

Because the output of our binary patch-based classifier is the tumor feature of a patch, if we

use the Sigmoid function to regress a feature into a tumor probability, the feature value -1 cor-

responds to the tumor probability of 27%. Here the threshold Tspf represents the lower limit of
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the tumor feature in a superpixel, generally set to -1. When there is a feature larger than Tspf in

a superpixel, it means that there is a point with a tumor probability greater than 27% inside. In

the next iteration, such superpixels will be further explored. Tspg is 0.1; this gradient threshold

constrains the regions in Senable from being too flat. Because such flat regions are generally far

from the boundaries of the tumor, too much sampling does not contribute much. ρsp(si) indi-

cates whether the superpixel si is fully sampled.

When Senable is updated, the adaptive sampling process is executed again until the average

of ρdt reaches Tρ. By iteratively updating Senable and sampling, Senable finally becomes an empty

set, and the entire algorithm will end. It should be noted that if the two thresholds Tspf and Tspg
are sufficiently small, such as -3 and 0, the entire sampling process will degenerate into uni-

form sampling.

Fig 4A shows the 112 (purple) sampling points generated in the first round of the adaptive

sampling, and 12 of which were generated by regular sampling during initialization. In Fig

4B–4D, the next three rounds of sampling are shown here, and the 4th round reached the ter-

mination condition Tρ. The sampling points were densely generated where the predicted

tumor probability exceeds 0.3 and they had a larger gradient in the estimated feature space.

Fig 4. The process of the adaptive sampling.

https://doi.org/10.1371/journal.pone.0251521.g004
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Fig 4E shows the contour lines of the tumor probability map with different colors. The red line

indicated the ground truth.

Please refer to the S1 Appendix for the detailed process of the sampling algorithm.
Algorithm 1: Adaptive gradient-based sampling
Input:

M: CNN-trained model
X: WSI
T: maximum iterations
NA: number of sample points extracted
A: area of each superpixel
d: spaced intervals of sampling
Tgrad, Tρ, T

sp
f and Tspg : thresholds

Mgrad, fgrad, H; . . .  �

S, CR  regular sampling based on superpixels (X,A,d)
Senable = S
For i = 1 to in T do:

CA  sampling point generation (NA, Mgrad, fgrad, Tgrad, Senable,. . .)

C =
CR [ CA; i ¼ 1

CA; i > 1

(

Predictions F  patch classification (M, C)
Mfeat  feature map interpolation (F, C)
Mgrad  feature gradient (Mfeat)
μ0, μ1  clustering (Mgrad)
fgrad = min(0.5�(μ0+μ1),0.3)
avgrdt  average local sampling density within the neighborhood

(H;C)
H  ððci; fiÞjci 2 C; fi ¼ FðciÞÞ [H
If avgrdt > Tr:

ρsp  local sampling density within superpixels (H; S)
Senable  update enabled regions (S; rsp;Tr;T

sp
f ;Tspg )

If Senable is �:
Return H

Here, CR refers to the set of center coordinates of patches, which are obtained by regular

sampling based on superpixel segmentation. CA refers to the set of center coordinates of

patches, which are obtained by random sampling (Quasi-Monte Carlo) process. We only

returned the coordinates ci and predictions fi (1-dim feature) of each sample point in all itera-

tions. Next, the postprocessing generates a heat map of tumor probability.

In our experiments, a slide was required to extract nearly 59000 patches of size 256×256 on

average using uncovered regular sampling under 20×. Our sampling method with parameters

Tρ = 1 and NA = 2000 only needed to extract an average of 7400 patches, which is only 1/8 of

the workload of the uncovered regular sampling.

Postprocessing

In postprocessing, each obtained prediction is adjusted based on the predictions of its neigh-

boring sampling points. A CNN model with 4 convolutional layers was trained to regulate the

patch-level predictions under 1.25×, as shown in Table 1. We can think of this as adaptive fil-

tering of patch-level features, so we also called it a slide filter. The input of the slide filter is a

64×64 single-channel matrix centered at each sample point, which includes the feature of its

adjacent sampling points. If the sample point is in a tumor region, it is a tumor/positive sample

and labeled as 1; otherwise, it is a normal/negative sample and labeled as 0. Corresponding to

20×, the size of the input matrix is 1024×1024 pixels, and the area is equivalent to the 16 non-

overlapping patches used in the patch-based classifier.
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According to the pathologist’s annotations and the obtained predictions, we generated a

training set of 188360 balanced samples (the ratio of normal to tumor samples is 1:1). The loss

function used in training consists of two parts: cross-entropy loss and L-GM loss. The network

was trained on patches of shape = 64×64 pixels, with batches of size = 200, and weight of

L-GM loss = 0.001.

The corrected patch-level predictions are generated by a weighted average with the new

patch-level predictions and the original prediction. Then, according to the corrected predic-

tions and sampling coordinates, a tumor probability heat map is generated by the Sigmoid

function and linear interpolation. Here, we did not use fully-conv (FC) net to directly generate

a heatmap under 1.25×, because this required higher hardware requirements (GPU memory

capacity).

We used the tumor probability heatmap to compute the evaluation for each WSI. In Fig 5,

the contour lines of the probability maps are shown in (A). (C) is a partial enlargement of the

lower right corner of (A). Here, the contours with different colors correspond to different

probabilities. (B) and (D) show the predictions corresponding to the left side using our adap-

tive sampling method. The yellow regions in (B) and (D) indicate the ground truth. We gave

more examples in the S1 Appendix.

Results & discussion

This paper used the H&E-stained WSIs of the Camelyon16 challenge, which is aimed at detect-

ing metastasis on the WSIs of lymph node sections [6], and 40 H&E-stained WSIs provided by

Hubei Cancer Hospital (HCH). We used these datasets to detect tumor regions. The tumor

regions in the HCH dataset are generally large and typical, as shown in Fig 6. In the two sub-

plots, the blue regions are the marked tumor regions. In Fig 6B, a green region is the excluded

region. In terms of the number of tumor regions per slide, the test set samples in Camelyon16

contain an average of 33 compared to an average of 11 for the HCH samples.

Evaluating the patch-based classifier

In this section, we mainly evaluate the performance of the patch-based classifier. To compare

the classification performance of different networks, we used the prepared dataset to evaluate

their patch-level F1 scores, as shown in Table 2. Here, “40×” refers to the DenseNet-40 with a

single input under 40×. “DMC” refers to our modified DenseNet-40 with two magnification

inputs, “DMC 40×” refers to the auxiliary classifier only for 40×, “DMC 40×+20×” refers to the

main classifier using fusion features under two magnifications. “L-GM” refers to the L-GM

loss used in training. From the patch-level results of the classifier, the performance of the auxil-

iary classifier under 40× of DMC is similar to the single-input classifier under 40×, and that of

the auxiliary classifier under 20× is better than the corresponding single-input classifier. When

Table 1. The slide filter (CNN model) in postprocessing.

Layer (type) Output Shape Param

Conv2d+ReLU [32, 64, 64] 320

Conv2d+ReLU+MaxPool2d [32, 32, 32] 9,248

Conv2d+ReLU+MaxPool2d [48, 16, 16] 13,872

Conv2d+ReLU+MaxPool2d [64, 8, 8] 27,712

AvgPool2d [64, 1, 1] 0

Linear [2] 130

Total params 51,282

https://doi.org/10.1371/journal.pone.0251521.t001
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Fig 5. Tumor probability heatmap and predictions of sampling points.

https://doi.org/10.1371/journal.pone.0251521.g005

Fig 6. Examples of WSI in the two datasets.

https://doi.org/10.1371/journal.pone.0251521.g006
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the fused features under both magnifications are used at the same time, the performance was

improved by nearly 2~3%. Because a pair of patches overlap at the center point and the field of

view is different, so the spatial attention mechanism was introduced. For the performance of

patch-level detection, our experience is the use of L-GM loss in training has no significant

effect on single-input or dual-input classifiers.

Next, we evaluated the performance of pixel-level detection, and this evaluation more tested

the generalization capability of patch-based classifiers. Using the pathologist’s annotation as

the ground truth, ROC analysis at the pixel level heat map was performed, and the measures

used for comparing the algorithms were F1 score and area under the ROC curve (AUC). In

Table 2, the pixel level detection results all used our proposed adaptive sampling algorithm,

and the parameter configuration for our model involved the threshold Tρ of the local sampling

density (Tρ = 1) with 2000 samples per iteration (NA = 2000) and the area of each superpixel

A = 1000 pixels with spatial intervals of regular sampling d = 60 pixels under 1.25× magnifica-

tion. Besides, the pixels with tumor probability greater than 0.5 were considered positive in the

heat map.

Regarding the F1 scores in Table 2, there is not much difference in accuracy between sin-

gle-input or dual-input patch-based classifiers, but there is a significant difference in the results

of pixel-level segmentation. In the pixel-level segmentation task, the F1 scores of each patch-

based classifier are much lower than the scores of the classifier during training and testing of

patches. Note that, the loss of the pixel-level segmentation task is not used to optimize the per-

formance of patch-based classifiers; it represents the generalization performance of the classi-

fier. This is because, although we extracted millions of patches from WSI for training these

patch-based classifiers, the input images during our adaptive random sampling are almost

impossible to be the same as those in the training set. In other words, the patches extracted

during the adaptive sampling are more varied. Moreover, the prediction error at any sampling

point has an impact on the accuracy of the segmentation boundary near it. The superposition

effect brought by the sampling mechanism makes it possible to obtain correct results only

when the robustness of the patch-based classifier is sufficient. Regarding the F1 score of pixel

level, the performance of our adaptive sampling algorithm on DMC is nearly 20% higher than

that of the classifiers with single magnification. This shows the advantages of the dual input

structure.

From the detection results of the pixel level, L-GM loss is necessary for DCM. The use of

L-GM loss increases the margin between the centers of the two classes, During the adaptive

sampling process, more the features of sampling patches fall into this gap, resulting in the dete-

rioration of the detection results. The contours of the probability of 0.5 at the heat map

Table 2. The classifier detection performance.

Methodology Patch Level Pixel Level

Train Test Train Test

F1(Normal) F1(Tumor) F1(Avg) F1(Normal) F1(Tumor) F1(Avg) F1 AUC F1 AUC

40× 0.9546 0.9548 0.9547 0.9711 0.8827 0.9269 0.5170 0.9616 0.4595 0.9030

20× 0.9567 0.9570 0.9568 0.9701 0.8805 0.9253 0.5738 0.9286 0.5036 0.8571

DMC 40× 0.9512 0.9514 0.9513 0.9711 0.8844 0.9277 - - - -

20× 0.9712 0.9713 0.9712 0.9802 0.9242 0.9522 - - - -

40×+20× 0.9737 0.9740 0.9738 0.9810 0.9275 0.9542 0.6007 0.8454 0.5518 0.8630

DMC+L-GM 40× 0.9517 0.9524 0.9520 0.9714 0.8872 0.9293 - - - -

20× 0.9702 0.9702 0.9702 0.9811 0.9277 0.9544 - - - -

40×+20× 0.9723 0.9725 0.9724 0.9815 0.9296 0.9556 0.7111 0.9681 0.6121 0.9279

https://doi.org/10.1371/journal.pone.0251521.t002
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generated by DMC are closer to the ground truth. Regarding ROC AUC of pixel level, the heat

map generated by DMC with L-GM loss is also the best. On the WSIs of the training set, DMC

performs similarly to the single input classifier under 40×. But the score of DMC is 2.5% higher

than the classifier under 40× on the WSIs of the test set. We think that the higher the AUC, the

better the selection and prediction of sampling points.

Evaluating adaptive sampling algorithms

In this section, we mainly evaluate the performance of the sampling algorithms by comparing

the probability heatmaps using the same DMC. As before, the measures used for comparing

the algorithms were the F1 score and AUC at the pixel level.

Table 3 shows the pixel detection performance comparison between HASHI and our sam-

pling method on tumor samples. In the parameters of HASHI, the number of samples per iter-

ation was fixedly set to 400, and the maximum iterations T was set to 20, 30, and 40,

respectively. In our sampling method, we evaluated both non-post-processing and post-pro-

cessing (The slide filter was marked as ‘SF’ in Table 3). We report the average F1 score and

AUC for these approaches with the Camelyon16 and HCH datasets. Here the experiment

WSIs were divided into three groups: Camelyon16 Train, Camelyon16 Test, and HCH Test.

The patches for training the DMC classifier were extracted from WSIs of training data of

Camelyon16. In other words, a part of the sampled patches may exist in the training set. So,

the classifier had higher classification performance for such WSIs. The other two datasets were

never seen by the patch-based classifier.

Compared to the F1 score of the patch level, the score of the pixel level did have a significant

decline. On the other hand, AUC at pixel level was still relatively high, and that of our method

exceeded 0.95 on all datasets. Because the DMC classifier was trained on labeled patches and

had not been trained using pixel-level labeled data on WSIs. Therefore, the probability heat-

map is better in overall probability prediction, but the contours of the probability of 0.5 at the

heat map were still a little bit different from the ground truth.

For HASHI, when the accuracy of the classifier is sufficient on Group Camelyon16 Train,

both F1 and AUC will increase as the number of sampling points increases. On the other veri-

fication groups, F1 and AUC did not improve even if the number of sampling points was dou-

bled. Because for the verification groups, the F1 score of the tumor patches was 0.9296, which

was 0.04 lower than that of the training set in Table 2.

Compared with HASHI, our proposed adaptive sampling method has better results. The F1

and AUC of our method with post-processing are the highest of all tests. Our F1 score is at

least 5.8% higher than its predecessors, and AUC is at least 3.2% higher than that. Regarding

the slide filter, the post-processing has a 1.6% improvement on F1 and 1.9% on AUC. It is

worth noting that our F1 and AUC without slide filter were not significantly different from

Table 3. The pixel-level detection performance on different sampling algorithms with DMC classifier.

Methodology Camelyon16 Train Camelyon16 Test HCH Test Number of sampling points

F1 AUC F1 AUC F1 AUC

Our method 0.7111±0.1839 0.9681±0.0782 0.6121±0.2631 0.9279±0.1028 0.6999±0.2041 0.9342±0.0485 7402±2028

Our method2� 0.7113±0.1813 0.9782±0.0524 0.6173±0.2720 0.9527±0.0819 0.7439±0.1929 0.9577±0.0342 7402±2028

HASHI T = 20 0.5879±0.2633 0.9393±0.0978 0.5695±0.3090 0.8782±0.1815 0.6810±0.2269 0.9451±0.0424 8000

HASHI T = 30 0.6129±0.2682 0.9660±0.0491 0.5425±0.3317 0.8451±0.2259 0.6844±0.2257 0.9415±0.0447 12000

HASHI T = 40 0.6424±0.2379 0.9690±0.0425 0.5574±0.3122 0.8787±0.1864 0.6832±0.2311 0.9409±0.0454 16000

�Our method2 is the method using Slide Filter in postprocessing.

https://doi.org/10.1371/journal.pone.0251521.t003
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HASHI on Group HCH. This was not the case with Group Camelyon16 Test. This is because

the area of the tumor regions in each slide of HCH is on average 8 to 9 times larger than

Camelyon16, but the number of regions is generally relatively small. In other words, the detec-

tion target is relatively significant. Therefore, HASHI is more suitable for the detection of such

WSIs, and our proposed method can detect more and smaller tumor regions.

Two evaluation in Camelyon16

In this section, we briefly present two evaluation results in Camelyon16: Slide-based Evalua-

tion and Lesion-based Evaluation.

Slide-based evaluation. This evaluation task is to distinguish between slides containing

metastasis and normal slides and rank them by the area under ROC curve (AUC) [6]. For the

slide-based classification task, the postprocessing method takes a prediction result for each

WSI as input and produces a single probability of tumor for the entire WSI as output. Here,

we extracted 5 statistical features from the positive part of the predictions F , whose tumor

probability is greater than 0.5. These features included the number of sample points that meet

the probability requirements, the maximum tumor probability among them, and a normalized

histogram with three bins based on these tumor probabilities. We computed these features

over the predictions across all cases, and we trained and compared 4 classifiers to discriminate

whether a WSI includes tumor regions. The merits of the algorithms will be assessed for dis-

criminating between slides containing metastasis and normal slides. Receiver operating char-

acteristic (ROC) analysis at the slide level will be performed, and the measure used for

comparing the algorithms will be the area under the ROC curve (AUC) [37]. On the indepen-

dent test cases, the Lagrangian-based S3VM [38, 39] model achieved an AUC of 0.9920, as

shown in Fig 7. Our score is very close to the score (0.9935) of the top-ranked team on the

leaderboard of the Camelyon16 ISBI challenge [37].

Lesion-based evaluation. The second evaluation task is to test the detection/ localization

performance, which is summarized using free-response operating characteristic (FROC)

curves [37]. For lesion-based detection, a pair probability and corresponding coordinate of

each predicted cancer lesion within the WSI need to be given with few false positives. Our

approach is similar to [40], which used a non-maxima suppression method. In contrast, we

used the Isolation Forest algorithm [41] and the K-means (K = 2) clustering to find automatic

segmentation thresholds for a tumor probability heatmap.

The FROC curve is defined as the plot of sensitivity versus the average number of false posi-

tives per image [37]. As shown in Fig 8, our method achieved a score of 0.7694 at 1 FP per WSI

on the training cases and a score of 0.7373 at 1 FP on the test cases. Table 4 shows the compari-

son with other methods using Camelyon16. Our score has reached the level of human perfor-

mance. However, there is still a large gap between the current best score (0.8533), which was

achieved by Fast ScanNet [42]. Fast ScanNet used a fully convolutional network without an

up-sampling path to generate a probability heatmap with a much smaller size than the input

image, then performed a dense scan on ROIs and stitched the predictions into a complete heat-

map. The label of the patch-based training sample of Fast ScanNet was pixel-level and our clas-

sifier used patch level, it is not difficult to understand that the former performed well in FROC

of the pixel-level detection. From our heat map, our proposed method usually combines multi-

ple smaller tumor regions into one larger region for reporting. In the FROC measurement,

this caused many small tumor regions to be detected but not reported. Another phenomenon

is that the F1 score is not high (<0.75) and the AUC is high (>0.95) in Table 3.

On the other hand, Fast ScanNet still needs to completely scan the entire area to be

detected, but our adaptive sampling algorithm does not need to do this. At the same time, Fast
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ScanNet used an FC net to generate heat maps, and a large number of large-size (2866×2866)

feature maps were produced during the convolution process. Therefore, it put forward higher

requirements for the memory capacity of GPU. And our method only needs to use 256×256

input images, as long as your computer can run PyTorch, you can complete the WSI detection

task. When computing resources are limited, our proposed algorithm is a feasible and effective

method.

Next, we discuss this issue in detail in the next section.

Model runtime efficiency

Due to the use of a lightweight network, the computational complexity is relatively low, and

approximately 286.2 pairs of double-magnification patches can be predicted per second. The

performance test was performed on a PC with a 3.2 GHz Intel i7-8700 CPU with 16 GB of

memory and an NVIDIA GeForce GTX 1080 8 GB.

The core of our proposed model is the DMC classifier, which is called thousands of times.

However, it only contains 306,498 parameters. Compared with the patch-based classic net-

work, the parameter size of VGG16 is 460 times that of our model, the size of GoogLeNet is 80

times, the size of ResNet-50 is 85 times, and the size of DenseNet-121 is 27 times. Therefore,

the DMC classifier only takes one second to predict nearly 300 pairs of 256×256 patches from

the saved small JPG files.

A heat map of a WSI under 1.25× contains an average of 15.1 million pixels. When a full

dense scan of a WSI is performed at equal intervals without coverage under 20×, it is necessary

to extract and predict approximately 59,000 patches of size 256×256. As shown in Table 3,

when the number of samples per iteration (400) was fixed in HASHI, the number of extracted

Fig 7. Receiver Operating Characteristic (ROC) curve of slide-based classification.

https://doi.org/10.1371/journal.pone.0251521.g007
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patches of per WSI is directly proportional to the maximum iterations T. When T was equal to

20, HASHI here needed to predict 8000 samples, which accounted for 13.6% of the number of

the full dense scan. Our algorithm uses a cluster-based heuristic factor to select sampling

points, instead of selecting the larger half ones of the gradient in HASHI. For scanning a slide,

the number of patches extracted by our sampling algorithm is different for each slide.

Fig 8. FROC curve of the lesion-based detection.

https://doi.org/10.1371/journal.pone.0251521.g008

Table 4. Detection performance comparison with Camelyon16.

Team AUC FROC

Human performance 0.9660 0.7325

HMS and MIT 0.9935 0.8074

Our method 0.9920 0.7373

Fast ScanNet-16 0.9875 0.8533

HMS, Gordon Center, MGH 0.9763 0.7600

CUHK 0.9415 0.7030

EXB Research 0.9156 0.5111

DeepCare, Inc. 0.8833 0.2430

Middle East Tech. Uni. 0.8632 0.3822

NLP LOGIX Co. 0.8298 0.3859

Smart Imaging Tech. Co. 0.8207 0.3385

Univ. of Toronto 0.8149 0.3822

Radboud Uni. 0.7786 0.5748

https://doi.org/10.1371/journal.pone.0251521.t004

PLOS ONE Whole-slide histopathology image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0251521 May 12, 2021 19 / 22

https://doi.org/10.1371/journal.pone.0251521.g008
https://doi.org/10.1371/journal.pone.0251521.t004
https://doi.org/10.1371/journal.pone.0251521


Typically, about 7400 samples are extracted for each slide by our method, which accounted for

9.1 ~ 15.9% of the number of the full dense scan. The computational complexity using the

local sampling density (Tρ = 1) is equivalent to HASHI using the parameter T = 20. In Table 3,

the detection results of our method are better. On the WSIs of the training set, the F1 score

and AUC are 12.3% and 3.9% higher than HASHI. On the WSIs of the two test sets, the F1

score and AUC have improved by 5.5% and 4.3% on average compared to HASHI.

In time consumption, our method usually takes 2 to 3 minutes to complete a WSI with i7

CPU and single GTX 1080 8 GB. Our proposed method reduces the detection area by at least

85% in the adaptive sampling manner and saves the computing load of each sampling point

with the lightweight network. Through the divide-and-conquer approach, the need for the

memory capacity of GPU is drastically reduced, and at the same time, detection effects can

meet the needs of preliminary screening in clinical diagnosis.

Conclusion

We proposed a novel lightweight detection framework for automatic tumor detection in

whole-slide histopathology images. Compared to classic CNN models, our DMC model with

dual inputs and three outputs is easier to train, with higher computational efficiency with only

0.3 million parameters. Our improved adaptive sampling method uses a new heuristic factor

as the convergence condition of iterations for improving the detection performance of multi-

ple instances, which is only 1/8 of the workload of the uncovered regular sampling. In post-

processing, the patch-level predictions are regulated based on the predictions of adjacent sam-

pling points to improve the pixel level and lesion level accuracy. Our experiments revealed that

our method also has reached the state of the art on the pixel level and lesion level detection of

gigapixel pathology slides with limited computing resources. In clinical practice, the ability to

use more computer resources for detecting whole-slide images will greatly promote the practi-

cal application of automatic diagnostic technology.

With the continuous popularization of breast cancer screening, more and more early-stage

breast cancers containing carcinoma in situ have been discovered. On whole-slide images,

how to accurately identify the presence and proportion of carcinoma in situ and invasive can-

cer is extremely important for selecting the appropriate treatment and the best benefit for the

patient. In future work, we aim to study region detection of carcinoma in situ and invasive

cancer. We could explore a new clustering model for encoding histology WSI to analyze the

texture features on tissue structure in a larger field of view.
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