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Abstract: Across the globe, remote image data is rapidly being collected for the assessment of
benthic communities from shallow to extremely deep waters on continental slopes to the abyssal seas.
Exploiting this data is presently limited by the time it takes for experts to identify organisms found
in these images. With this limitation in mind, a large effort has been made globally to introduce
automation and machine learning algorithms to accelerate both classification and assessment of
marine benthic biota. One major issue lies with organisms that move with swell and currents,
such as kelps. This paper presents an automatic hierarchical classification method local binary
classification as opposed to the conventional flat classification to classify kelps in images collected
by autonomous underwater vehicles. The proposed kelp classification approach exploits learned
feature representations extracted from deep residual networks. We show that these generic features
outperform the traditional off-the-shelf CNN features and the conventional hand-crafted features.
Experiments also demonstrate that the hierarchical classification method outperforms the traditional
parallel multi-class classifications by a significant margin (90.0% vs. 57.6% and 77.2% vs. 59.0%)
on Benthoz15 and Rottnest datasets respectively. Furthermore, we compare different hierarchical
classification approaches and experimentally show that the sibling hierarchical training approach
outperforms the inclusive hierarchical approach by a significant margin. We also report an application
of our proposed method to study the change in kelp cover over time for annually repeated
AUV surveys.

Keywords: deep learning; hierarchical classification; kelp cover; kelps; manual annotation; benthic
marine population analysis

1. Introduction

Kelp forests support diverse and productive ecological communities throughout temperate and
arctic regions worldwide. Environmental anomalies such as cyclones, storms, marine heat waves and
climate change have a detrimental effect on benthic marine life including kelps [1]. Significant declines
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in kelp bed were observed around the globe in recent decades, with the main drivers identified
as eutrophication and climate change related environmental stressors. For instance, large-scale
disappearance of kelp was observed in 2002 in the southern coast of Norway [2]. In Spain, large scale
reductions in two main species of kelp have also been observed since the 1980’s [3].

Similarly, kelp populations in Australia have decreased as a consequence of climate change driven
environmental stressors. In the east coast of Tasmania, the coverage of giant kelp Macrocystis pyrifera in
the present decade is around 9% of the coverage in the 1940’s [4]. This decline is consistent with the
intrusion of warmer, nutrient poor water from the East Australian Current, which now extends 350 km
further south than in the 1940’s [5]. Wernberg et al. [6] reported a rapid climate-driven transition of
kelp forests to seaweed turfs in the Australian temperate reef communities with kelp forests showing
a 100 km poleward contraction from their pre-heatwave distribution on the Western Australia coast.
This trend is alarming for the numerous endemic species that rely on kelp forests for support. Loss of
kelp forests is also a major threat for Australia’s fishing and tourism industries, which generate more
than 10 billion Australian dollars per annum [7]. There is thus a pressing and immediate need for
monitoring programs to document changes in kelp dominated habitats along coastlines worldwide
and especially in temperate Australia.

Autonomous underwater vehicles (AUVs) are emerging as highly effective tools for monitoring
changes in benthic marine environments, because (i) they can autonomously conduct non-destructive
sampling in remote marine habitats; (ii) they can repeatedly survey the same spatial region to detect
change over time; and (iii) they are fitted with a range of instrumentation to acquire both physical
and biological data. AUVs were used to monitor the marine benthos across temperate and tropical
environments in Australia [8,9]; to survey invasive pest species [10]; to document rapid loss of
corals associated with warming events [9,11]; to describe benthic community structure at depths
greater than 1000 m [12]; and assess environmental impacts of the Deepwater Horizon oil spill [13].
In a large-scale study of deep waters, the distribution patterns of kelp forests were investigated to
provide useful insights on the effect of environmental changes on the kelp population [14]. The survey
took an extremely long time to complete as marine biologists had to manually classify images and to
identify kelp from imagery.

AUV driven monitoring can generate large quantities of imagery. For example, an AUV deployed
in Western Australia collected more than 15,000 stereo image pairs each day and was deployed between
10 and 12 days each year [9]. Manual analysis of such a large number of images per deployment
(150,000 to 200,000 stereo image pairs) takes a significant amount of time and effort and is the major
bottleneck in data acquisition from AUV surveys. To promptly identify changes in benthic species,
especially dominant habitat formers (such as kelps and corals), it is necessary to match image-analysis
time to surveying time so data can be analyzed rapidly and identification of change patterns can
be accomplished. Automatic classification is critical to speed up image analysis and consequently
automatic classification of benthic species has raised interest in ecologists and computer scientists
(such as [15–19]). Nonetheless, automated classification of AUV collected imagery is challenging
because images are captured in dynamic shallow water with little to no control on lighting and
significant variations in what is visible and how it is perceived.

In this paper, we tackle the challenge of automatically annotating underwater imagery for the
presence of kelp to detect changes in the coverage of Australian kelp forests. The common practice
is to study the distribution and density of benthic species, which involves manually annotating
a smaller dataset and then extrapolating these results to make inferences about the sites under study.
Automating the process of determining kelp coverage will significantly decrease image processing
times and will allow for large scale analysis of datasets and for early identification of changes in kelp
cover. To automate this process, it is paramount to select appropriate features. In computer vision
tasks, the general trend has shifted from conventional hand-crafted features to off-the-shelf deep
features [20]. Hand-crafted features which usually encode one aspect of data (i.e., color, shape or
texture) were a popular choice as image representations for benthic marine species recognition tasks
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in the works of [15,18,21,22]. Moreover, given that hand-crafted features are designed specifically for
a current task at hand, they generally do not perform well when applied on a different task. Recently,
Convolutional Neural Networks (CNNs) and features extracted from pre-trained CNNs have become
the preferred choice for benthic marine image classification tasks, e.g., [19,23–25]. These off-the-shelf
features are image representations learned by a deep network trained on a larger dataset such as
ImageNet. Off-the-shelf CNN features are generic and have shown better performance as compared
to hand-crafted features on a variety of image recognition tasks [20]. In this paper, we propose to
apply image representations extracted from deep residual networks (ResNets) to further improve the
automatic annotation of benthic species. Besides better performance, one big advantage of ResNets
is their faster training time and ease of optimization. Figure 1 depicts the evolution of classification
pipelines for automatic benthic marine species annotation.

Image
Part 

Annotations
Strong 
DPM

Learn 
Normalized 

Pose

Extract Features
RGB, gradient, 

LBP
SVM

CNN 
Representations

ResFeats
Representations

Classifier

Conventional Features
(SIFT, HOG, gradient, 

LBP)

ResNet
Representations

CNN 
Representations

Output 
Class

Input Image

Classifier
Output 
Class

Classifier
Output 
Class

Figure 1. Evolution of classification pipelines (the most recent at the bottom). Off-the-shelf deep
residual features have the potential to replace the previous classification pipelines and improve
performance for benthic marine image classification tasks. (SIFT: scale invariant feature transform,
HOG: histograms of gradient, LBP: local binary patterns, CNN: convolutional neural networks, ResNet:
residual networks).

The main motivation for using ResNet as a base network to extract features for kelp classification
is its superior performance over previous deep networks [26]. Moreover, the feature extraction is
fast due to the low computational complexity of ResNets and the reduced number of floating point
operations (FLOPs). Also, the feature extracted from ResNet is 2048-dimensional, which is half of
the traditional 4096-dimensional feature vector of previous networks such as VGG16 [27]. These
compact features result in reduced memory requirements for storing the features of large benthic
marine datasets.

The main contributions of this paper are:

1. The first application of deep learning for automated kelp coverage analysis.
2. A supervised kelp image classification method based on features extracted from deep residual

networks, termed as Deep Residual Features (DRF).
3. A comparison of the classification performance of the DRF with the widely used off-the-shelf

CNN features for automatic annotation of kelps.
4. Experiments demonstrating DRF’s superior classification accuracy compared to previous methods

for kelp classification.
5. We compare hierarchical image classification with multi-class image classification and report the

accuracies and mean f1-scores for two large datasets.
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6. An application of our proposed method to automatically analyze kelp coverage across five regions
of Rottnest Island in Western Australia.

7. We demonstrate the performance of the proposed kelp coverage analysis technique using ground
truth data provided by marine experts and show a high correlation with previously conducted
manual surveys.

The paper is organized as follows. In Section 2, we will briefly review related work. In Section 3,
we present our proposed approach and explain the features extracted from deep networks. We then
report the experimental results and kelp coverage analysis. In Section 4, we discuss the next steps
required to implement our proposed method to a platform to rapidly analyze benthic images. Section 5
concludes this paper.

2. Related Work

2.1. Kelp Classification

Previous studies on automatic classification and segmentation of kelps in benthic marine imagery
were based on hand-crafted features (Table 1). To the best of our knowledge, deep networks or features
extracted from deep networks have not yet been applied to solve this problem. Here we briefly
summarize a few of the prominent studies focused on automating kelp identification.

Table 1. A brief summary of methods for benthic image classification.

Authors Methods Classes Main Species

Marcos et al. [15] Color histograms, local binary pattern (LBP)
and a 3-layer neural network 3 Corals

Stokes and Deane [21] Color histograms, discrete cosine transform
and probability density-based classifier 18 Corals, Macroalgae

Pizarro et al. [22]
Color histograms, Gabor filter response,

scale-invariant feature transform (SIFT) and
a voting-based classifier

8 Corals, Macroalgae

Beijbom et al. [18] Maximum response filter bank with SVM
classifier 9 Corals, Macroalgae

Denuelle and Dunbabin [16] * Haralick texture features with Mahalanobis
distance classifier 2 Kelp

Bewley et al. [17] * Principal Component Analysis (PCA) and LBP
descriptors with SVM classifier 19 Corals, Algae and Kelp

Bewley et al. [28] * Hierarchical classification with PCA and LBP
features 19 Corals, Algae and Kelp

Beijbom et al. [23] • Deep neural network with reflectance and
fluorescence images 10 Corals, Macrolagae

Mahmood et al. [19] • Hybrid ( CNN + handcrafted) features with
a multilayer perceptron (MLP) network 9 Corals, Macrolagae

Mahmood et al. [24] • Off-the-shelf CNN features with SVM classifier 2 Corals, Macroalgae

Key: * have reported results on kelps and • have used methods based on deep learning.

Denuelle and Dunbabin [16] utilized a technique that employed generation of kelp probability
maps using Haralick texture features across an entire image. They reported that supervised and
unsupervised segmentation yielded similar results. Color imbalance resulted in a significant number
of false positives thus implying that the images collected must be diversified to cater for the various
possible underwater lighting and visibility conditions. When compared to manual segmentation by
experts, the results show good agreement.

Bewley et al. [17] presented a technique for the automatic detection of kelps using AUV gathered
images. The proposed method used local image features which are fed to Support Vector Machines
(SVM) [29] to identify whether kelp is present in the image under examination. Comparison of several
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descriptors such as Local Binary Patterns (LBP) and Principal Component Analysis was carried out
across multiple scales. This algorithm was tested on benthic data (collected from Tasmania in 2008),
which contained 1258 images with 62,900 labels and 19 classes. The f1-score, which is the harmonic
mean of precision and recall was used to evaluate the performance of their proposed method:

f 1 = 2× precision× recall
precision + recall

A maximum f1-score of 0.69 was reported for kelps. It was also suggested that practical systems
can be built to assist scientists with automatic identification of kelps. They also concluded that results
could be improved by using combinations at multiple scales, finding superior descriptors and by using
more supplementary AUV data. The study concluded that for a local geographical region, and for
a particular species, sufficient generalization is possible.

This work was extended in [28] for a multi-class classification problem in the presence of
a taxonomical hierarchy. A local classifier was trained for each node of the hierarchy tree for LBP
features and the classification results were compared through multiple hierarchy training methods.
This algorithm achieved an f1-score of 0.75 for kelps and an overall mean f1-score of 0.197 for all
19 classes present in the dataset.

2.2. Deep Learning for Benthic Marine Species Recognition

In recent years, deep networks and off-the-shelf CNN features have become the first choice
to tackle computer vision tasks. Only a handful of studies have developed benthic marine species
recognition methods based on deep learning. Beijbom et al. [23] trained three and five-channel
deep CNNs based on the CIFAR10 LeNet architecture [30] to improve the classification performance
for coral and non-coral species. Reflectance and fluorescence images were registered together to
obtain a five-channel image, which improved the classification performance by a significant margin.
This was the first reported study to employ training of deep networks (from scratch) for benthic marine
species recognition.

Off-the-shelf CNN features [20] along with multi-scale pooling were first used for coral
classification in [19] on the Moorea Labelled Coral (MLC) dataset, which is a challenging dataset
introduced in [18]. This paper also explored a hybrid feature approach, combining CNN features
with texton maps to further improve the classification accuracy on this dataset. Class imbalance is
an additional problem which refers to the disproportionate difference in the amount of points allocated
to some classes compared to others. This is a common issue in benthic marine datasets, as some species
are significantly more abundant than others. To address the class imbalance, a cost-sensitive learning
approach was studied in [31] using off-the-shelf CNN features for MLC dataset. In another study,
features extracted from pre-trained deep networks were used to generate coral population maps for
the Abrolhos Islands in Western Australia [24]. This study reported a trend of decreasing live coral
cover in this region. This is consistent with the manual analysis of AUV images conducted by marine
researchers [9,11].

Deep residual networks (ResNets) are a special class of CNNs and are deeper, faster to train and
easier to optimize than previous CNN architectures [26]. ResNets employ techniques such as residual
learning and identity mapping for shortcut connections [32], which enables them to overcome the
limitations of traditional CNNs and outperform them in training speed and accuracy. ResFeats, features
extracted from the output of convolutional layers of a 50-layer ResNet (ResNet-50), were reported to
improve the performance of different image classification tasks in [33], including coral classification on
the MLC dataset. Although these features are computationally expensive large arrays, we chose to use
the image representations extracted from the layers closer to the output end of ResNet-50 to reduce
computation cost and alleviate the need for dimensionality reduction.
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3. Methods and Results

In this section, we outline the key components of our proposed method (Figure 2) and present the
adopted experimental protocols.

Pre-trained 
ResNet-50

SVM
Classifier

Input Output Label

Feature 
Extraction

DRF

Figure 2. The block diagram of our proposed framework.

3.1. Datasets

3.1.1. Benthoz15 Dataset

This Australian benthic data set (Benthoz15) [34] consists of an expert-annotated set of
geo-referenced benthic images and associated sensor data. These images were captured by AUV
Sirius during Australia’s integrated marine observation system (IMOS) benthic monitoring program at
multiple temperate locations (Table 2) around Australia [8]. Marine experts manually annotated each of
these images according to the Collaborative and Automation Tools for Analysis of Marine Imagery and
Video (CATAMI) classification scheme. For each image, up to 50 randomly selected pixels were hand
labelled using the Coral Point Count with Excel Extensions (CPCe) software package [35]. For each
labelled pixel (point), a square patch of 224× 224, centered at the labelled pixel is extracted. This patch
is then used as an input for feature extraction. These pixels were randomly selected using CPCe for
manual annotations. Several of these pixels can be found on class boundaries, making the classification
problem more challenging. The whole dataset contains 407,968 expert labelled points, taken from 9874
distinct images collected at different depths and sites over the past few years. There are 145 distinct
class labels in this dataset, with pixel labels ranging from 2 to 98,380 per class. 33 out of these 145
classes belong to macroalgae (MA) species. 63,722 labelled points out of the total belong to the kelp
class. Further details on the labeling methodology can be found in [34].

Table 2. Benthoz15 data.

Site Survey Year # of Pixel Labels # of Images

Abrolhos Islands 2011, 2012, 2013 119,273 2377
Tasmania 2008, 2009 88,900 1778

Rottnest Island 2011 63,600 1272
Jurien Bay 2011 55,050 1101

Solitary Islands 2012 30,700 1228
Batemans Bay 2010, 2012 24,825 993
Port Stevens 2010, 2012 15,600 624

South East Queensland 2010 10,020 501

Total - 407,968 9874

3.1.2. Rottnest Island Dataset

The Rottnest Island dataset was also collected by AUV Sirius and contains 297,800 expert labelled
points, taken from 5956 distinct images collected at different depths from five sites around Rottnest
Island from 2010 to 2013 (Table 3). Three out of the five sites are labelled north (15 m, 25 m and
40 m depth) and two as south (15m and 25 m depth). There are 78 distinct class labels in this dataset,
with pixel labels ranging from 2 to 155,776 per class (Table A1). This makes the classification quite
challenging. 25 out of these 78 classes belong to macroalgae species. 156,000 labelled points out of the
total belongs to the kelp class.
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Table 3. Rottnest Island data.

Survey Year # of Images # of Pixel Labels # of Classes

2010 1680 84,000 61
2011 1680 84,000 55
2012 1033 51,650 44
2013 1563 78,150 55

Total 5956 297,800 78

3.2. Classification Methods

Deep residual features are extracted from the output of the last convolutional block of a 50-layer
deep residual network (ResNet-50) [26] that is pre-trained on ImageNet. Figure 3 shows the architecture
of the ResNet-50 deep network which we have used for feature extraction. The ResNet-50 is made
up of five convolutional blocks stacked on top of each other (Figure 3). The convolutional blocks of
a ResNet are different from those of the traditional CNNs because of the introduction of a shortcut
connection between the input and output of each block. Identity mappings when used as shortcut
connections in ResNets [32], can lead to better optimization and reduced complexity. This in turn
allows one to use deeper ResNets which are faster to train and are computationally less expensive than
the conventional CNNs i.e., VGGnet [27].

Conv1  
(112x112)

Conv2
(56x56)

Conv3 
(28x28)

Conv4 
(14x14)

Conv5
(7x7)

x 3 x 4 x 6 x 3

Layer Name
(Output Size)

Input
224x224x3

1x1,64  
3x3,64      

1x1,256
7x7, 64

1x1,128  
3x3,128      
1x1,512

1x1,256  
3x3,256    

1x1,1024

1x1,512  
3x3,512     

1x1,2048
FC 1000

Output 
(1 x nClasses) 

DRF

2048-d

Figure 3. ResNet-50 architecture [26] shown with the residual units, the size of the filters and the
outputs of each convolutional layer. DRF extracted from the last convolutional layer of this network is
also shown. Key: The notation k× k, n in the convolutional layer block denotes a filter of size k and n channels.
FC 1000 denotes the fully connected layer with 1000 neurons. The number on the top of the convolutional layer
block represents the repetition of each unit. nClasses represents the number of output classes.

The image representations extracted from the fully connected layers of deep networks pre-trained
on ImageNet [20] capture the overall shape of the object contained in the region of interest. The features
extracted from the deeper layers encode class specific properties (i.e., shape, texture and color) and
give superior classification performance as compared to features from shallower layers [36]. Hence,
we propose to extract the features from the output of the last convolutional block of ResNet-50
(Figure 3). The output of the Conv5 block is a 7× 7× 2048 dimensional array and is used as input of
the FC-1000 layer. This large array is however, first converted to a 2048-dimensional vector by using
a max-pool layer. We extract this 2048-dimensional vector and name it DRF. We do not use the FC-1000
layer for feature extraction because it is used as an output layer to classify the 1000 classes of the
ImageNet dataset, which was used to pre-train this network. Our feature extraction method is different
from the conventional method employed in previous deep networks such as VGGnet. The presence of
multiple fully connected layers in the VGGnet makes the feature extraction straightforward. The only
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fully connected layer in ResNet is class specific to the ImageNet dataset. Therefore, we proposed to
use the output of the last convolution block for DRF extraction.

There are three different approaches described in [37] to deal with the hierarchical
classification problem:

1. Flat Classification: This approach ignores the hierarchy and treats the problem as a parallel
multi-class classification problem.

2. Local Binary Classification: A binary classifier is trained for every node in the hierarchical tree
of the given problem.

3. Global Classification: A single classifier is trained for all classes and the hierarchical information
is encoded in the data.

We have used the local binary classification technique in this paper to identify kelps from other
taxa. This approach is easier to implement and more useful when all the nodes in the hierarchy are not
labeled to a specific leaf node level. For example, some macroalgae are not labeled to the species level
in the Benthoz15 dataset [34]. Moreover, this approach also allows for the use of different features,
training sets and classifiers for each node of the hierarchy tree. The hierarchy tree for kelps is shown in
Figure 4.

Figure 4. Hierarchy tree for kelps in our benthic data. In each node, the first line shows the node
number, 2nd line shows the name of the specie, and 3rd and 4th lines show the number of labels
belonging to that particular species in Benthoz15 and Rottnest Island data respectively.

3.3. Training and Testing Protocols

In this paper, two training approaches are used, namely inclusive training and sibling training.
In the inclusive training method, all the non-kelp samples from the entire dataset are treated as
negative samples i.e., nodes 1.2 and 1.1.2 in Figure 4. However in the sibling training method, only
those non-kelp samples are considered to be negative which comes under the macroalgae node
i.e., node 1.1.2 in Figure 4. We use a linear Support Vector Machines (SVM) [29] classifier because it
has shown excellent performance with features extracted from deep networks [20]. We use the SVM
classifier in a one-vs-all configuration with a linear kernel. We perform 3-fold cross validation within
the training set to optimize the SVM parameters and mean performance are reported in Section 3.
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3.4. Image Enhancement and Implementation Details

We applied color channel stretch on each image in the dataset to reduce the effect of underwater
color distortion phenomenon. We calculated the averages of the lowest 1% and the highest 99% of the
intensities for each color channel. The average of the lowest 1% intensities was subtracted from all
the intensities in each respective channel and the negative values were set to zero. These intensities
were then divided by the average of the highest 99% of the intensities. This process enhanced the color
information of benthic marine images.

For feature extraction, we used a pre-trained ResNet-50 [26] deep network architecture in our
experiments. We used the publicly available model of this network, which was pre-trained on the
ImageNet dataset. We implemented our proposed method using MatConvNet [38] and the SVM
classifier using LIBLINEAR [39] (Figure 2).

3.5. Experimental Settings and Evaluation Criteria

70% of images from each geographical location were used to form the training set for experiments
carried out on the Benthoz15 dataset. However, for Rottnest Island data, the images from years 2010,
2011 and 2012 are included in the training set and the images from year 2013 form the testing set.
We performed our experiments with three different classification approaches: flat classification and
local binary classification with both inclusive and sibling training policies. The overall classification
accuracy is not an effective measure of binary classifier performance for datasets exhibiting a skewed
class distribution. Therefore, to evaluate the performance of our classifier, we have used four evaluation
criteria: overall classification accuracy, mean f1-score (the average of f1-scores of each class involved in
the test data), precision and recall values of kelp.

3.6. Classification Results

In this section, we report the results of three different types of features for the three training
methods on the two datasets: (i) Maximum Response (MR) filter and texton maps of [18] as baseline
handcrafted features. We used a publicly available implementation of this method; (ii) CNN features
extracted from a VGG16 network pretrained on ImageNet dataset [27]; (iii) Our proposed DRFs
extracted from a pretrained ResNet-50.

Classification by the DRF method always outperformed the traditional CNN features and MR
features in both datasets as it consistently showed higher accuracy, higher f1 scores, higher precision
of kelps and higher kelp recall than previously used features. Additionally, hierarchical classification
(sibling and inclusive) in comparison to flat classification, also improved f1-score and recall of kelps
while providing lower training times. The sibling training method achieved the highest f1-score
for both datasets. Because f1-score is an evaluation metric based on both precision and recall,
we recommend the sibling training method as the top performing practical method for classification
and automated coverage analysis of kelps.

3.6.1. Benthoz15 Dataset

To highlight the superior classification performance of DRF, we have included a comparative
study among DRF and the traditionally used CNN features extracted from VGGnet [27] and MR
features (Table 4). The DRF method performs better than both the features for all three classification
experiments. The lowest overall accuracy was achieved by the flat multi-class classification method
(57.6%). Additionally, a very low mean f1-score of 0.05 was observed, since many classes among the
total 145 had very few samples for training and testing. Nonetheless, the flat classification method
achieved the highest precision (71%) for kelps among all the three methods. Out of every 100 kelp
samples, this method correctly identifies 71 samples as kelps. However, this method resulted in the
worst recall value of 65% (Table 4).
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The best classification accuracy is achieved with the inclusive training method (90%) for which all
the non-kelp samples are bundled together in the negative class. This training scheme achieves a mean
f1-score of 0.79 which is similar to the highest f1-score of 0.80 obtained using the sibling training
method (Table 4).

The sibling training method is more challenging as compared to the inclusive training method
because the negative samples only include macroalgae classes and some of these classes are very similar
to kelp in appearance. This accounts for a drop in classification accuracy from 90% to 83.4%. However
the sibling training method resulted in the highest mean f1-score (0.80) and recall value (78%) for kelp.
Moreover, statistical testing supports the hypothesis that all three DRF classifiers are better than their
VGG and MR counterparts at significance level of 0.05. For each DRF feature X and competing feature
Y ∈ (MR, VGG), we did a paired t-test over randomly chosen image samples (N = 50,000), using the
SVM classifier. Statistical results showed that, for each pairing of features (X, Y), feature X gave better
classification than feature Y at the 0.05 significance level. The calculated p-value was less than 0.05
which rejected our null hypothesis that both classifiers show similar performance.

Table 4. A comparison of flat, inclusive and sibling classification methods for kelp classification on
Benthoz15 dataset for MR, VGG and DRF methods. The flat classification focuses on all the classes
present in the dataset whereas the inclusive and sibling classification only includes kelps and non-kelps.
Mean f1-score corresponds to the average of the individual f1-score of each class involved in the
experiment. Best scores are shown in bold font.

Method Accuracy (%) Mean f1-score Precision of Kelps (%) Recall of Kelps (%)

MR: Flat 51.6 ± 0.3 0.03 ± 0.00 64 ± 0.5 59 ± 0.5
MR: Inclusive 82.8 ± 0.4 0.70 ± 0.03 43 ± 0.0 69 ± 0.0
MR: Sibling 79.6 ± 0.3 0.72 ± 0.02 55 ± 0.0 73 ± 0.0

VGG: Flat 54.4 ± 0.6 0.03 ± 0.01 67 ± 0.5 63 ± 0.5
VGG: Inclusive 89.0 ± 0.5 0.75 ± 0.02 47 ± 0.0 73 ± 0.0
VGG: Sibling 82.1 ± 0.4 0.76 ± 0.01 57 ± 0.0 75 ± 0.0

DRF: Flat 57.6 ± 0.5 0.05 ± 0.02 71 ± 1.0 65 ± 1.0
DRF: Inclusive 90.0 ± 0.07 0.79 ± 0.02 58 ± 0.0 73 ± 0.0
DRF: Sibling 83.4 ± 0.2 0.80 ± 0.01 65 ± 0.0 78 ± 0.0

3.6.2. Rottnest Island Dataset

The DRF was then applied to the Rottnest Island data and once again confirmed that the DRF
outperformed the VGG and MR features for all the classification experiments (Table 5). The hierarchical
methods performed better than the flat classification method for all evaluation criteria except for
precision. However, the recall value achieved by this method is the worst. This is consistent with the
results obtained on Benthoz15 dataset. The mean f1-score for flat classifier (0.03) is again very low
given the fact that all 78 classes are classified at the same time. The sibling training method comes out
as the best method with respect to accuracy (77.2%), mean f1-score (0.76) and recall value (79%) of
kelps. Moreover, the sibling training method is also the fastest method because it has less negative
examples than the inclusive method.

Fine-tuning a deep network is also a popular approach for transfer learning [40]. We also
compared our proposed method with fine-tuning. Fine-tuning a ResNet-50 on Rottnest Island data
achieved an overall classification accuracy of 58.8% as compared to the 59.0% achieved by our proposed
method. For Benthoz15 dataset, fine-tuning a ResNet-50 resulted in an overall classification accuracy
of 57.1% which is 0.5% lower than our proposed method. The performance change was marginal for
both datasets. Hence, we concluded that the classification accuracy achieved by both methods on
benthic marine datasets is comparable. One important aspect to compare is the computational time
required by these two approaches. The time needed to extract off-the-shelf features from a ResNet
and classify them using an SVM classifier is far less than the time required to fine-tune a 50 layer
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ResNet on a dataset as large as 297,800 input images. Our proposed method requires a few hours to
run. However, fine-tuning a ResNet-50 with Rottnest Island dataset takes at least 2 days on an Nvidia
Titan-X GPU. Given these considerations, we selected our proposed method over fine-tuning a ResNet
with a marine dataset approach.

Table 5. A comparison of flat, inclusive and sibling classification methods for kelp classification on
Rottnest Island dataset for MR, VGG, and DRF methods. The flat classification focuses on all the
classes present in the dataset whereas the inclusive and sibling classification only includes kelps and
non-kelps. Mean f1-score corresponds to the average of the individual f1-score of each class involved
in the experiment. Best scores are shown in bold font.

Method Accuracy (%) Mean f1-score Precision of Kelps (%) Recall of Kelps (%)

MR: Flat 52.9 ± 0.4 0.02 ± 0.00 90 ± 2.0 62 ± 1.0
MR: Inclusive 73.2 ± 0.6 0.70 ± 0.01 77 ± 0.0 74 ± 0.0
MR: Sibling 71.7 ± 0.4 0.71 ± 0.01 80 ± 0.0 73 ± 0.0

VGG: Flat 58.6 ± 0.6 0.02 ± 0.01 95 ± 1.5 65 ± 1.0
VGG: Inclusive 74.7 ± 0.4 0.74 ± 0.02 81 ± 0.0 75 ± 0.0
VGG: Sibling 74.5 ± 0.3 0.73 ± 0.02 84 ± 0.0 75 ± 0.0

DRF: Flat 59.0 ± 0.7 0.03 ± 0.01 95 ± 1.0 66 ± 1.0
DRF: Inclusive 75.0 ± 0.5 0.75 ± 0.01 82 ± 0.0 75 ± 0.0
DRF: Sibling 77.2 ± 0.4 0.76 ± 0.02 86 ± 0.0 79 ± 0.0

One of many challenges in benthic cover estimations through image analysis is the large amount
of time required to manually classify the imagery. The average time for manual annotation with
50 sample points per image is 8 minutes. A trained marine expert can annotate up to 8 images per
hour. The proposed method is significantly less time consuming as it results in an annotation rate
of 1800 images per hour using a Nvidia Titan-X GPU. This is approximately 225 times faster than
manual annotation by experts. Nonetheless, note that the proposed machine learning algorithm is
only classifying ‘kelp’ vs. ‘non kelp’. Although it is faster, it is not yet trained to classify 145 potential
benthic classes. This paper evaluates the technique for a single class and presents a way forward to
develop the methodology for other classes and faster processing times, which will allow scientists to
promptly analyze changes in benthic community composition.

3.7. Kelp Coverage Analysis

We extended our method to estimate kelp cover for the Rottnest Island dataset. The expert
identified coverage was calculated by aggregating the pixel level ground truth labels in every image.
We calculated the estimated kelp coverage by aggregating the predicted labels for the same locations
for which the expert labels were available. Kelp cover estimated by the annotations generated by our
proposed method was compared to the cover based on expert classification (Figure 5; Table 6). Scatter
plots were generated for each of five sites and all the data included in the 2013 test set. An important
application of our proposed method is to estimate the population trends of kelp across spatial and
time scales. To accomplish this task, we split the Rottnest Island data into sites and trained a classifier
on this basis instead of years. The three sites from the north constitute the training set and the two
southern sites form the test set.

The first sub-plot in Figure 5 shows kelp coverage for all of the data included in the test set.
The slope of the line generated by linear regression is very close to the ideal case. This highlights the
robustness of our proposed algorithm. The remaining sub-plots show kelp coverage for each of the
five sites. These sub-plots show a good agreement between the annotations generated by our proposed
method and the annotations provided by the human experts (Table 6). Moreover, we also calculated
the R-squared (R2) value for each plot to show correlation between the actual and predicted cover.
Our proposed method achieved a high R2 value for each individual site and then all sites combined.
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It is important to note that the DRF classification seems to over-fit kelp cover at high percentages of
cover and to under-fit kelp cover at lower ones.

Figure 5. Coverage estimation scatter plots for Rottnest Island Data for the DRF: Sibling Training
experiment. Each dot indicates the estimated cover and the actual cover per image. The dashed green
line represents the perfect estimation. The blue line on each plot is the linear regression model and
the shaded area represent the 95% confidence intervals. The first plot is the aggregated plot of the
remaining plots of the five sites included in the 2013 test data. R2 value for each sub-plot is shown in
the respective title.

Table 6. Expert identified and estimated kelp coverage for all five sites of Rottnest Island data for the
year 2013 along with the R2 values.

Site Depth and Location Expert Identified (%) Estimated (%) R2

1 15 m North 52.65 60.19 0.84
2 15 m South 64.64 71.23 0.87
3 25 m North 62.44 72.32 0.83
4 25 m South 49.24 49.78 0.89
5 40 m North 44.60 43.28 0.85

The estimated kelp coverage is not significantly different from the coverage calculated by the
experts from the ground truth labels (Figure 6). This indicates the robustness of our proposed method
for estimating kelp coverage. These results are beneficial to marine scientists since many surveys focus
on estimating kelp coverage, which is an important metric to indicate the health of kelp forests.

Figure 7 shows the expert identified and estimated percent cover of kelp across years of sites 2
and 4. For site 2, a slight over estimation of kelp cover by the DRF classification is visible, however
no distinct trend of change across years is observable in either manual or automatic classification.
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On the other hand, the estimation of kelp cover for site 4 shows no overestimation and similarly to
site 2, no trend change in kelp cover over the years.

Figure 6. Expert identified and estimated kelp coverage for all five sites of Rottnest Island data for the
year 2013.

Figure 7. Expert identified and estimated kelp coverage for the two southern sites of the Rottnest
Island data. Left: Site 2, Right: Site 4.

4. Discussion

The use of AUVs to survey benthic marine habitats has allowed scientists to investigate remote
locations such as off-shore and deep sites, which are beyond the limits of traditional SCUBA diving.
Nonetheless, the efficiency of image collection does not match the availability of data for ecological
analysis, as image classification is time consuming and costly given that it is performed manually
by marine experts. Additionally, manual classification has other disadvantages such as observer
discrepancies and biases. Automated analysis of imagery is thus essential to fully benefit from the
advantages of remote surveying technologies such as AUV’s. In this study, we have addressed this
problem by evaluating a machine learning automated image classification method using Deep Residual
Features (DRF) for a key marine benthic species: the kelp Ecklonia radiata.

We have demonstrated that the image representations extracted from pre-trained deep residual
networks can be effectively used for benthic marine image classification in general and kelps in
particular. These powerful and generic features outperform traditional off-the-shelf CNN features,
which have already shown superior performance over conventional hand-crafted features [19,20].
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The sibling and inclusive hierarchical training methods further enhance performance when compared
to flat multi-class classification methods. The sibling and inclusive training methods show
comparatively similar performance. However, the sibling method is superior because it has lower
training time than the inclusive method. Furthermore, estimations of kelp cover by automated DRF
classification closely resemble those of manual expert classifications with the added advantage of
faster processing times. This work provides evidence that automatic annotations may save resources
and time while providing effective estimates of benthic cover.

This method was also applied on a dataset to compare kelp coverage for multiple sites, across
three depths and for a consecutive time series of four years (2010–2013) at Rottnest Island. The patterns
observed showed differences in percent cover of the kelp Ecklonia radiata between sites (with higher
percentage cover of kelp in shallower sites compared to deeper sites) and no considerable change of
kelp cover across years. These trends were similar to those observed by manually classified data once
more confirming the usefulness of automated image classifying methods and the ability to use them
for ongoing monitoring of kelp beds with AUV technology.

In this study, we found no evidence of catastrophic loss of kelp over the years at any of the
sites surveyed at Rottnest Island. These results are comparable to previous estimates of change in
E. radiata cover across depth in Australia, performed with manually classified images [14]. They are
in contrast with trends of significant and continuous kelp decline reported in the region after an
extreme marine heatwave which resulted in widespread mortality of benthic species including corals,
seagrasses, invertebrates and kelp [6]. The loss of kelp in Western Australia resulted in a range
contraction of 100 km [6] and in crab and scallop fishery closures of benthic species associated with
kelp habitat. Importantly, the kelp loss was reported in habitats shallower than 15 m, with little
attention to the response of deeper habitats to the heatwave [9]. This may be why our results contrast
with studies reporting catastrophic loss of kelp, since our shallowest locations were at 15 m of depth,
and most in situ studies take place even shallower (about 12 m). Additionally, all our sites were
located off-shore (even the shallow ones), which may indicate that off-shore sites are less impacted
by environmental pressures. This may be due to the lack of other environmental disturbances that
coastal habitats are exposed to, due to their distance to shore and human populations. The interaction
of several disturbances was shown to cause ecological responses such as wide spread mortality
of marine benthic species [41]. Kelps growing offshore and in deeper locations (>15 m of depth)
appear to be less impacted by extreme warming in contrast to coastal shallow reefs [42]. As a result
of the catastrophic consequences that extreme climatic events may have on key habitat building
species, such as kelp, deeper marine regions were identified as potential refugia for shallow marine
species [43–45]. This emphasizes the importance of AUV surveys to provide information on offshore
and deep locations which may be influenced by different factors to their inshore counterparts [9].
The use of automated image analysis for processing AUV images will streamline the processing of
these images to efficiently identify patterns observed in deep and remote locations and compare them
with patterns observed in shallow and inshore sites.

The rapid characterization of ecological changes is crucial in light of the catastrophic threats
to marine biodiversity posed by the rise of extreme climatic events driven by climate change and
other anthropogenic stressors. Technology has enabled the rapid collection of images even in remote
locations through autonomous underwater vehicles, remotely operated vehicles, automated cameras
and even satellite imagery. The subsequent annotation of such imagery is typically time consuming
and consequently, the automation of marine species classification from digital images has become
a priority. This study focuses on the kelp species E. radiata, which is the dominant habitat builder
of temperate reefs in Australia, though automated classification of marine species was applied to
other important marine species. For example, progress in automated tropical coral identification has
resulted in accurate classification the level of genera [46] . Other successful automated classification
techniques for coral reefs include the collection of multifaceted data, minimum manual classification
effort (around 2% of pixels) and machine learning techniques which result in cm-scale benthic habitat
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maps of high taxonomic resolution and accuracy of up to 97% [47]. Similarly, in pelagic species such as
fish automated classification has advanced rapidly, with automated fish detection and identification
algorithms also measuring basic fish morphological features such as total length [48,49]. In contrast,
automated methods for identification of marine macroalgae from benthic images still result in low
agreement [46], highlighting the need for more research into unequivocal definitions of algal groups
for image classification.

Although the proposed DRF classification method allowed us to compare kelp cover in
different sites and across different years providing marginal differences with the estimations from
manual annotations, there were some errors associated with the proposed technique. We observed
an over-prediction of kelp at high percentage cover and under-prediction at low cover. Nonetheless,
the over prediction was smaller when data was divided per site and in some sites was negligible
(4 and 5). Overall, the estimated kelp cover closely resembles manual classification and taking into
consideration the cost effectiveness of automated DRF classification methods, the benefits of the
automated classification method out-weight the drawbacks. As such, automated classification of kelp
from AUV-derivated images constitute a cost-effective method for estimations of kelp abundance
across space and time.

A comparison of the best overall accuracies of hierarchical classification across the two used
datasets shows that both the sibling and inclusive DRF classifiers has shown better classification
accuracy on Benthoz15 dataset as compared with Rottnest Island dataset. For example, the inclusive
DRF classifier for Benthoz15 dataset (Table 4) has an absolute gain of 15% over the respective classifier
for the Rottnest dataset (Table 5). This substantial difference is possibly due to the high presence
of the brown algae Scytothalia dorycarpa in the Rottnest Island data. Scytothalia dorycarpa is very
similar to kelp in appearance and usually occurs in areas of the sea floor with high cover of kelp.
Therefore, marine scientists may mis-classify it as kelp in poor quality images. This misclassification is
possible if the point falls on the edge of Scytothalia dorycarpa, where the boundary between the two
species is not clear. The expert misclassification of Scytothalia dorycarpa as kelp may also explain the
over-prediction of kelp by the DRF classification method at high percentage cover. The over-prediction
of the automated classification is actually an overestimation of the kelp cover by the manual annotation
method. The subjectivity in the classification is removed by the automated analysis, which uses several
features to classify kelp. Figure 8 illustrates the similarity of appearance of these two species.

Figure 8. An example image from Rottnest Island Dataset with manual annotations showing similarity
in appearance between Scytothalia dorycarpa (green) and the kelp Ecklonia radiata (blue).
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Poor quality images (low light and resolution) will also affect the manual classification of other
classes of algae such as ‘turf matrix’, ‘fine branching red algae’ or other canopy forming brown algae.
These and other algae classes are not as common as kelp at the sites surveyed at Rottnest Island. Thus,
misclassification associated with manual annotations may also explain the over prediction of kelp at
low percentage covers. At low cover of kelp, a turf and foliose matrix of red algae occurs on the rocks.
In areas of low kelp cover it is easy for an expert to distinguish kelp from other classes, but perhaps
due to the imbalance of data for training the classifier sometimes other classes are classified as kelp
resulting in over-prediction by the DRF classification method. These issues highlight the need for larger
training datasets for deep learning-based automatic annotation. Extensive and comprehensive training
sets will allow for better classifier training and give the opportunity to increase the amount of biota
classified automatically (e.g., other algae species, corals, sponges, invertebrates such as sea urchins,
and lobsters). Future work will explore multi-class classification of benthic marine species across
diverse benthic habitats so methods based on deep learning algorithms can be applied to numerous
ecological problems that include other benthic marine species. Scientists who use data extracted from
image classification should keep these considerations in mind when manually annotating images since
these datasets are extremely valuable for deep learning-based automatic classification.

5. Conclusions

The aim of this study was to investigate deep learning techniques for automatic annotation of
kelp species in a complex underwater scenery. Towards this end, we evaluated a Deep Residual
Features (DRF)-based method to carry out this task and showed that it outperformed the widely
adopted off-the-shelf CNN based classification. We also established that hierarchical classification
with the sibling method gave superior results compared to the flat multi-class approach with the
added advantage of faster training times. Our results suggest that the proposed automatic kelp
annotation method can significantly reduce the number of human-hours spent in manual annotations.
Additionally, our proposed method can enhance the effectiveness of AUV monitoring campaigns
by facilitating the early detection of changes in the population of key species though rapid image
processing times, as demonstrated with examples from the Rottnest Island dataset. To conclude,
the proposed DRF based automatic annotation of benthic images is to this date the most accurate
machine learning technique for estimation of kelp cover.
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Appendix A

Table A1. Class Distribution of Rottnest Island Data.

Label Training Samples Test Samples CATAMI Class ID

1 1 0 AUC
2 0 1 AUS
3 2 0 BMC
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Table A1. Cont.

Label Training Samples Test Samples CATAMI Class ID

4 483 294 BRYH
5 20 13 BRYS
6 20 0 CB
7 1 0 CBBF
8 2 0 CBBH
9 7 0 CBOT

10 0 3 CNHYC
11 3 0 CNHYD
12 7 1 CSBL
13 44 19 CSBR
14 1 1 CSBRBL
15 15 3 CSCOLBL
16 2 0 CSCOR
17 2 2 CSCORBL
18 7 3 CSDBL
19 265 38 CSE
20 24 1 CSEBL
21 887 355 CSF
22 46 2 CSFBL
23 7 3 CSM
24 50 8 CSSO
25 1 0 CSSOBL
26 0 2 CSST
27 1 0 CSSUBL
28 1 1 CST
29 1 0 CSTBL
30 10 7 EF
31 47 2 ESC
32 15 1 ESS
33 102 31 FELR
34 0 3 MAAG
35 2644 2561 MAAR
36 37 0 MACAU
37 66 113 MAECB
38 1 1 MAECG
39 112762 43014 MAECK (Kelp)
40 2419 1124 MAECR
41 1733 173 MAEFB
42 1 1 MAEFG
43 2839 586 MAEFR
44 6744 1300 MAENB
45 29948 11686 MAENR
46 1252 2073 MAFR
47 2 0 MAGB
48 9 0 MAGG
49 1 0 MAGR
50 4 0 MALAB
51 2 0 MALAR
52 285 87 MALCB
53 3 1 MAPAD
54 1177 2391 MASAR
55 52 6 MASB
56 16571 3366 MASCY
57 137 0 MASR
58 24637 4846 MATM
59 2 0 RH
60 1505 163 SC
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Table A1. Cont.

Label Training Samples Test Samples CATAMI Class ID

61 14 13 SCC
62 2 0 SEAGSAA
63 18 3 SEAGSAG
64 0 3 SEAGSPA
65 1 3 SEAGSPC
66 2 0 SEAGSPS
67 1 0 SEAGSZ
68 106 15 SHAD
69 2013 1201 SPC
70 400 214 SPCL
71 110 125 SPEB
72 123 36 SPEL
73 289 347 SPES
74 69 0 SPM
75 23 6 SUPBC
76 164 4 SUPBR
77 9340 1893 SUS
78 68 1 UNK
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