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Abstract

Understanding the determinants of range location and size is fundamental to our under-

standing of spatial patterns in species richness. Here, we aimed to test the role of ‘climatic

stability’ in determining latitudinal trends in range size and as a consequence on species

richness of tropical woody plants. Using primary data from 156 (0.06 ha) plots comprising

20,400 occurrences of more than 400 species of tropical woody plants, we built a biome-

wide species database that covers the entire latitudinal extent of the wet-evergreen forests

of the Western Ghats (8o to 20o N), India. We consolidated this database using secondary

data from other published species inventories. We then calculated the range sizes and cli-

matic niche width of woody plants to test the predictions of the climatic stability hypothesis

and examined the relationship between range position and climatic tolerance of species.

Our results show a significant latitudinal gradient in species richness and turnover where

local and regional species richness increase monotonically from higher latitudes to lower lat-

itudes of the Western Ghats. We found strong support for Rapoport’s Rule with an increase

in range size from lower to higher latitudes; our results are consistent with the predictions of

the climatic stability hypothesis, where species at higher latitudes exhibited greater toler-

ance to temperature and rainfall seasonality. Contrary to earlier work, our findings suggest

that Rapoport’s Rule and the climatic stability hypothesis can operate over regional scales,

and even at lower latitudes. We suggest that latitude associated climatic seasonality through

its influence on species ranges, can influence latitudinal patterns in species turnover as well

as species richness.

Introduction

The increase in species richness from the poles to the tropics is widely documented in the field

of ecology, and yet the mechanisms underlying this pattern remain poorly understood [1–4].

Various hypotheses have been proposed ranging from area, time for speciation, environmental

drivers to range overlap [5–9]. Among these, the role of climatic stability (intra or inter annual

climatic variability) in generating latitudinal diversity gradient has not been explored in as
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much detail as other competing hypothesis [10]. The idea of climatic stability is based on the

fact that temperate areas experience greater seasonality (i.e. wider temperature extremes on an

annual basis) compared to tropical areas. This has also been shown to correspond over much

larger time scales to the Milankovitch cycles that result from periodic changes in earth’s orbit,

tilt and spin causing greater climatic changes in extra-tropical as compared to tropical areas

[11].

Janzen [12] and Stevens [9] independently proposed that individuals of species in temperate

areas are exposed to greater climatic extremes due to greater seasonal variation in climate, con-

ferring a selective advantage to those species with wider thermal tolerance. Tropical areas on

the other hand experience relatively uniform climatic conditions annually. This promotes the

specialization of species to a narrow set of climatic conditions, as adaptation to one habitat can

come at a cost in fitness in another habitat [13]. Janzen [12] proposed that since tropical spe-

cies would adapt to a narrow set of climatic conditions, they would exhibit smaller elevational

ranges and hence species turnover along elevational gradients would be higher in the tropics.

Stevens [9] extended this idea as an explanation for Rapoport’s rule where average range sizes

increase from lower to higher latitudes. The premise of his argument was that temperate spe-

cies with wider climatic tolerances would be able to survive over larger geographic areas while

specialization to a narrow set of climatic conditions restricts the geographic distribution of

tropical species since the spatial scale of distinctively different climatic conditions is smaller in

the tropics. Any change in climatic conditions would therefore also result in a concomitant

change in species composition [13]. In other words, beta diversity across different habitats or

along an environmental gradient would be higher in tropical areas resulting in higher regional

species richness. The two correlates of latitude, namely range size and species richness, are

thus linked by the same underlying mechanism of climatic stability and decrease in seasonality

towards the equator. Based on these mechanisms, one can hypothesize a causal relationship

between climatic stability and species richness (Fig 1).

In order to test the predictions of the climatic stability hypothesis, it is crucial to define

regions based on biologically and biogeographically meaningful boundaries. The evergreen

forests of the Western Ghats (WG) of India provide an ideal system for testing the predictions

associated with the climatic stability hypothesis, with few confounding factors. First, they pro-

vide a linear latitudinal axis, with the forests forming a narrow strip which runs along the WG

escarpment, spanning latitudes from 8o to 20oN. Despite a relatively small latitudinal span, the

topographic heterogeneity and complex interplay of the SW and the NE monsoon gives rise to

a sharp gradient in temperature (S1C Fig) and precipitation seasonality (S1D Fig) that

decreases from north to south. Finally, they are a distinct biogeographic zone; the wet ever-

green forests are almost entirely isolated and do not extend beyond the spatial limits of the

WG [14]. More than 60% of the species recorded from this vegetation type are endemic. This

enables a better estimation of the global geographic ranges of endemic and regional range lim-

its of non-endemic species within the WG.

Most large scale studies lack a systematic sampling design and instead carry out range inter-

polations based on secondary data on species distributions and occurrence recorded at very

coarse resolutions. This often results in poor estimation of much of the underlying spatial het-

erogeneity in species composition [7,15,16] and also limits the applicability of the data for inves-

tigating the role of climatic stability and range sizes in generating a latitudinal gradient in beta

diversity. This study overcomes these issues by addressing the link between latitude and species

diversity using primary data from a plot-based species inventory, which spans the entire length

of the wet evergreen forests of the WG. Such a sampling design is crucial for ascertaining the

exact distribution limits and approximating climatic tolerance of species, as well as to quantify

the variation in species richness and turnover along the latitudinal extent of the WG.
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We used an extensive primary dataset combined with secondary data to assess the effect of

climatic stability on species geographic range and turnover, and as a consequence of these, on

broad scale richness patterns of woody plants in the WG. Specifically we investigated the fol-

lowing predictions from the relationship between climatic stability and species diversity (Fig

1), namely (1) Species richness will increase from higher to lower latitudes i.e. from the north-

ern to southern Western Ghats, (2) Species with greater climatic tolerance will show wider lati-

tudinal and elevational ranges, and as a consequence (3a) Geographic (latitudinal) range size

of species will decrease from higher to lower latitudes (Rapoports rule, Stevens’ prediction) as

well as (3b) Elevational ranges of species will decrease from higher to lower latitudes (Janzen’s

prediction) and (4) Species turnover or beta diversity will increase from higher to lower

latitudes.

Fig 1. Mechanistic link between climatic stability and latitudinal diversity gradient. Arrows linking the boxes represent the directionality of the causal relationship.

(+) symbol in parenthesis indicates positive relationship between the two variables while (-) symbol indicates a negative relationship. Links connected by solid arrows

were investigated in this paper while the links connected by dashed arrows were not.

https://doi.org/10.1371/journal.pone.0235733.g001
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Materials and methods

Sampling design

From 2010 to 2014, we carried out plot-based sampling across the entire latitudinal extent (8o –

19o N) of the wet evergreen forests of the WG (Fig 2), ranging from 40–1600 m elevation (S1

Table). Forests above 1600m become increasingly patchy and the continuous evergreen forests are

gradually replaced by a mosaic of shola (montane forest) and grassland ecosystems [14]. Plots were

laid in undisturbed primary evergreen forests within which the distribution of plots was arbitrary.

We avoided seemingly disturbed areas, stream/riverine and swampy habitats, as well as very steep

slopes. The dimensions of the vegetation plots were 25 × 25 m (0.06 ha) within which abundance

data for all woody plants above 10 cm GBH (girth at breast height) were recorded along with their

taxonomic identity. Individuals were identified in the field largely based on vegetative characters

using established taxonomic keys. Selected specimens with reproductive characters were collected

and deposited at the Herbarium JCB, Bangalore. The sampling effort and the spatial spread of the

sampling plots along the latitudinal gradient of WG was unequal but proportional to the spatial

extent of wet evergreen forest in that latitudinal band. Our final data set consists of 156 plots with

20,400 individuals belonging to ca. 450 species of woody plants (S1 Appendix). Of the total num-

ber of individuals sampled, 0.2% could not be identified and were excluded from the analysis.

Spatial aggregation of plots

In order to estimate gamma and beta diversity, it was essential to aggregate plots in groups. This is

because estimates of gamma diversity are typically based on cumulative species richness of a group of

sampling units while beta diversity is estimated based on inter-sample variation in species composi-

tion. Thus, estimates of gamma and beta diversity both are influenced by sample size and geographic

distance between plots due to processes such as dispersal limitation and habitat heterogeneity.

We sequentially organized our dataset of 156 plots into three levels of aggregation based on

spatial proximity. The first level consists of plots grouped in clusters of two each, hereafter

dyads, where a dyad is defined as a cluster of two plots consisting of the focal plot and its near-

est neighbour. Similarly, the plot dataset was reorganized into clusters of three (triads) and

then eight (octads) neighboring plots that were spatially closest to each other. These three cate-

gories of clusters each represent a different spatial scale, with dyads representing the smallest

spatial scale (inter-plot distance <1 km), and triads (inter-plot distance <5km, elevational

range<250m) and octads (mean inter-plot distance <17km, maximum inter-plot distance

<30km, elevational range<500m) representing successively larger spatial scales. The purpose

of aggregating the plots in this manner was to estimate beta and gamma diversity across the

latitudinal gradient based on clusters that were more or less uniform in their inter-plot as well

as elevational differences. The three levels of aggregation enable us to test the robustness of the

resulting pattern to different samples sizes and spatial scales.

This resulted in a total of 57 exclusive dyads (plots not repeating in more than one dyad).

However, we also aggregated all pairwise combinations which were within a distance of 1 km

from each other. In this case, plots were repeated in more than one pair and resulted in a total

of 117 dyads. There were a total of 39 triads and 10octads. Spatial configuration and average

inter-plot distance within a cluster for each level of aggregation were not uniform, but did not

vary systematically with latitude.

Species richness and species turnover

We estimated the species richness per degree latitude based on two methods, one which con-

trols for differences in sample size and hence also controls the potential bias in our richness
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estimates resulting from unequal sampling effort across the latitudinal extent of the WG, while

the other was independent of our sampling effort and an estimate of the total regional species

pool. First, we estimated interpolated species richness (SR) based on individual based rarefac-

tion curves, which controls for the differences in the number of individuals sampled across the

gradient. We carried out this analysis for every one degree latitudinal zone within the Western

Ghats by aggregating all samples within a latitudinal zone and estimated the average number

of species per 450 individuals, the lowest sample size in our dataset amongst the 11 latitudinal

zones. We also extrapolated the rarefaction curves to estimate species richness [17] up to4000

individuals which was approximately the number of individuals in the most well sampled lati-

tudinal zone. Additionally, we also used two non-parametric richness estimators, Chao1 and

ACE (Abundance based coverage estimator) to estimate the lower bound of undetected species

richness. Second, we also estimated the total regional species pool (ST) for each one degree lati-

tudinal belt based on the count of all the species ranges that pass through it. Assuming range

cohesion, species latitudinal ranges were estimated based on species occurrences (Fig 2) from

our primary data as well as based on species occurrences and records from secondary literature

such as floras and other published inventories (S2 Appendix). This method is independent of

the sampling effort since (i) species were assumed to be present as long as their latitudinal

ranges fell within a latitudinal belt irrespective of whether those species were recorded in our

sampling plots and (ii) the latitudinal ranges were estimated considering species records from

multiple sources.

In addition to this, we also estimated species richness at smaller spatial scales i.e. at the level

of a plot and at the level of a cluster. For every cluster, we calculated mean alpha and gamma

diversity, where alpha diversity is the mean number of species observed in a single plot, and

gamma diversity is the cumulative number of species recorded for all plots within a cluster.

Based on the values of alpha and gamma we calculated beta diversity using Whittaker’s index

(BetaW = γ / α), where ‘γ’ is gamma diversity estimated at the level of a cluster while ‘α’ is mean

species richness at the level of a plot within a cluster. We also estimated beta diversity using the

Simpson’s index (BetaSIM) which is purely a measure of species turnover or replacement and

disregards contribution to beta diversity (species dissimilarity) resulting from differences in

species richness between samples.

Range size

The woody flora of the WG is well documented in the form of district level regional floras. In

addition to using geo-referenced species occurrence data from our primary dataset, we used

distribution records from regional floras, open access online resources, databases and other

geo-referenced locations from other small-scale published inventories (sources in S2 Appen-

dix) to ascertain the northernmost and the southernmost distribution limits of species. Species

names were standardized by checking for synonymous names. Distributional records that rep-

resented the extreme range boundaries were verified using multiple sources.

We calculated latitudinal extent as the difference between the two extreme latitudinal points

of occurrence of a species (based on both primary and secondary data). We also calculated the

two dimensional measure of extent of occurrence of a species, known as minimum convex

polygon (MCP) which is defined as the area (in km2) within the minimum polygon containing

all records, and in which no internal angle exceeds 180o [18]. This measure accounts for latitu-

dinal as well as longitudinal extent of a species. Measures of range size based purely on

Fig 2. Extent of the study area and spatial distribution of species occurrence. Species occurrences represent primary

plot-based sampling (S1 Table) and secondary data based on published species inventories (S2 Appendix).

https://doi.org/10.1371/journal.pone.0235733.g002
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latitudinal extent have been criticized since they incorporate extreme occurrences of a species,

which could be substantial outliers from the main body of occurrence [19]. However, since the

Western Ghats exhibit a very narrow longitudinal gradient, species ranges can only potentially

expand along the latitudinal axis resulting in increase in both latitudinal extent and extent of

occurrence. Hence these two measures were found to be strongly correlated for the Western

Ghats trees (Pearson’s R = 0.78, p< 0.001).

Climatic tolerance

We defined climatic tolerance as simply the difference between extreme values recorded for a

species for a given environmental variable. We acknowledge that these values may not repre-

sent actual physiological tolerance especially for those species whose distribution limits are set

by biotic interactions and dispersal limitation [20]. However, for the purpose of this study, we

assumed that the difference between the extreme environmental values recorded for a species

roughly represents the physiological tolerance of that species within the WG. We calculated

climatic tolerance of species independently for three different environmental variables: tem-

perature, rainfall and elevation. For every occurrence point of a species, we obtained the fol-

lowing environmental values from WorldClim–global climate data [21]: maximum annual

temperature, minimum annual temperature, precipitation seasonality, and elevation. From

this set of extracted values, climatic tolerance for every species was calculated as follows:

i. Temperature tolerance = highest value of max temperature–lowest value of min

temperature

ii. Temperature seasonality tolerance = highest value of temperature seasonality (coefficient of

variation in annual temperature)

iii. Precipitation seasonality tolerance = highest value of precipitation seasonality (coefficient

of variation in annual precipitation)

iv. Elevational width = highest value of elevation–lowest value of elevation

Although we used only current climatic data in our analysis, the past patterns in seasonality

during Mid Holocene, Last Glacial Maxima (Source: WorldClim 1.4) and Last Interglacial [22]

were correlated and varied in the same manner across the latitudinal gradient (S1 Fig).

Analysis

We used ordinary least squares to investigate the three predictions of the climatic stability

hypothesis. To test prediction 1, we regressed the values of SR and ST derived for every one

degree latitude on the latitudinal position of the one degree latitudinal bin. We also regressed

the values of mean alpha, gamma and beta diversity (prediction 4) resulting from each cluster

on the latitudinal position of that cluster. Due to statistical non-independence in the data

resulting from repetition of some plots in more than one cluster at the level of dyads (dyads

with repeats), we used a permutation approach to test if the values of the slopes were signifi-

cantly different from zero. The p values reported for the estimates of slope for this analysis

were based on 500 randomizations. We included mean inter-plot distance, mean elevation and

elevational range of plots within a cluster as covariates to control for likely effects of elevation

and topography on alpha and gamma diversity.

To test prediction 2, we investigated the relationship between climatic tolerance (i.e. tem-

perature and precipitation seasonality tolerance) and latitudinal range size. Stevens hypothe-

sized that species which show greater climatic tolerance would be able to survive in more

locations and therefore exhibit larger geographic ranges. However, merely testing the
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relationship between climatic tolerance and range size might be confounded by the differences

in sample size between large and small ranging species [23]. Larger ranging species are likely

to occur in more plots and hence sample a greater underlying climatic gradient. As a conse-

quence, these species would exhibit relatively broad climatic niches as compared to small rang-

ing species, which can potentially result in a spurious relationship between range size and

climatic tolerance.

We used two approaches to control for this possible ‘sample size effect’. First, we carried

out a null model analysis to verify if the relationship between latitudinal position and climatic

tolerance observed for the trees of the Western Ghats was significantly different from an

expected relationship derived purely from large ranging species sampling a greater environ-

mental gradient (for details about the null model see S1 Text). Second, we used a randomiza-

tion approach to control for the differences in frequency of occurrence between species by

estimating climatic tolerance for all species based on five randomly chosen occurrence loca-

tions. Species with less than five occurrences were dropped from the analysis while species

which showed more than five occurrence locations were subjected to a randomization proce-

dure. In each iteration, five points were randomly chosen from the entire set of occurrence

locations of a species and climatic tolerance was then calculated based on these five randomly

chosen points. After each iteration, the slope and the coefficient of determination (r square) of

the relationship between climatic tolerance and range size was estimated. This procedure was

repeated 500 times and from the resulting distribution of values of slope and r square, we cal-

culated the mean and standard deviation for both temperature and precipitation seasonality.

In order to test prediction (3), we followed Stevens’ method [24] where mean latitudinal

range size and mean elevational range of species recorded for every one degree latitude were

plotted against the latitudinal position of that cluster. This method however, suffers from sta-

tistical non-independence of adjacent data points, since the same set of species may be aver-

aged for adjacent clusters [25]. Hence, we also plotted latitudinal and elevational extent of a

species against its latitudinal range position i.e. midpoint of its latitudinal range (midpoint

method). Here, each sampling point in a midpoint plot represents a single species and is there-

fore statistically independent [24]. We used the permutation tests incorporated in package

‘lmperm’ to test the significance of this relationship. The confidence intervals of the parame-

ters and p value was generated based on 5000 iterations.

We used a structural equation modeling (SEM) approach to collectively test the hypothesis

associated with climatic stability summarized in Fig 1. This approach allows a statistical test of

series of dependent variables through an analysis of covariance. As shown in Fig 1 we expect

geographic range size to influence species richness both directly as well as indirectly, mediated

through its influence on beta diversity. Geographic range size in turn would be in influenced

by latitude associated climatic stability and species’ climatic tolerance. SEM like any other

form of regression analysis requires that the endogenous and the exogenous variables be mea-

sured at the same spatial scale and at the same organizational level. However, the mechanisms

associated with climatic stability include some variables such as richness which need to be

measured at the level of a community or at defined spatial scale (for instance one degree lati-

tude) while some such as climatic tolerance and geographic range size are measured at the

level of an individual. Reconciling species level responses with community level responses in

the same analytical framework such as the SEM would require having to average individual

level responses at the level of community or spatial scale. Hence, we carried out SEM based

on variables measured at the level of triads. Intensive sample size requirement and statistical

independence between samples, precludes replicating this analysis at the level of diads and

octads. We ran three alternative SEM by excluding and including variables (Fig 3). Model1

represents all the paths proposed in the Fig 1. In model2 we used latitude as a proxy for
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climatic variability while model3 represents the simplest model with only species climatic tol-

erance influencing species richness through geographic range size and species turnover. We

assessed the support for these models using multiple model fit criteria incorporated in package

‘lavaan’. All the analyses and graphics were implemented using R software (R Development

Core Team 2014). Species richness estimators and rarefaction curves were computed using

Estimates (Version 9, R. K. Colwell, http://purl.oclc.org/estimates).

Results

Species richness increased monotonically from higher to lower latitudes. This result was con-

sistent for estimates of alpha and gamma derived from the three levels of aggregation (S2 Table

and S2 Fig). This shows that the increasing trend in species richness observed for woody plants

of the WG can be detected even at a spatial scale of< 1km with as few as two plots. However,

the effect of the latitudinal diversity gradient for the woody plants of the Western Ghats was

strongly evident when total regional species pool (ST) (r2 = 0.90, p < 0.001, Fig 4B) was esti-

mated at a much larger scale of 1o latitude as well as for SR i.e. rarefied richness (r2 = 0.91,

p< 0.001, Fig 4A) which controls for differences in sampling effort or stem density (S3 Fig).

Richness estimates based on non-parametric estimators as well as those derived from extrapo-

lation of rarefaction curves also showed consistent patterns (S3 Table). These results suggest

that the latitudinal trend in species richness observed here is not an artefact of sampling bias.

This pattern is consistent irrespective of the method of estimation or the spatial scale at which

it is estimated. Adding spatial and topographic covariates to the model did not explain any

additional variation in alpha and gamma diversity. BetaW exhibited a significant declining

trend with increase in latitude (S2D Fig and S2 Table). BetaSIM which is purely a measure of

species replacement also showed a similar declining trend with latitudes at all levels of aggrega-

tion except that of exclusive dyads (S2 Table).

Fig 3. Alternative models evaluated through structural equation modeling. Grey boxes represent latent variables while arrows represent paths connecting the latent

variables. Boxes with arrows pointing away from them are exogenous variables while boxes with arrows pointing in are endogenous variables. Thus, the same variables

can be either endogenous or exogenous depending on the path.

https://doi.org/10.1371/journal.pone.0235733.g003
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Stevens’ method resulted in a significant positive relationship between latitude and mean

range size (r2 = 0.93, p< 0.001, Fig 5A) as well as between latitude and mean elevational range

(r2 = 0.84, p< 0.001, Fig 6A). A significant positive relationship between latitude and range

size was also observed with the midpoint method (r2 = 0.59, p< 0.001, Fig 5B) indicating that

species with their midpoints located at higher latitudes had larger latitudinal ranges. We found

a significant but extremely weak signal for the relationship between latitudinal midpoint and

elevational range (r2 = 0.07, p = 0.01, Fig 6B).

Consistent with Stevens’ prediction (3), we found a significant relationship between cli-

matic tolerance and latitudinal range size. This relationship was significant for temperature

tolerance (r2 = 0.49, p< 0.001, Fig 7A) and tolerance to precipitation seasonality (r2 = 0.55,

p< 0.001 Fig 7B). Results from the null model analysis (S4 Table), as well as analysis which

control for differences in frequency of occurrence (S5 Table) show that this relationship was

not merely an artefact of larger ranges sampling a larger environmental gradient. Together,

these results suggest that species that exhibit higher tolerance to temperature and precipitation

seasonality have larger latitudinal ranges.

Amongst the three models evaluated using SEM, model3 showed the best fit to the data (S6

Table). All the paths included in the three models yielded significant path coefficients justify-

ing their inclusion in the model. The results from the global model (model1) are presented in

Fig 8 along with path coefficients and proportion of variance explained. We used temperature

seasonality as the sole indicator for climatic stability as precipitation seasonality was not found

to have significant effect and hence was excluded from the three models. Overall the results

from the SEM confirm that (i) species richness at a latitudinal location in the Western Ghats is

positively related to average geographic range size of species occurring at that location as well

as the degree of species turnover, (ii) the degree of species turnover is influenced by geographic

ranges of species, (iii) geographic range size of species is ultimately related to climatic stability

(annual climatic variability in temperature) experienced at a location and (iv) this effect is

mediated by species responses or tolerance of annual climatic variability.

Discussion

Our study documents diversity patterns in woody plants of the Western Ghats, using one of

the most comprehensive regional-scale species inventories till date. It is one of the few studies

on plants that finds a strong relationship between latitude and range size at lower latitudes. We

show that both local and regional species richness of woody plants increase from higher to

lower latitudes. Although this pattern has been documented by most other large-scale studies

on plants, their conclusions about the underlying mechanisms that generate this pattern are

inconsistent [16,26–30]. A critical difference from most other studies is that we avoid con-

founding factors by examining a largely homogenous functional group of tropical evergreen

woody plants, within a floristically distinct biogeographic domain at a regional scale, and pro-

vide clear support for Rapoport’s rule and the climatic stability hypothesis.

Latitude and range size

Consistent with the predictions of Rapoport’s rule as well as with findings from previous stud-

ies from the northern hemisphere, we find a strong relationship between latitude and average

Fig 4. Latitudinal trends in species richness of evergreen woody plants of the Western Ghats. (a) Species richness per

one degree latitudinal belt represents count of all the latitudinal ranges that cut across that latitudinal belt. (b) Mean

rarefied richness per one degree latitude estimated for 450 individuals, the lowest sample size in our dataset amongst the 11

latitudinal zones. Solid lines represent best fit using ordinary least squares and grey band represents ±1SE.

https://doi.org/10.1371/journal.pone.0235733.g004
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Fig 5. Latitudinal trends in species range sizes. (a) Stevens’ method: Each point represents mean range sizes of

species recorded for every one degree latitude. (b) Midpoint method: Each data point represents latitudinal range of a

single species plotted against the latitudinal midpoint of its geographic range. Solid lines represent best fit using

ordinary least squares and grey band represents ±1SE.

https://doi.org/10.1371/journal.pone.0235733.g005
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Fig 6. Latitudinal trends in species elevational ranges. (a) Stevens’ method: Each point represents mean elevational

range sizes of species recorded within every one degree latitude. Solid lines represent best fit using ordinary least

squares (b) Midpoint method: Each data point represents elevational range of a single species plotting against the

latitudinal midpoint of its geographic range.

https://doi.org/10.1371/journal.pone.0235733.g006
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Fig 7. Relation between latitudinal position and climatic tolerance. (a) temperature and (b) precipitation

seasonality. Latitudinal position of a species is defined as the midpoint of its latitudinal range. Band represents best fit

using ordinary least squares (mean ±1SE).

https://doi.org/10.1371/journal.pone.0235733.g007
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range sizes of evergreen woody plants. The generality of Rapoport’s Rule has received criticism

because most of the evidence in favor of this relationship is from the higher latitudes of the

northern hemisphere and only a handful of studies have investigated this relationship at lower

latitudes [19]. Hence, Rapoport’s Rule is considered at best a (temperate) local phenomenon.

This is one of the first studies to document this relationship for tropical woody plants at lati-

tudes extending as low as 8oN. A study on range sizes of North American trees [31] is the only

other plant study to have documented this relationship at latitudes lower than 15oN. Most

other studies on plants from the northern hemisphere showed that Rapoport’s rule was only

valid across latitudes ranging from 70o to 25o N [17,28 and references there in]. This has been

attributed to the effect of ice ages and glaciation, which was particularly great at these latitudes,

resulting in selection of tolerance for extreme climatic fluctuations and extinction of less toler-

ant species. In our study, it is difficult to tease apart these factors, which either independently

or in conjunction with each other can produce the exact same patterns of range and richness.

That said, both these hypotheses are closely related and are based on similar mechanisms,

Fig 8. Results of structural equation model (model1). Grey boxes represent latent variables that are part of the conceptual model hypothesized in Fig 1. White

boxed represent the variables measured in this study which serve as surrogates of latent variables. Arrows represent the paths or the hypothesized relationship

between the latent variables based on climatic stability hypothesis. Numbers in parenthesis associated with paths between variables represent standardized

coefficients of the relationship between them while numbers below the endogenous variables represent the variation explained by the exogenous variables.

https://doi.org/10.1371/journal.pone.0235733.g008
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which enforce climatic constraints and test the physiological limits of tolerance to those

factors.

The strong evidence in favor of Rapoport’s rule and the climatic stability hypothesis

observed in our study can be attributed to the biogeographic and climatic setting of the West-

ern Ghats. First, the wet evergreen forests of the WG forms a single floristic zone as a result of

the shared geological and geographic history. This minimizes the confounding effects intro-

duced by differences in evolutionary, geographic and geological history of multiple biotic

domains [5,32]. Large scale studies that cut across multiple biotic domains have shown that

the relationship between range size and richness can only explain richness gradients within

these domains but not across [33]. Second, aridification of peninsular India led to a reduction

of wet evergreen forests to a narrow longitudinal belt along the WG, which have remained iso-

lated since, causing the woody plants to subsequently expand or contract their ranges solely

along the latitudinal axis of the WG [34]. This may have resulted in a strong relationship

between climatic tolerance and latitudinal ranges of the woody plants. The relatively uniform

longitudinal extent of the evergreen forests rules out the influence of geographic or longitudi-

nal area in introducing a potential bias in terms of Rapoport’s rule.

While non-endemic species may have overall larger ranges, this is unlikely to influence the

patterns detected here as they comprise a relatively small proportion (~33%) of the tree com-

munities of the Western Ghats. Moreover, the wet evergreen forests of the Western Ghats have

largely remained isolated since the aridification of the Indian subcontinent around late Mio-

cene (~ 10 MYA) [35] which marks the isolation and disjunction of the wet forests and its

evergreen woody species from the closest conspecific populations in the wet forests of north-

east India or south-east Asia. Given the long period of isolation and large geographic distance,

it largely rules out the possibility of gene flow for the non-endemic species between the West-

ern Ghats and either of these two regions and hence likely to be ecologically and evolutionary

distinct from their closest relatives in other geographic regions.

Climatic stability hypothesis

Recent studies have challenged the role of climatic stability in influencing geographic ranges

[19,36]. Trends in the climatic breadth of woody plants observed in our study for temperature

and precipitation seasonality provide compelling evidence in favor of climatic stability as a pri-

mary mechanism creating a Rapoport effect within the WG. Relying on the assumption that

the observed climatic breadth of woody plants is a reasonable approximation of their climatic

tolerance, and given the strong gradient in annual climatic stability across the Western Ghats,

our results suggests that climatic tolerance to temperature and precipitation seasonality is

likely to be one of the main determinants of latitudinal range limits of species and hence an

important driver of Rapoport’s rule, and as a consequence, a driver of the latitudinal diversity

gradient in the Western Ghats.

We draw this inference based on two findings: first, our results show that species which

exhibit higher climatic tolerance are more likely to occur over a larger latitudinal extent. A

strong relationship between range size and tolerance to temperature and precipitation season-

ality seems to suggest that the latitudinal limits of species and particularly the northern distri-

bution limits would be determined by species’ physiological ability to withstand the increasing

annual temperature extremes and the length of the dry season. Hence, the constraints imposed

by these can be expected to be successively more severe towards the northern Western Ghats

and hence would be the main range limiting factor for species with low climatic tolerance.

Second, we also find evidence for reduction in elevational ranges of woody species from

higher to lower latitudes. Janzen (1967) attributed this to lower climatic variability coupled
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with greater climatic stratification observed in tropical regions. Elevation is a stronger climatic

barrier to species expanding their elevational ranges in the tropics as they are more likely to

encounter novel climatic conditions outside the elevational limits they are acclimatized to. The

effectiveness of elevation as a climatic barrier and hence as a driver of speciation in the tropics

has been shown by a number of studies [37–39]. Thus, smaller elevational ranges lead to tigh-

ter species packing in the tropics when compared to equal elevational gradients in temperate

areas. This has a direct effect on species turnover as species are replaced at a faster rate at lower

latitudes as was evident from the trends in BetaW and BetaSIM which reflect higher rates of spe-

cies replacement towards the lower latitudes of the WG.

Apart from observing a significant reduction of average elevational ranges of woody plants

in the Western Ghats, we also observed that 85% of the medium and narrow ranging species

that were distributed between 8oto 13oN latitude in our study area were endemic, contrary to

wide ranging species which comprised equal proportions of endemic and non-endemic spe-

cies. This suggests higher rates of in-situ speciation at lower latitudes of the Western Ghats,

which has been demonstrated in other taxa as well [40].

The null model analysis as well as the randomization procedure supports our inference

regarding the role of climatic stability and species climatic tolerance as the primary mechanism

governing species range limits and range size. These analyses suggest that the positive relation-

ship between climatic tolerance (to temperature and precipitation seasonality) and geographic

range size is not a spurious relationship resulting from larger ranges sampling a larger environ-

mental gradient, nor is it a result of species with greater frequency of occurrence showing

wider climatic tolerance. We found that the slopes of the observed relationship were signifi-

cantly larger than expected under the null model while the values of coefficient of determina-

tion were twice as large. This difference in the effect sizes is a clear indication that the observed

relationship is not an artifact of large ranging species spanning a wider climatic gradient. On

the contrary, it is the narrow climatic tolerance of small and medium ranging species that

restricts them towards the lower latitudes. The resulting concentration of small and medium

ranging species towards the lower latitudes is primarily responsible for the differences in the

effect size between the observed relationship and the null model. Similarly, if the relationship

between climatic tolerance and range size was purely a result of differences in sample size (fre-

quency of occurrence based in which climatic tolerance was estimated), then controlling for

differences in sample size would have revealed a non-significant relationship. However, we

found that climatic tolerance estimated based on five randomly chosen occurrence locations

for all species also showed a significant relationship between climatic tolerance and range size.

An additional factor that contributes to the observed latitudinal pattern in the richness of

woody plants is the manner in which latitudinal ranges overlap giving rise to a nested distribu-

tion pattern towards the lower latitudes of the Western Ghats (Fig 9). Species ranges of ~ 80%

of the species were found to be perfectly nested and none of the small ranging species were dis-

tributed exclusively in the northern part of the Western Ghats. In other words, the latitudinal

limits of small ranging species are nested within the latitudinal limits of the large ranging spe-

cies. As a result, species distributed at higher latitudes form a subset of the species distributed

at lower latitudes [41]. One of the reasons for this observed pattern could be the fashion in

which thermal extremes increase with latitude. Within the latitudinal limits of the Western

Ghats, the mean annual temperature remains constant, while only the variability about the

mean increases from south to north (S4 Fig). This is a general phenomenon that is observed in

other parts of the world such as the neotropics, where mean temperature remains constant

from 25oN to 25oS [42,43]. This means that any species of woody plant that can endure the

thermal extremes at the northern part of the Western Ghats (higher latitudes) can potentially

occur all the way till the southernmost part of the Western Ghats (lower latitudes). The
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distribution pattern of latitudinal ranges of evergreen woody plants confirm this expectation.

However, this pattern could also very well be a result of species tolerance to precipitation sea-

sonality which also increases linearly from southern to northern Western Ghats. Thus, the cli-

matic extremes in temperature and precipitation seasonality set the northern limit of species’

latitudinal range such that small ranging species are restricted to the south and larger ranging

species successively towards the north. The resulting pattern in range overlap leads to an

increase in species richness from north to south.

Although, the climatic stability hypothesis as proposed by Janzen (1967) and Stevens (1989)

primarily emphasizes the importance of temperature seasonality, we find a much stronger rela-

tionship between tolerance to precipitation seasonality and latitudinal range in the pair wise

regression analysis. Tropical woody plants are known to be limited more by water than tem-

perature (Hawkins et al 2003). Precipitation seasonality is therefore likely to be a more impor-

tant limiting factor than temperature for woody plants of the Western Ghats [44]. Since the

boundaries of this biome fall well within tropical limits, minimum annual temperature which

has been shown to be a major limiting factor in temperate regions are never low enough in the

tropics to impose a severe physiological constraint on their distribution (except in high latitude

montane forests). However, it should be noted that SEM analysis showed a significant effect of

temperature and not precipitation seasonality. The strong correlation between temperature

and precipitation seasonality however makes it difficult to tease apart the relative importance

of these two climatic variables in determining species range limits in the Western Ghats.

Taken together, these results suggest that predictions of Rapoport’s rule are likely to hold

for any taxonomic group or biogeographic zone in which: (i) climatic extremes increase line-

arly across the latitudinal extent of interest without any abrupt shifts in climatic regimes (S4

Fig), (ii) the taxa under investigation belong to the same biotic domain [33, 45] or functional

group (eg. tropical evergreen plants) and (iii) ranges quantified in term of latitudinal extent

and total geographic area are correlated [9]. We believe that a lack of support for the rule in

earlier studies may have resulted from one or more of these confounding factors and does not

necessarily reflect a lack of generality of the pattern [46,47].

While species climatic tolerance and climatic variability (seasonality) seem to be the main

determinants of range size in the evergreen woody plants of the Western Ghats, this study

focused primarily on contemporary (intra-annual) climatic variability. However, long-term

climatic stability can have an equally profound effect on current distribution patterns of spe-

cies [34,48,49]. While these were found to be correlated at the Western Ghats scale, disentangl-

ing the role of long-term from short-term climatic variability might provide additional

Fig 9. Nested distribution pattern of latitudinal ranges of evergreen woody plants. Smaller latitudinal ranges, are nested within larger

ranges resulting in assemblages at higher latitudes being a subset of assemblages at lower latitudes. X-axis represents individual species

and the grey bars represent its latitudinal extent (along Y-axis). Species are arranged in descending order from left to right based on their

latitudinal range.

https://doi.org/10.1371/journal.pone.0235733.g009
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insights into what temporal scale of variability is more important in determining the range size

of tropical woody plants.

Conclusion

Few studies have investigated the role of climatic stability in determining range and richness

patterns and even fewer studies have provided empirical evidence in support. Here, we argue

that climatic stability through its influence on species ranges can provide a unifying explana-

tion for latitudinal patterns in species richness. Our conclusions are based on five observed

interconnected patterns, which form a causal link between climatic stability and species rich-

ness: 1. A gradient in climatic seasonality and tolerance of species to climatic extremes deter-

mines the distribution limits of woody plants; 2. Greater seasonality towards higher latitudes

favors species with wide climatic tolerance creating a Rapoport’s effect; 3. Higher climatic con-

stancy coupled with finer climatic stratification favors species with narrow climatic tolerance

(and hence smaller geographic range and narrow elevational limits) resulting in higher con-

centration of species at lower latitudes; 4. Increase in beta diversity is partly responsible for

increase in species richness resulting in a higher species pool at lower latitudes; 5. A nested dis-

tribution pattern of species latitudinal ranges further contributes to a steady increase in the

regional species pool towards lower latitudes. Studies that control for confounding factors by

examining specific functional groups within biogeographic domains may provide further

insights and support for the generality of the pattern and underlying causal mechanisms.
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