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Yiyi Fuzi Baijiang Decoction (YFBD), an ancient prescription developed by the ancient Chinese physician, Zhang Zhongjing, has
shown remarkable effects in treating ulcerative colitis (UC). However, there are few studies on its mechanism. 0is study was
designed to explore the potential mechanism of YFBD in treating UC. 0e principal ingredients of YFBD were analyzed using
high-performance liquid chromatography (HPLC). Dextran sulfate sodium- (DSS-) induced mice and lipopolysaccharide- (LPS-)
stimulated RAW264.7 cells were used in the study. 0e body weight and disease activity index (DAI) of mice were recorded and
analyzed for 10 days. After sacrifice, the colonic tissues were harvested. 0e colon length was measured, and the histopathological
changes were observed by hematoxylin and eosin staining. 0e levels of inflammatory cytokines in mice colons and RAW246.7
cells were determined by real-time quantitative PCR and immunofluorescence. 0e effects of YFBD on the TLR4-mediated PI3K/
Akt and NF-κB pathways were determined by western blot analysis. HPLC identified five compounds in YFBD: chlorogenic acid,
caffeic acid, benzoylmesaconine, benzoyl aconitine, and quercetin. YFBD alleviated weight loss, colon shortening, and colonic
histopathological lesion in mice. Meanwhile, it decreased the DAI and histological score of mice with UC. In addition, YFBD
remarkably decreased the levels of interleukin- (IL-) 6, IL-1β, and tumor necrosis factor (TNF)-α in the colons of DSS-induced
mice and LPS-stimulated RAW246.7 cells. Furthermore, the expression of key proteins in TLR4-mediated PI3K/Akt and NF-κB
pathways significantly decreased with YFBD treatment. In conclusion, YFBD had protective effects onmice with UC, which was in
part related to its anti-inflammatory effects and downregulation of TLR4-mediated PI3K/Akt and NF-κB pathways.

1. Introduction

Ulcerative colitis (UC) is characterized by chronic nonspecific
inflammation with recurring cycles of tissue destruction and
repair. 0e highest incidence of UC was reported in Europe
and North America (24.3 and 19.2 per 100,000, resp.) [1]. 0e
morbidity follows an ascending trend, especially in newly
industrialized countries [2–4]. Currently, drugs for UC, in-
cluding aminosalicylates, corticosteroids, immunomodula-
tors, and tumor necrosis factor (TNF)-α inhibitor, have
achieved favorable efficacy in clinical practice. Sulfasalazine is
one kind of traditional aminosalicylate products, which serves
as first-line therapy on UC and is beneficial to most patients
with mild-to-moderate, left-sided colitis [5]. However, these

agents have limitations, including severe side effects, even
tumorigenesis, and high costs [6]. 0erefore, more effective,
less toxic, and cheaper drugs need to be developed to benefit
patients with UC.

Traditional Chinese medicine (TCM) was demonstrated
to have the therapeutic potential to treat UC [7, 8]. Yiyi Fuzi
Baijiang Decoction (YFBD), a formula originally presented
in the Chinese medical classic Shang Han Lun, can be used to
treat UC based on TCM theory. YFBD showed positive
effects among patients [9, 10]. It has three components:
C. lacryma-jobi L. (Yi Ren), Radix Aconiti Lateralis Pre-
parata (Fuzi), and Patrinia scabiosaefolia Fisch. (Bai Jiang
Cao). C. lacryma-jobi L. could relieve the symptoms of UC
by regulating the proinflammatory mediators and
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improving the microbial community structure in the gut
[11, 12]. Radix Aconiti Lateralis Preparata had far-ranging
pharmacological activities; it displayed anti-inflammatory,
antitumor, and immunoregulatory effects and influenced
energy metabolism [13]. It also reduced inflammation in
mice with UC partly by inhibiting the NF-kB pathway [14].
0e extracts in P. scabiosaefolia Fisch. could reduce in-
flammatory responses in extensive models, such as UC,
acute pancreatitis, and focal cerebral ischemia-reperfusion
models [15]. Previous studies provided clues and evidence
on the anti-inflammatory effects of YFBD. However, the
underlying mechanism remains to be explored.

TLR4-mediated PI3K/Akt and NF-κB pathways closely
relate to inflammatory responses of UC. TLR4, as a member of
the Toll-like receptor family, can mediate inflammatory re-
sponses [16]. Previous studies confirmed that TLR4 expression
was upregulated in patients with UC [17, 18]. TLR4 recognized
lipopolysaccharide (LPS) and initiated intracellular signaling,
such as PI3K/Akt and NF-κB pathways [19–22]. 0e PI3K/Akt
pathway was generally considered to be linked with the cellular
processes of metabolism, proliferation, growth, and survival.
However, current evidence suggests that the pathway partici-
pates in the pathogenesis ofUCbased on its extensive regulation
of inflammation, apoptosis, and immune responses [23–25].
NF-κB is involved in gene expression of inflammatory cytokines
[26]. Studies showed that persistent activation of NF-κB sig-
naling could be detected in patients with UC and murine UC
models [7, 18]. 0erefore, it was inferred that TLR4-mediated
PI3K/Akt andNF-κBpathways were critical to the development
of UC and were probably promising therapeutic targets.

Consequently, considering the pharmacological study on
the ingredients of YFBD and the mechanism of UC, it was
hypothesized that YFBD could alleviate UC by controlling
inflammation, which was partly realized by regulating TLR4-
mediated PI3K/Akt and NF-κB pathways. In the research,
the levels of inflammatory cytokines and key proteins in
these pathways were measured, and the possible mechanism
behind YFBD treating UC was clarified for the first time.

2. Materials and Methods

2.1. Drugs and Antibodies. Dextran sulfate sodium (DSS,
36–50kDa) was purchased from MP Biomedicals (CA, USA).
Primary antibodies against p-PI3K (#4228), Akt (#4691), and
p-Akt (#4060) were purchased from Cell Signaling Technology
(MA, USA). Primary antibodies against TLR4 (ab13867), NF-
κB/p65 (ab32536), p-NF-κB/p65 (ab28856), IκBα (ab32518),
β-actin (ab6276), IL-6 (ab233706), IL-1β (ab216995), TNF-α
(ab215188), as well as HRP-conjugated goat anti-rabbit/mouse
IgG (ab150077, ab205719) and goat anti-rabbit IgG H&L Alexa
Fluor 488/555(ab150077, ab150078), were purchased from
Abcam (MA,USA). Primary antibody against p-IκBα (AP0707)
was purchased from ABclonal Biotechnology (Wuhan, China).
Lipopolysaccharide (LPS) was purchased from Sigma (MO,
USA). 0e three medicinal herbs in YFBD (C. lacryma-jobi L.,
Radix Aconiti Lateralis Preparata, and P. scabiosaefolia Fisch.)
were purchased from Beijing Tong Ren Tang Co., Ltd. (Suzhou,
China). Sulfasalazine (SASP)was purchased fromShanghai Sine
Tianping Pharmaceutical Co., Ltd. (Shanghai, China).

2.2.PreparationofDrugs. Raw herbs (shown in Table 1) were
immersed in the 10× volume of distilled water for 30min,
boiled at 100°C for another 30min, cooled to room tem-
perature, and filtered through a 200-mesh filter to make
YFBD raw decoction. Drug sediments were reserved for the
second decoction using an 8× volume of distilled water, and
the solution was filtered again. Both batches of the filtrate
were mixed, concentrated to 2 g/mL and 1 g/mL decoction,
respectively (calculated with raw herbs), and stored at 4°C
for the intragastric administration of mice and high-per-
formance liquid chromatography (HPLC) analysis. To
prepare YFBD powder acting on cells, 50mL YFBD (1 g/mL)
was freeze-dried by a LAB-1A-50E freeze dryer (Biocool,
Beijing, China) into 1.84 g brown powder.

2.3. Standardization of YFBD. 0e standards including
chlorogenic acid (C8960; purity≥ 98%), caffeic acid (C8990;
purity≥ 99%), and quercetin (SQ8030; purity≥ 98%) were
purchased from Solarbio (Beijing, China). 0e standards
including benzoylmesaconine (T6S1885; purity: 99.59%)
and benzoyl aconitine (T6S1880; purity: 99.78%) were
purchased from Topscience (Shanghai, China). 0e con-
centrations of the main compounds in YFBD were deter-
mined using HPLC [27, 28] with minor modifications.
Briefly, a Shim-pack VP-ODS C18 column ((250× 4.6mm2,
5.0 μm) was used for chromatography separation. 0e
mobile phase consisted of 0.2% formic acid and 10mM
ammonium acetate (A) and acetonitrile (B). 0e gradient
elution program was as follows: 0⟶12min, 5% B;
12⟶28min, 5% B⟶30% B; 28⟶33min, 30% B;
33⟶35min, 30% B⟶5% B; 35⟶40min, 5% B. 0e
wavelength was set at 230 nm because this wavelength could
detect all the compounds with acceptable sensitivity.

2.4. Animals. Fifty male C57BL/6 mice (age: 6 weeks;
weight: 18–20 g) were purchased from Suzhou JOINN
Clinical Co., Ltd. with license No. SYXK (Su) 2017–0043.
0ey were housed in a controlled environment at a tem-
perature (24± 1°C) under a standard light-dark cycle with
free access to food and drink. 0e animal research was
conducted conforming to the protocol approved by the
Institute of Animal Care Committee of Zhangjiagang TCM
Hospital.

2.5. Grouping and Induction of UC. 0emice were randomly
divided into five groups (n� 10): control group (sterile water),
colitis group (2.5% DSS), SASP group (2.5% DSS+ SASP
0.1 g/kg), YFBD low-dose group (2.5% DSS+YFBD 10 g/kg),
and YFBD high-dose group (2.5% DSS+YFBD 20 g/kg). 0e
experiment was started after seven days of adaptive feeding.
0e mice in the control group received sterile water for 10
days. 0e mice in the DSS, SASP, and YFBD groups were
given 2.5% DSS for seven days to introduce colitis models,
following which they were fed sterile water for three days.
Meanwhile, the mice in treatment groups were orally ad-
ministered with SASP (0.1 g/kg), YFBD (10 g/kg), and YFBD
(20 g/kg) for 10 days. 0e mice in control and DSS groups
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were given the equal volume of distilled water by gavage.
Animal equivalent doses were converted from human doses
based on the body surface area [29]. After sacrifice, mice
colons were cut into three sections for further research. 0e
animal experimental design is shown in Figure 1(a).

2.6. Disease Activity Index and Histological Evaluation.
During drug administration and modeling, the body
weight, stool characteristics, and bleeding were observed
and recorded daily according to scoring system referred
earlier [30]. 0e distal colonic tissues were fixed with 10%
formalin, embedded in paraffin, sliced into four-µm thick
sections, and mounted on microscope slides. 0e slices
were tinted with hematoxylin and eosin (H&E) and then
photographed under a microscope. 0e colonic pathology
was scored based on the modified histology scoring system
as described previously [31].

2.7. Cell Culture and Treatment. RAW264.7 macrophages
were obtained from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). 0e cells were cultured in high-
glucose DMEM (Hyclone, UT, USA) supplemented with
10% FBS (Biological Industries, Israel), 100U/mL penicillin,
and 0.1mg/mL streptomycin (NCM Biotech, Suzhou,
China) in the presence of humidified 5% CO2 at 37°C. 0e
cells were seeded at 105/mL for 24 h, followed by incubation
with different concentrations of YFBD for 2 h, and then
stimulated with LPS (1 μg/mL) for another 24 h.

2.8. Small Interfering RNA (siRNA) Transfection. 0e TLR4
siRNA target sequence and negative control siRNA sequence
were purchased from Santa Cruz Biotechnology (CA, USA).
Briefly, RAW 264.7 cells were cultured in 6-well plates
(5×105 cells/well). When the cell density reached 40–50%,
NC siRNA or TLR4 siRNA were transfected into cells with
Lipofectamine 3000 (Invitrogen, USA) according to the
manufacturer’s protocol. After a 24-hour transfection pe-
riod, the cells were treated for 2 h with or without YFBD and
then exposed to LPS (1 μg/ml) for 24 hours, followed by
other analyses.

2.9.CellViabilityAssay. RAW 264.7 macrophages (104/well)
were inoculated in 96-well plates for 24 h and then cultured
with multiple concentrations of YFBD (0, 6.25, 12.5, 25, 50,
100, 200, and 400 μg/mL) for 24 h. Subsequently, 10 μL of cell
counting kit-8 (CCK-8; Dojindo Co., Kumamoto, Japan)
was added to each well and incubated for another 1 h. 0e
optical density (OD) values were measured at 450 nm
(BioTek, VT, USA).

2.10. RNA Isolation and RT-qPCR Assay. Total RNA was
isolated from colon tissues and RAW 264.7 cells with TRIzol
regent (Invitrogen, CA, USA). 0e RNA concentration was
examined using a NanoDrop spectrophotometer (0ermo,
MA, USA), and then RNA was reverse-transcribed to cDNA
using an Applied Biosystems thermal cycler (0ermo, MA,
USA). Afterwards, qRT-PCR was performed on a Light-
Cycler 96 real-time PCR detection system (Roche, BW,
Germany) following the instructions of SYBR Green
(0ermo). Relative mRNA expression was calculated using
the comparative Ct method (2−△△Ct). 0e primers were
purchased from Sangon Biotech (Shanghai, China), and the
sequences are listed in Table 2.

2.11. Immunofluorescence Staining. Immunofluorescence
staining was performed on colon paraffin sections with 4 μm
thickness. Briefly, the sections were boiled in citric acid
buffer (Beyotime, Shanghai, China) for 20min. After
washing with PBS (Beyotime) three times, the sections were
immersed in Triton X-100 (Beyotime) and subsequently
blocked in 5% serum. Afterwards, they were incubated with
primary antibodies at 4°C overnight.0e colon sections were
washed and coincubated with corresponding fluorescence-
conjugated secondary antibodies in the dark, followed by
staining with DAPI (Beyotime). Finally, the images of colon
sections were captured under an epifluorescence microscope
(Olympus, U-RFL-T, Japan).

2.12. Western Blot Analysis. A Protein Quantification Kit
(BCA Assay; 0ermo) was used to quantify the protein
concentrations of extracts from colon tissues and cultured
cells. 0e protein samples were separated by SDS-PAGE
(Beyotime) and transferred onto PVDF membranes (Mil-
lipore Corp.; MA, USA), which were then blocked with 5%
bovine serum albumin (0ermo) in TBST (Beyotime). 0e
membranes were incubated with the primary antibodies
against TLR4 (1 : 500), p-PI3K (1 :1000), Akt (1 :1000), p-Akt
(1 : 2000), NF-κB/p65 (1 : 5000), p-NF-κB/p65 (1 :1000),
IκBα (1 : 5000), p-IκBα (1 :1000), and β-actin (1 : 5000) and
then rinsed with TBST three times, followed by coincubation
with the corresponding secondary antibodies (1 : 5000).
Finally, the chemiluminescence signals were detected, and
the band intensity was quantified using ImageJ software.

2.13. Statistical Analysis. Each experiment was performed at
least three times, and all data were expressed as mean± SEM.
0e significance of differences was determined using one-
way analysis of variance with Tukey’s multiple comparison
test using SPSS software 21.0. P values less than 0.05 in-
dicated statistically significant differences.

Table 1: Description of YFBD.

Latin name Chinese name English name Origin Amount (g) Batch codes
Coix lacryma-jobi L. Yi Ren Semen coicis Guizhou 30 20150136
Radix Aconiti Lateralis Preparata Fuzi Monkshood Sichuan 6 20160240
Patrinia scabiosaefolia Fisch. Bai Jiang Cao Patrinia Jiangsu 15 20160240
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Figure 1: Continued.
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3. Results

3.1. HPLC Analysis of theMain Constitutes in YFBD Extracts.
0e chromatographs of the standard mixtures and the YFBD
are shown in Figure 2.0e contents of these five chemicals in
YFBD (1 g/mL) were 106.2, 25.3, 62.5, 31.7, and 18.4 μg/mL
for chlorogenic acid, caffeic acid, benzoylmesaconine,
benzoyl aconitine, and quercetin, respectively.

3.2. YFBD Alleviated DSS-Induced Colitis. Distinct body
weight loss was observed from day 6 (P< 0.01), and the DAI
score significantly increased on day 4 in the DSS group
compared with the control group (P< 0.01). 0e body
weight increased, and the DAI score dropped significantly in
YFBD (20 g/kg) and SASP groups compared with the DSS
group (P< 0.05 or 0.01; Figures 1(b) and 1(c)). Besides, DSS
shortened the colon length significantly (P< 0.01;
Figures 1(d) and 1(e)). However, the colon lengthened in the
YFBD (10, 20 g/kg) and SASP groups compared with the DSS
group (P< 0.01; Figures 1(d) and 1(e)). Furthermore, H&E
staining showed that DSS administration induced severe
colonic damage, such as mucosal ulceration and crypt

damage along with leukocyte cell infiltration. However,
treatment with YFBD (10, 20 g/kg) and SASP markedly
attenuated colonic damage (Figure 1(f )). Moreover, the
histological score increased appreciably in the DSS group
(P< 0.01), while it declined in the YFBD (10, 20 g/kg) and
SASP groups compared with the DSS group (P< 0.01;
Figure 1(g)).

3.3. YFBD Decreased the Levels of Inflammatory Cytokines in
Mice with UC. A marked increase in mRNA levels of IL-6,
IL-1β and TNF-α was observed after DSS induction in the
control group (P< 0.01; Figures 3(a)–3(c)). However, the
mRNA levels of the cytokines decreased in the YFBD (10 and
20 g/kg) and SASP groups compared with the DSS group
(P< 0.05 or 0.01; Figures 3(a)–3(c)). Furthermore, immu-
nofluorescence staining indicated that the fluorescence in-
tensity of IL-6, IL-1β, and TNF-α was strong in the colonic
tissues of DSS-induced mice, which were weakened in the
YFBD (10 and 20 g/kg) and SASP groups (Figure 3(d)).

3.4. YFBD Decreased the Levels of Inflammatory Cytokines in
LPS-Stimulated RAW264.7 Cells. RAW264.7 cell models of
experimental inflammation were used to further confirm the
anti-inflammatory effects of YFBD [32, 33]. Cytotoxicity
analysis indicated that the concentrations of YFBD used in
the experiment had no significant influence on cell viability
(Figure 4(a)). 0e mRNA levels of IL-6, IL-1β, and TNF-α in
RAW264.7 cells increased strikingly after induction with
LPS (P< 0.01; Figures 4(b)–4(d)), while the cytokines de-
clined in the YFBD groups (10, 50 μg/mL) compared with
the DSS group (P< 0.05 or 0.01; Figures 4(b)–4(d)).
Moreover, the study indicated that YFBD reduced the
mRNA levels of IL-6, IL-1β, and TNF-α in a concentration-
dependent manner.
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Figure 1: YFBD attenuated DSS-induced acute colitis. (a) Animal experiment design (10/group). (b) Changes in body weight. (c) Evaluation
of DAI. (d) Representative images of colons. (e) Effect of YFBD on colon length. (f ) Photographs of H&E-stained colon sections
(magnification: ×100). (g) Assessment of the histological scores. Data are presented as mean± SEM (n� 8). ∗∗P< 0.01 vs. control; #P< 0.05;
##P< 0.01 vs. DSS.

Table 2: Primers for qRT-PCR.

Genes Primer sequences (5′-3′) Length (bp)

IL-6 F: CACTTCACAAGTCGGAGGCT 113R: CTGCAAGTGCATCATCGTTGT

IL-1β F: AACCTTTGACCTGGGCTGTC 144R: AAGGTCCACGGGAAAGACAC

TNF-α F: AGTTCTATGGCCCAGACCCT 149R: ACAAGGTACAACCCATCGGC

β-actin F: CGCCACCAGTTCGCCATGGA 105R: TACAGCCCGGGGAGCATCGT
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3.5. YFBD Downregulated TLR4-Mediated PI3K/Akt and
NF-κB/p65 Pathways In Vivo. TLR4-mediated PI3K/Akt
and NF-κB pathways play a vital role in regulating in-
flammatory responses. 0erefore, this study evaluated the
protein expression in the pathways using WB. In vivo, the
expression of TLR4 increased significantly in the DSS group
compared with the control group, as well as the elevated
expression of p-PI3K, p-Akt, p-NF-κB/p65, and p- IκBα
(P< 0.01; Figures 5(b)–5(g)). However, the expression of
these proteins decreased in the YFBD (10, 20 g/kg) and SASP
groups compared with the DSS group (P< 0.05 or 0.01;
Figures 5(b)–5(g)).

3.6. YFBD Inhibited TLR4-Mediated PI3K/Akt and NF-κB/
p65 Pathways In Vitro. In vitro, LPS elevated the expression
of TLR4, p-PI3K, p-Akt, p-NF-κB/p65, and p-IκBα in
RAW264.7 cells (P< 0.01; Figures 6(b)–6(g)). 0e expres-
sion of TLR4, p-PI3K, and p-Akt showed no significant
difference between LPS group and YFBD (5, 10 μg/mL)
groups (Figures 6(b)–6(d)), while they decreased signifi-
cantly in YFBD (50 μg/mL) group compared with LPS group
(P< 0.05 or 0.01; Figures 6(b)–6(d)). 0e protein levels of
p-NF-κB/p65, and p-IκBα were reduced markedly in dif-
ferent concentrations of YFBD in comparison with LPS
group (P< 0.01; Figures 6(f) and 6(g)).0e high-dose YFBD
showed the most notable effects in the study.

To explore whether TLR4 is involved in the inhibition of
YFBD on PI3K/Akt and NF-κB pathways, we applied siRNA
to knock down TLR4 in RAW 264.7 cells and detected the
related proteins in the pathways. In this study, TLR4 was
remarkably knocked down in siRNA transfected cells
(Figure 7(a)). Meanwhile, TLR4-knockdown significantly

downregulated the TLR4 expression in LPS-induced RAW
264.7 cells (P< 0.01; Figure 7(c)), and the additional YFBD
treatment further reduced the TLR4 expression (P< 0.05;
Figure 7(c)). Consistently, the phosphorylation of PI3K, Akt,
NF-κB/p65, and the degradation of IκBα increased in LPS-
induced cells, whereas TLR4-knockdown attenuated their
phosphorylation or degradation (P< 0.01; Figures 7(d)–7(h)),
which was similar to the effect of YFBD. Compared with the
LPS-induced cells knocked down by siTLR4, the combination
of YFBD and TLR4-knockdown decreased the expression of
p-PI3K, p-Akt, p-NF-κB/p65, and p-IκBα to a greater extent
(P< 0.05 or 0.01; Figures 7(d)–7(h)).0is suggests that YFBD
acts as an inhibitor of the pathway. Compared with the LPS-
induced cells treated with YFBD, the additional interference
of siTLR4 decreased the TLR4 expression and the protein
expression in PI3K/Akt and NF-κB pathways to the same
extent (P< 0.01; Figures 7(c)–7(h)). 0e results indicated that
the effects of YFBD on the inhibition of PI3K/Akt and NF-κB
pathways were at least partly through TLR4.

4. Discussion

UC is threatening the health of people all over the world
due to its increasing incidence, undefined etiology, in-
tractability, and recurrence [34]. TCM provides a wealth of
weapons against this recurrent disease. 0is study con-
firmed the anti-inflammatory effects of YFBD on DSS-
induced models, revealing initially that YFBD exerted its
effects partly by regulating TLR4-mediated PI3K/Akt and
NF-κB pathways.

DSS-induced colitis closely imitates human UC in terms
of both clinical manifestations and anatomical alterations
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Figure 2: HPLC analysis of the main chemicals of YFBD recorded at 230 nm. (a) Solution of standards. (b) Solution of YFBD.
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[35]. 0erefore, the model was used in the study. 0e results
showed that YFBD could mitigate clinical symptoms and
pathological changes in DSS-induced models. YFBD, as
other prescriptions of TCM, is characterized by complex
composition and action on multiple targets. HPLC analysis
identified five effective constituents in YFBD: chlorogenic
acid, caffeic acid, benzoylmesaconine, benzoyl aconitine,
and quercetin. Most of these ingredients showed protective
effects against experimental colitis [36–38], which cohered

with the discovery of the current research. Furthermore, it
was shown that high-dose YFBD had more superior curative
effects compared with low-dose YFBD. On the one hand,
low-dose YFBD could not protect against the invasion of
DSS. On the other hand, when the low-dose group was
exposed to worse colon injury, the blood flow tended to
decrease, accompanied by the reduction in self-repairment
ability. 0e two factors contributed to the significant dis-
crepancy in curative effects between the two groups.
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Figure 3: YFBD decreased the inflammatory cytokines in colons of mice with DSS-induced colitis. (a) mRNA level of IL-6. (b) mRNA level
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0e mass accumulation of IL-6, IL-1β and TNF-α is one
of the features of DSS-induced colitis, which amplifies the
inflammatory cascades and accelerates the disease pro-
gression [39–41]. 0e serum levels of IL-6 are positively
related to the clinical and histopathological severity of UC
and can predict the possibility of clinical remission and
relapse [42]. IL-1β can activate other cytokine targets, in-
ducing inflammatory response synergistically [43]. 0e
levels of IL-1β in tissues correlated with the disease activity
of UC [44]. TNF-α plays a crucial role in the inflammatory
response, and anti-TNF-α therapy has been shown as an
effective approach [45]. Accordingly, the blocking of these
cytokines is considered to be an effective strategy for treating
UC. 0erefore, the study further explored the influence of
YFBD on maintaining the levels of inflammatory cytokines.
0e study revealed that YFBD decreased the levels of IL-1β,
IL-6, and TNF-α both in vivo and in vitro. Interestingly,
previous studies showed that the active ingredients of YFBD,
including caffeic acid, chlorogenic acid, and quercetin, could
also downregulate the levels of these cytokines in the colitis

models [37, 38, 46, 47], which was in line with the present
findings. Although the exact components of YFBD have not
been identified, it is presumed that YFBD could achieve
remarkable anti-inflammatory effects due to the combina-
tion of these ingredients.

Based on the aforementioned results, the study further
explored the intracellular mechanism behind the anti-in-
flammatory properties of YFBD (Figure 8). DSS can destroy
the mucosal barrier, which allows bacteria to invade the
otherwise impermeable mucus [48]. LPS can be recognized
by TLR4 [19, 20], and then, the TLR4-linked signaling
cascade is initiated, including PI3K/Akt and NF-κB path-
ways, which are related to inflammatory responses. NF-κB
can regulate the gene expression of several proinflammatory
cytokines involved in UC pathogenesis [49]. Once activated,
NF-κB translocates to the nucleus and triggers the expres-
sion of various inflammatory genes. 0e PI3K/Akt pathway
exerts its anti-inflammation effects through regulating the
downstream molecules, such as m-TOR, which plays a
central role in autophagy induction [50]. A previous study
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Figure 4: YFBD decreased the mRNA levels of inflammatory cytokines in LPS-induced RAW264.7 macrophages. (a) Effects of YFBD on the
viability of RAW 264.7 macrophages. (b) mRNA level of IL-6. (c) mRNA level of IL-1β. (d) mRNA level of TNF-α. Data are presented as
mean± SEM (n� 3). ∗ ∗P< 0.01 vs. control; #P< 0.05; ##P< 0.01 vs. LPS.
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Figure 5: Continued.
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Figure 5: YFBDdownregulated TLR4-mediated PI3K/Akt andNF-κB pathways in colons ofmice withDSS-induced colitis. (a) Effect of YFBD on
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showed that activated m-TOR and impaired autophagy
occupied a vital position in intestinal inflammation [51].
Meanwhile, the PI3K/Akt pathway can also enhance the
production of proinflammatory cytokines by triggering the
NF-κB pathway. 0is study found that TLR4 was highly
expressed in both animal and cell models, accompanied by
increased expression of phosphorylated PI3K, Akt, NF-κB/
p65, and IκBα. However, TLR4-mediated PI3K/Akt and NF-
κB pathways were downregulated with the treatment of
YFBD. Meanwhile, the combination of YFBD and TLR4-
knockdown decreased the expression of p-PI3K, p-Akt,
p-NF-κB/p65, and p-IκBα to a greater extent compared with
the LPS-induced cells knocked down by siTLR4 only. A
previous research based on network pharmacology indicated
that YFBD had positive effects on malignant tumors partly
through PI3K and TNF pathways, which strengthened the
evidence that YFBD could act on the pathways in our study

[52]. 0ese results demonstrated that the anti-inflammatory
activity of YFBD was probably mediated by the inactivation
of TLR4-mediated PI3K/Akt and NF-κB signaling pathways
and YFBD might play the role of TLR4 inhibitor in treating
UC.

However, this study had limitations. First, the signaling
pathways related to UC are multiple, and YFBD might have
multiple targets in treating UC. Apart from TLR4-mediated
PI3K/Akt and NF-κB pathways, other pathways might
participate in treating UC simultaneously, which were not
examined in this study. Hence, future studies need to explore
and clarify the involvement of the other pathways. Second,
the components in YFBD are multiple and complex, and the
active components involved in treating UC remain unclear.
Next, we plan to extract the main active ingredients in YFBD
and investigate the effects of these ingredients in treating UC
through further experiments.
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Figure 6: YFBD downregulated the TLR4-mediated PI3K/Akt and NF-κB pathways in LPS-induced RAW264.7 cells. (a) Effect of YFBD on
the protein expression of TLR4, P-PI3K, and p-Akt. (b–d) Quantification of the ratio of TLR4, P-PI3K, and p-Akt. (e) Effect of YFBD on the
degradation of IκBα and phosphorylation of NF-κB/p65. (f, g) Quantification of the ratio of IκBα and phosphorylated NF-κB/p65. Data are
presented as mean± SEM (n� 3). ∗ ∗P< 0.01 vs. control; #P< 0.05; ##P< 0.01 vs. LPS.
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Figure 7: YFBD inhibited PI3K/Akt and NF-κB pathways in RAW 264.7 cells via downregulating TLR4 expression. (a) RAW 264.7
cells were transfected with TLR4 siRNA or control siRNA for 48 h. (b) Effect of YFBD and TLR4 siRNA on the protein expression of
TLR4, P-PI3K, and p-Akt. (c–e) Quantification of the ratio of TLR4, P-PI3K, and p-Akt. (f ) Effect of YFBD and TLR4 siRNA on the
degradation of IκBα and phosphorylation of NF-κB/p65. (g, h) Quantification of the ratio of IκBα and phosphorylated NF-κB/p65.
Data are presented as mean ± SEM (n � 3). ∗ ∗P< 0.01; ∗P< 0.05.
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5. Conclusions

In summary, YFBD decreased the production of inflam-
matory cytokines in DSS-induced colitis and LPS-stimulated
RAW 264.7 cells. It exerted anti-inflammatory effects via
inactivating TLR4-mediated PI3K/Akt andNF-κB pathways.
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