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Abstract

Two research areas that could benefit from a greater focus on the role of the reward pathway are 

maternal depression and maternal addiction. Both depression and addiction in mothers are 

mediated by deficiencies in the reward pathway and represent substantial risks to the health of 

offspring and future generations. This targeted review discusses maternal reward deficits in 

depressed and addicted mothers, neural, genetic, and epigenetic mechanisms, and the 

transgenerational transmission of these deficits from mother to offspring. Postpartum depression 

and drug use disorders may entail alterations in the reward pathway, particularly in striatal and 

prefrontal areas, which may affect maternal attachment to offspring and heighten the risk of 

transgenerational effects on the oxytocin and dopamine systems. Alterations may involve neural 

circuitry changes, genetic factors that impact monoaminergic neurotransmission, as well as growth 

factors such as BDNF and stress-associated signaling in the brain. Improved maternal reward-

based preventative measures and treatments may be specifically effective for mothers and their 

offspring suffering from depression and/or addiction.

Introduction

To coin the words of the British psychologist and psychiatrist John Bowlby, “what is 

believed to be essential for mental health is that the infant and young child should 

experience a warm, intimate and continuous relationship with his mother in which both find 

satisfaction and enjoyment” [1]. The critical role of maternal care and attachment on 

offspring development and the transgenerational transmission of factors influencing 

‘survivability’ and genetic/epigenetic success cannot be understated. The challenges in 

understanding maternal care more deeply run along the same lines as the general challenges 

in broader fields of behavioral neuroscience, which is to determine specific regional patterns 

of neuronal activity, functional neural circuitry and genetic/epigenetic factors controlling 
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maternal behavior and attachment. Alterations in epigenetic factors, which are likely to be 

extensive in response to internal and environmental challenges, and how these influence the 

gradual transmittal of stable behavioral patterns across generations is of substantial 

importance. Collectively, these separate lines of research could converge to help comprehend 

deficits in maternal care of offspring, such as those associated with depression and drug use. 

We provide here a brief review of an extensive literature on these broad topics, with a focus 

on deficits in the maternal reward pathway. We also provide some comparisons between the 

clinical literature and basic preclinical work that have moved this area of research a step 

forward. The present review will thus offer a concise overview of select topics spanning 

maternal reward deficits in depressed mothers, potential genetic factors involved and 

transgenerational effects, and the potential role of reward system alterations in maternal 

depression and drug use disorders.

Maternal Reward Deficits in Depressed Mothers

Although it is not typically included in discussions of reward deficiency syndrome, maternal 

behavior is one of the most robust reward-mediated mammalian behaviors. This section will 

include discussion of studies on depression around the time of birth (peripartum depression, 

PPD) as well as during childhood (maternal depression or postnatal depression, PND), with 

a focus on postnatal depression and reward-mediated changes in maternal care. As discussed 

by Tom Insel, social attachment has much in common with addictive disorders through the 

involvement of the reward pathway [2]. Maternal rats presented with pups show increases 

neural activity in the nucleus accumbens (NAc) [3] and also show enhanced extracellular 

concentrations of dopamine in the Ventral Tegmental Area (VTA) [4]. Furthermore, lesions 

to the VTA impair pup directed behaviors [5, 6]. Using operant condition to determine the 

motivation to lever press for pups, it was shown that the rewarding effect of pups increases 

as maternal behavior develops [7]. Studies comparing the rewarding value of cocaine and 

pups indicate that a pup stimulus during early lactation is a more potent reward than cocaine 

[8, 9]. Based on this substantial evidence supporting the notion that in maternal rats pups are 

highly rewarding, deficiencies in maternal attachment behaviors may indicate adverse 

neuroadaptations in neuronal reward circuitry.

Appropriate maternal care involves active and timely emotional responding to infant cues 

and the regulation of these responses. While depression is partly associated with impaired 

serotonergic (5HT) pathways, it is also mediated by alterations in the mesolimbic dopamine 

system that can result in deficits in processing of rewards [10], which is critical for maternal 

care. Key reward related brain regions postulated to be involved in establishing the 

appropriate balance between maternal responses and regulation are the VTA, NAc) 

orbitofrontal cortex (OFC), prefrontal cortex (PFC), and striatum. Activation of these 

regions might establish infant stimuli as positive cues and enhance the motivation to express 

maternal care.

Behaviorally, depressed mothers are less likely to express sensitivity to infant related cues 

and instead display more hostile and intrusive behaviors towards their child [11, 12]. Several 

reports have documented impaired early parenting in depressed mothers [11, 13, 14], and 

postnatal major depression is associated with long term deficiencies in the maternal-infant 
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bond [15–18]. Maternal attachment is dependent on the rewarding features of infant stimuli, 

and it has been postulated that differences in attachment styles are indicative of differences 

in the processing of sensory input. Adults that are able to successfully interpret infant-

related affective information and predict future reward display secure patterns of attachment 

[19], where depressed mothers exhibit poor emotional coordination with their infants [20]. 

Depressed maternal-infant interaction often involves substantially lower levels of visual 

contact and smiling [12], and the NAc has been implicated in synchrony and intrusiveness in 

maternal care [21].

There is consistent evidence from imaging studies of healthy and depressed mothers that 

reward mediated responses to infant cues are altered in depressed mothers. Reward pathways 

are activated in response to infant cry in healthy mothers [22]. Mothers that deliver 

vaginally, which involves a substantial oxytocin (OXT) surge and enhanced bonding [23], 

display increased neural activation in the striatum compared to mothers who deliver by 

Cesarean-section [24]. Related work in sheep indicates that the reward pathway plays a 

critical role in the induction of central and peripheral OXT release during cervico-vaginal 

stimulation during parturition, and this interaction between parturition and reward pathway 

affects the onset of maternal care [25]. Healthy mothers display an increased neural response 

to the face of their own infant compared to an unknown infant in important reward related 

areas such as the VTA, ventral striatum, and PFC [26, 27], and the viewing of video of their 

own distressed infant increases activity in the substantia nigra and striatum of mothers [28]. 

In contrast, insecure mothers that lack a strong bond with their infant display decreased 

activation of the ventral striatum when viewing happy faces of their own infants. Overall, 

insecure mothers exhibit decreased activation in mesocorticolimbic pathways and increased 

activation in nigrostriatal pathways, including the PFC and insula [29, 30]. In support of the 

hypothesis that connections between the PFC and amygdala mediate secure attachment, 

women with PND have decreased neural activation in regions of the PFC [31] and also 

display decreased activity in the amygdala in response to positive visual stimuli from their 

own infants compared to non-depressed mothers [32]. Changes in both PFC and amygdala 

may mediate the impaired recognition of happy faces [33]. Depressed mothers show similar 

patterns of neural activity in response to the cries of their own and unfamiliar infants, and 

exhibit attenuated responses to their own infant cry in the OFC, NAc, and ventral striatum 

[34]. These data indicate that depressed mothers lack a specific neural response to the cry of 

their own infant, which may contribute to low levels of reward related maternal responses. 

Impaired preferences for their own infant combined with poor bond development may be 

mediated by neurobiological changes in the infants of depressed mothers who in turn exhibit 

deficits in face and voice preference [35]. The imaging studies suggest that treatments 

specifically aimed at increasing the reward response to infant cues may be effective at 

improving maternal care in depressed mothers and preventing the adverse transgenerational 

effects of PND on offspring. Given that a prior history of depression is the most reliable 

predictor of postpartum depression [36], more specific assessment of reward functioning 

prior to maternal periods may be used as a behavioral target to anticipate, prevent, and/or 

treat PPD. One potential target for potential preventative measures and treatments is the 

behaviorally active neuropeptide OXT.
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The importance of OXT in affiliation and social bonding is well known and this 

neuropeptide plays a critical role in the expression of maternal behavior [37–39]. 

Connections between the medial preoptic area (mPOA), VTA, and NAc are involved in the 

rewarding aspects of social behaviors such as maternal care, and OXT acts in this combined 

maternal/reward circuit [2]. OXT has significant effects on the social reward pathway in 

rodent studies [40], potentially mediating deficient maternal care in depressed and anxious 

mothers who have been reported to have low OXT levels [41]. Breastfeeding increases OXT 

levels and elevates striatal activity when mothers hear the cry of their own infant [42]. 

Similar neural responses associated with postpartum OXT have been reported in suckling 

rodent dams [43]. In a chronic social stress (CSS) mediated rodent model of PPD [44, 45], 

OXT gene expression is reduced in the hypothalamus and amygdala of stress exposed rats 

that exhibit depressed maternal care, impaired lactation, and increased anxiety [46, 47], and 

OXT levels in the amygdala are correlated with maternal care [48]. A longitudinal study of 

7000 mother-infant dyads revealed that breastfeeding is inversely correlated with the risk of 

maternal neglect [49] and this observation may involve OXT’s actions on the reward system. 

Clinical trials with intranasal OXT in depressed mothers have had mixed results [50], with 

acute OXT increasing general sadness but improving positive perceptions of the maternal-

infant relationship [51]. A follow-up study looking at the effects of intranasal OXT on 

maternal protective responses to a stranger revealed enhanced protective responses [52]. 

Animal and human studies of OXT consistently and clearly indicate that it mediates multiple 

facets of maternal care, possibly through interactions with the reward pathway.

Taken together, these studies support the hypothesis that treatments aimed at addressing 

maternal specific reward deficits in depressed mothers may improve the formation of the 

maternal infant bond and ongoing maternal care, but there is a need for further research to 

identify effective treatments and optimize them. In improving maternal care, treatments that 

enhance brain reward function may prevent the adverse transgenerational effects of perinatal 

depression on offspring. It is also possible that maternal reward based treatments may prove 

more effective at treating depressive symptoms in the mother, whether it is directly through a 

reduction of anhedonia and/or indirectly through the improvement of the maternal-infant 

bond and maternal interactions.

Genetic Factors Potentially Involved in Reward Deficiency in Maternal 

Depression

Genetic factors have been implicated in the etiology of perinatal mood disorders, as 

suggested by familial, twin, and adoption studies. A variety of reward-related genetic 

variants have been identified including those associated with monoaminergic 

neurotransmission, the stress response (e.g., HPA axis), neurogenesis (e.g., brain derived 

neurotrophic factor) and OXT. Preliminary evidence suggests these genetic variants may 

confer vulnerability to depression during and after pregnancy as well [53]. Many of the 

genetic associations are complex due to the critical role of environmental triggers; for some 

time, a gene-environment interaction has been recognized in the pathophysiology of 

depression, and this may well be the case for PPD since the three main risk factors are a past 

history of depression or anxiety (which may involve genetic and environmental factors), 
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exposure to a stressful life event and a lack of social support [36, 54, 55]. The serotonergic 

system, in particular, plays a crucial role in depression. The serotonin transporter (5-HTT) 

has a polymorphism (5-HTTLPR) in the promoter region of the gene consisting of two 

alleles of a 43 bp insertion/deletion designated as long (l) and short (s). The s-allele results 

in a decreased transcription of the 5-HTT gene, leading to increased levels of serotonin in 

the synaptic cleft [56]. Studies have associated the s-allele with higher levels of trait anxiety 

[57] and with selective attention to negative, threat-related stressors [58]. Caspi et al. [59] 

were the first to show an effect of gene and environment interaction in modulating the risk 

for developing depression. It was reported by this group that individuals with the s-allele 

exhibited more depressive symptoms, compared to homozygous l-alleles, if exposed to 

stressful experiences during life [59].

Two studies have linked 5-HTTLPR genotype to maternal sensitivity. Specifically, the s-

allele is associated with more sensitive parenting [60]. Two further studies have investigated 

the relationship between this polymorphism and PPD. Sanjuan et al. [61] linked the l-allele 

to PPD and reported this association at 8 weeks postpartum, but not during the immediate 

postpartum period or 32 weeks later [61]. Doornbos et al. [62] showed a trend for carriers of 

the l-allele toward increased depression scores at 6 weeks postpartum, suggesting the 

importance of evaluation time point [62]. A polymorphism in the serotonin receptor 2A gene 

(HTR2A) mediated levels of depressive symptoms in children with nurturing mothers but 

not among those exposed to non-nurturing mothering, supporting the role of gene-

environment interactions [63]. Interestingly, a pilot study on a very limited number of 

participants linked 3 distinct single nucleotide polymorphisms (SNPs) in this gene with 

postpartum depression [64].

Two isoforms of the gene encoding tryptophan hydroxylase (TPH1 and TPH2), a major 

biosynthetic enzyme for serotonin, have been linked to depression. A study of SNPs in 

TPH1 found associations with comorbid depression and anxiety in a population-based 

sample of postpartum Taiwanese women [65]. Two further studies have highlighted the 

importance of the TPH2 gene. Lin et al. [66] found a SNP present only in women with 

peripartum major depression and anxiety disorders and Fasching et al. [67] linked the 

promoter region of this gene with depression values during and 8 months after pregnancy 

[66, 67].

Finally, two further genes implicated in monoaminergic pathways, namely catechol-O-

methyltransferase (COMT) and monoamine oxidase A (MAO-A) have also been associated 

with perinatal depression during stress exposure [62]. The COMT-VAL158Met allele 

polymorphism has been shown to be a significant - though generally not an independent - 

risk factor for PPD [62, 68, 69]. Along this line, Pinsonneault et al. [70] demonstrated that 

SNPs in MAO-A and COMT exhibited additive effects in the development of PPD [70].

Studies of the gene encoding brain derived neurotrophic factor (BDNF) have reported 

potential links between the Val/Met polymorphism and PPD. Comasco et al. [71] found a 

significant association between the Met allele and development of PPD symptoms at 6 

weeks postpartum, even when controlling for prepartum and postpartum environmental risk 

factors. This was most evident in mothers delivering during autumn/winter. A further 
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interaction of this polymorphism was found with the 5-HTTLPR s-allele [71], which is 

involved in maternal sensitivity [60]. Another study in 227 subjects found no difference in 

BDNF genotype between depressed and non-depressed women [72]. Interestingly, recent 

findings link lower maternal serum BDNF levels in early pregnancy with antepartum 

depression [73] and altered DNA methylation at the BDNF promoter IV in response to 

maternal depression during pregnancy [74].

While there are numerous studies on the role of the hypothalamic-pituitary-adrenal (HPA) 

axis in the transgenerational transmission of depression, many do not focus on maternal 

depression and functional changes in the maternal reward pathway. Along with the rs242939 

SNP of the CRHR1 gene [75], HPA targets such as the glucocorticoid receptor (GR) 

polymorphism BclI have been linked to PPD. However, an association study by Schneider et 

al. [76] in a cohort of 361 women without further risk factors for depressive or anxiety 

disorders found no significant links in the genes FKBP5, NR3C1, and CRHR1 with 

depression symptoms during or after pregnancy [76]. Additional data linking the HPA 

alterations in depressed mothers and offspring with reward deficiencies may yield key 

insight into preventing the transmission of the depressed phenotype from mother-to-child. It 

is possible that reducing HPA reactivity to differing stimuli in mothers may decrease 

depressive symptoms, but possibly not improve the mother-infant bond or enhance maternal 

care. HPA axis instability appears to be a key factor in increasing susceptibility to stress-

related maternal mood disorders. Also, elevated levels of placental CRH have recently been 

identified as a marker of risk for the development of PPD symptoms [77].

Both animal and human studies have demonstrated that OXT promotes the arousal of basic 

emotional systems in maternal care [50]. A polymorphism study by Mileva-Seitz et al. [78] 

at the OXT and OXTR genes in 187 mothers at six months postpartum found 2 SNPs in 

OXT significantly associated with maternal vocalizing to the infant [78]. These 

polymorphisms also interacted with the quality of care mothers experienced in early life to 

predict variation in maternal care and postpartum depression. However, postpartum 

depression did not mediate the gene-environment effects of OXT SNPs on maternal care. 

The same group also reported that one of the SNPs interacted with early life adversity to 

predict variation in breastfeeding duration and depression, as genetic variation in OXT 

rs2740210 and early adversity was associated with postpartum depression and breastfeeding 

duration [79]. In contrast, while the OXTR SNP rs237885 did not associate with maternal 

behavior, it did associate with pre-natal (but not post-natal) depression score [78]. This 

illustrates the importance of variation in OXT genes, both alone and in interaction with early 

environment, as predictors of individual differences in human mothering.

Increased focus on gender specific gene-gene interactions and additional longitudinal studies 

of women who do and do not develop PPD will provide valuable insight into PPD etiology 

and facilitate the independent identification of long-term genetic risk factors and additional 

factors which interact with environmental stressors. In this work, increased use of animal 

models, which include an environmental trigger, will be useful.
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Maternal Reward Deficits, Maternal Care, and the Transgenerational 

Transmission of Depression

In Goodman and Gotlib’s model proposed in their 1999 review [80], they present a 

developmental model of the transmission of psychopathology from depressed mothers to 

their offspring which includes 4 central mechanisms: genetic predisposition, dysfunctional 

neuroregulatory mechanisms, maladaptive maternal behavior, and a stressful environment. It 

is acknowledged that the first three mechanisms may all have substantial genetic 

components. In addition, a stressful environment can lead to genetic predisposition for future 

generations through epigenetic changes. All of these related mechanisms could involve an 

impaired reward pathway. While animal models are useful for targeting individual 

mechanisms and specific components of a mechanism, perhaps what is needed in future 

models is greater integration of all of these mechanisms to improve the transgenerational 

construct validity and enhance translational success to effective and safe preventative 

measures and treatments, similar to what has been proposed for clinical studies [81].

Previous assessments have estimated that 15 million children live with a depressed parent 

(2009), and stressful family environments, such as those with a depressed mother, are a 

common risk factor for adolescent depression [82]. Depression in mothers is often 

associated with the display of depression in female offspring [80, 83–85]. It is possible that 

neurobiological factors contributing to adverse effects on the maternal-offspring bond may 

be present early in life and these might be associated with a high genetic risk for depression. 

There have been several human imaging studies of girls with high familial risk for 

developing depression. Study subjects were scanned prior to diagnosis with a major 

depressive or bipolar disorder. Importantly, mothers of the study subjects had a history of 

diagnosed mood disorder. Across several major studies it was shown that specific regions 

involved in processing rewards and losses were impaired compared to age matched and 

equally healthy controls in which mother were unaffected by a mood disorder [86–90]. 

Thus, high risk girls showed altered insular, striatal and cingulate processing of reward gains 

and losses in comparison to controls [86]. Sad mood induction in girls aged 9–14 resulted in 

greater blood oxygenation level dependent (BOLD) activation in areas of the amygdala and 

ventrolateral prefrontal cortex [87]. Self-regulation of sad mood produced a weaker BOLD 

activation of dorsal anterior cingulate and dorsolateral prefrontal cortex in high risk 

compared to low risk girls [87]. These and other examples illustrate the early presence of 

functional changes that may contribute later on in life to the development of a mood 

disorder. It is possible that such early onset of neural mechanisms (in the absence of 

behavioral expression of these conditions) may also be a contributing factor for PPD. A 

unifying theme across these studies is the presence of reward deficits, which might associate 

brain reward regions with PPD. The areas seem to span prefrontal cortical areas, cingulate 

cortex, insular cortex, striatum and amygdala, which have been associated with maternal 

responding to infant stimuli. In addition to inherited genetic risk factors, it has been 

hypothesized that non-inherited factors, especially maternal care, has robust mediating 

effects on psychopathology in the offspring of depressed mothers [91, 92]. There is evidence 

that an impaired maternal-child relationship mediates the severity of depression [93] and 

externalizing issues in the offspring of depressed mothers [94]. Behaviorally, this 
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transmission is likely to be mediated by the increased display of hostility and decreased 

display of warmth in depressed mothers [95]. Maladaptive maternal interactions may also 

involve antisocial behavior in the mother [92, 96].

While some PPD interventions are starting to include attempts at addressing deficits in 

maternal care, most interventions have focused on the depression in the parent rather than 

the adverse effects of depression on maternal care [97]. Although remission of maternal 

depression has been associated with improved mental health in children [97, 98], other 

reports have not found strong links between depression treatment or remission and improved 

mother-child relationships [99] or offspring mental health [100, 101]. A recent meta-analysis 

of the effects of maternal psychotherapy on child and parental functioning concluded that 

treatment had mild-to-moderate beneficial effects on offspring [102], with counseling having 

the most substantial effect [103]. These modest beneficial effects of psychotherapy on the 

child indicate that there is potential for improvement and that a greater focus on enhancing 

the maternal bond may be worthwhile. However, some attempts to prevent postnatal 

depression by targeting the maternal bond have been unsuccessful [104], underscoring the 

challenges and need for further research in this area. Research on the rewarding aspects of 

parenting, specifically on the functional roles of DA, OXT and other neurotransmitter 

systems (discussed below) and how these modulate parenting behaviors and child mental 

health, would clearly benefit from longitudinal studies.

Bond development and maternal care, particularly synchrony in the fine social 

communication between mother and offspring constitute early life environmental 

characteristics with critical consequences on the onset and development of the offspring 

social brain [105]. Interestingly, these characteristics are impaired in maternal postpartum 

depression, strongly affecting the social functioning of offspring, including their affiliative 

behavior and corresponding ability to develop attachments with partners and offspring. 

Because of the difficulty in developing studies assessing multigenerational consequences of 

maternal depression on offspring neurophysiology and maternal care in humans, animal 

models have been developed to address this topic. One of the most common procedures to 

assess the effects of maternal stress on manipulating the maternal-offspring bond and 

maternal behavior is the maternal separation paradigm. Studies demonstrated strong 

consequences of maternal separation on the development of depressive-like syndromes; 

notably associated with impaired mesolimbic system development [106–108].

Another rodent model that has attempted to integrate the mechanisms discussed by 

Goodman and Gotlib in an ethologically and translationally relevant design is the CSS 

paradigm introduced earlier [80]. This social stress paradigm in lactating rat dams models 

intergenerational consequences of depressed maternal care using an early social environment 

representative of early life stress endured by children of depressed mothers, including both 

depressed maternal care and social conflicts [85, 109]. Daily exposure of lactating F0 rat 

dams to the social stress of a novel male intruder depresses maternal care, impairs lactation, 

increases maternal anxiety [44, 45, 48], and has robust adverse effects on the maternal care 

of F1 female offspring [46, 47, 110] and the social behavior of male and female F2 offspring 

[111]. Both F0 dams stressed by a male nest intruder and F1 dams exposed to this form of 

early life stress exhibit depressed maternal care, impaired lactation, and increased maternal 
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anxiety. Interestingly, F2 dams also exhibit depressed maternal care and elevated maternal 

anxiety (Nephew, unpublished data). OXT and GR gene expression in both HPA and 

maternal care and reward associated regions are altered in F0 and F1 dams. Together with 

epigenetic modifications, these are associated with maladaptive changes possibly 

underpinning maternal care and anxiety [46–48].

A further emerging concept in the behavioral epigenetics field is that stress prenatally, or 

even preconceptionally, could produce alterations in behavior in offspring and grand-

offspring (F1–F2 generations) through epigenetic changes via the germline. The term 

epigenetics refers to heritable changes in gene expression that does not involve changes to 

the underlying DNA sequence; three systems that can interact with each other to silence or 

activate genes are DNA methylation, histone modifications, and RNA-associated silencing. 

Epigenetics may mediate transmission of behavioral phenotypes across generations through 

interactions with early life care. That such epigenetic marks might also be directly 

transmitted through the germline is an active area of research [112]. Results from the CSS 

model suggest that potential epigenetic mechanisms underlying predisposition/transmission, 

through environmental stressors of social conflict and impaired maternal care, may be a key 

factor in the transgenerational accumulation of environmental insults and more relevant to 

the majority of individuals that suffer from mild to moderate depression that is more likely 

to involve complex environmental interactions.

In the first study in the literature to show a clear link between mothering, long-term changes 

in epigenetic marks (DNA methylation), and subsequent gene expression, Weaver et al. 

demonstrated that in rat pups of low licking and grooming (LG) mothers NR3C1 (the gene 

for GR) methylation was increased in hippocampal samples and that this was associated 

with reduced GR expression [113]. Very few studies have identified candidates for human 

maternal behaviors equivalent to rat LG, however, a study by Sharp et al. demonstrated 

moderation of the effects of prenatal maternal depression upon emotional and physiological 

outcomes in human infants through mothers stroking their babies in their first weeks of life 

[114]. A very recent follow-up study by Murgatroyd et al. has shown reduced NR3C1 

methylation associated with maternal stroking in these children, hence bolstering the 

possible role of epigenetic mechanisms in the long-term effects of early life stress and 

maternal care [115]. Interestingly, the same study also found interactive effects between 

prenatal and postnatal maternal depression on methylation of NR3C1. Infants of mothers 

with low prenatal depression showed increased methylation when exposed to increased 

postnatal depression - consistent with interplay between prenatal and postnatal 

environments.

While most of the animal studies of the consequences of early social environment on 

neurophysiology and behavior have focused on the HPA axis and GR regulation, it would be 

advantageous to increase use of these models to investigate the influence of early life stress 

on social and reward pathways to fully understand the transgenerational transmission of 

depression. Ethologically relevant cross domain investigations of the reward system may 

lead to substantial progress in preventing the transmission of depression from mothers to 

offspring [116]. In two such studies, sensitizing adult female rats to cocaine (only during the 

adult phase) increased the expression of maternal care when those rats were later exposed to 
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foster pups [117] or caring for their own young [118]. The increase in maternal care was 

associated with changes in neural activity in the anterior thalamus and periaqueductal gray 

of foster pup exposed nulliparous females [117], and it is postulated that the enhanced 

maternal care in the cocaine experienced nulliparous and primiparous dams is due to cross 

sensitization between cocaine and maternal care. These studies suggest that priming the 

reward pathway, possibly with stimuli other than cocaine, may be an effective strategy to 

prevent impaired maternal care in women at risk for PND, such as those with a history of 

depression or anxiety.

Maternal Reward Deficits in Drug Use Disorders

Acute intake of a drug, such as cocaine, affects maternal behavior due to its direct molecular 

actions affecting the activity of neurons within the reward pathway, primarily its effects on 

mesolimbic and mesocortical dopamine (DA). The acute and chronic effects of cocaine have 

been studied in detail in rodent models. There are dose-dependent disruptive effects of 

cocaine on maternal behaviors [119]. Once plasma levels of cocaine are reduced, normal 

maternal care resumes [120, 121]. Thus, the acute effects of cocaine in drug naïve maternal 

rats may be reversible at the doses previously tested [120, 121]. Behavioral features of 

cocaine use disorders in humans are best captured by the rat intravenous drug self-

administration paradigm, especially if it incorporates long-term reinstatement of drug intake 

[122]. Using the former model of cocaine intake it was shown that rats trained to administer 

cocaine prior to pregnancy escalate intake during pregnancy and reduce their consumption 

during the postpartum period [123]. Thus, during the postpartum period there is a reduction 

in drug self-administration in rats, likely associated with a greater focus on behaviors 

directed at nest building, nursing and pup grooming. It is difficult to reconcile the latter 

findings in rats with reports in humans since there are well-reported effects of drug use 

disorders on maternal care [124–126]. However, it is interesting to note that rat models of 

escalated intake with 6 h of daily self-administration sessions [127] have provided additional 

insight on the effects of cocaine on DA dynamics that are distinct from those of 2 h self-

administration paradigms. Escalated (6 h) but not standard 2 h sessions of cocaine IVSA 

reduce transient bursts of DA release in striatum [128], which could have an effect on 

maternal care as this transient phasic DA release is modulated during the expression of 

grooming pups and nursing, as well as during social interactions [129–131]. It remains to be 

determined if escalated cocaine intake could have such an effect on brain reward DA 

pathway activation and maternal behavior in rats.

As discussed above, studies using rat models of maternal behavior support the notion that 

newborn pups are highly rewarding in lactating rats. There is behavioral and animal 

neuroimaging support suggesting that the rewarding effect produced by pups is greater than 

that produced by cocaine [8, 9, 123, 132, 133]. However, in the case of mothers with prior 

history of a drug use disorder, it is possible that the neural mechanisms underlying such 

rewarding effects may be adversely affected. Mothers affected by a cocaine use disorder may 

experience challenges to their roles as care givers. This is supported by data showing 

reduced mother-child play interactions, having a low self-esteem and lack of maternal 

identity, not attending to the emotional needs of the child and difficulties in coping with 

stress [125, 134, 135]. There is also evidence from the National Survey on Drug Use and 
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Health that prior history of repeated drug use before pregnancy may be related to resuming 

high levels of intake during the postnatal care period (this statistically significant pattern is 

mostly observed for marihuana, cigarettes and alcohol misuse)(2009). Problems with 

parenting behavior in mothers recovering from a drug use disorder have been associated 

with negative early childhood experiences [136], which hints at the possible impact of early 

life adverse experiences on future expression of maternal behavior and attachment. In 

addition to the socioeconomic factors that clearly are important, there may also be long-term 

neurobiological changes in the reward system following chronic drug use that could 

influence maternal care during the early postnatal period.

Similar to OXT, normal DA function may be critical to the expression of maternal behavior 

[30]. At the moment of the present review there have been no studies that have used positron 

emission tomography to measure in vivo DA receptor levels or DA release in mothers 

affected by a drug use disorder. Such clinical studies would provide direct evidence of DA 

alterations in mothers diagnosed with a drug use disorder. Thus, most data on DAergic 

changes with drug exposure have come from studies using rodent models [137]. Maternal 

rats show elevated extracellular DA in NAc in the presence of pups [4, 130]. It appears that 

DA dynamics in NAc are closely associated with specific maternal-offspring interactions, 

such as grooming and nursing [4, 130]. Neurotoxin-mediated destruction of DA inputs in 

NAc impairs pup retrieval behavior [138] as does blocking DA receptors with a non-

selective antagonist (Cis-flupenthixol) [139]. Numan et al. [140] demonstrated that retrieval 

behavior is modulated by DA D1 receptors in the shell areas of the NAc. Given the 

importance of NAc DA in reinforcement and rewarding effects of natural rewards and drug 

stimuli, it is likely that higher DA levels contribute to maternal-offspring attachment through 

the enhancement of brain reward function. However, to confirm that this is in fact the case, 

studies applying techniques such as intracranial self-stimulation to examine changes in brain 

reward thresholds are needed. Nonetheless, blocking DA receptors either systemically or 

locally within this region results in a disruption of various maternal behaviors such as 

retrieval, grooming, nest building and hovering over pups [139, 141, 142]. These results 

demonstrate that DA deficits negatively impact maternal behaviors in the rat and open the 

possibility that functional deficits in DA pathways could adversely affect maternal care in 

humans as well.

In addition to DA in NAc, PFC DA might also play an important role in maternal behaviors 

and maternal-offspring attachment. Previous imaging studies in rats have shown that pup 

suckling stimulation activates areas of the PFC [9, 143]. One reported long-term effect of 

repeated pregestational cocaine in the maternal brain is a reduced neural response to pup 

suckling in comparison to non-exposed dams [144]. The PFC of maternal rats, like in non-

maternal rats, may play a role in complex higher order reward-seeking and cognitive 

functions that are important for maternal behaviors and non-maternal social behaviors. 

Using a modified neuroimaging paradigm to present in vivo natural stimuli in an fMRI 

environment, Nephew et al. reported that several PFC subregions, including anterior 

cingulate (ACg), orbital cortex and insula, show increased neural activity in response to the 

presentation of a male intruder in the presence of pups [145, 146]. Inhibiting the medial PFC 

just ventral the ACg in maternal rats significantly impairs retrieval of pups to a nest region of 

their home cages [147] and neurons within this area are responsive during maternal-
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offspring interactions [148]. A role for PFC in maternal care and its potential role in deficits 

in maternal reward is not unexpected given its widespread corticocortical connectivity and 

its extensive outputs to striatal and other limbic targets involved in maternal behavior [149–

155]. Synaptic targets of various prefrontal areas and mPFC include subregions of the 

hypothalamus such as the medial preoptic area, VTA, periaqueductal grey (PAG) and 

amygdala [153, 154]. The ventral and dorsal striatum, VTA, basolateral amygdala, septum 

and PAG, for example, receive direct mPFC synaptic inputs [154]. In addition, the mPFC 

receives inputs from VTA DA neurons [156]. While the release of DA in the maternal NAc 

has been investigated, the role of DA activity in PFC of maternal rats needs further 

investigation in relation to drug misuse and co-morbid conditions such as generalized 

anxiety, obsessive-intrusive thoughts, PPD and other recurrent major depressive disorders.

There are still open questions about potential parent-to-offspring transmission of epigenetic 

factors that could lead to vulnerability to deficits in DA reward pathway function. Studies of 

human maternal behavior and drug consumption and its effects on children focus on the 

offspring effects of maternal consumption of a number of illicit and legal drugs, including 

cocaine, amphetamine, marihuana and nicotine [157–159]. Attachment seems to be 

negatively affected by drug use [126]. However, a significant number of studies focus on 

pregnancy use. Given the teratogenic actions of many of these drugs it is likely that the 

outcomes on brain development during the postnatal period may be a combination of drug-

mediated effects and postnatal care effects. The outcomes of in utero exposure to drugs such 

as cocaine have been extensively reported for rodent models [100, 160]. Thus, it has been 

difficult to disentangle the separate effects of drug exposure in utero from behavioral 

disorders arising from lack of appropriate postnatal parental care. One of the best pieces of 

evidence of transgenerational effects are retrospective studies of mothers with a drug use 

disorder and that have difficulties in caring for their children [161–163]. In many of these 

assessments it has become clear that early child abuse and neglect, chronic stress, and 

parental drug use have had a long-term impact on the present behavior of the mother [100, 

136, 162–164]. The early life experiences may lead to long-term alterations in OXT and DA 

systems, thereby impacting the social, cognitive, emotional behaviors modulated by these 

neurotransmitter systems [30]. Moreover, negative early life experiences, such as the stress 

induced in newborn pups by maternal separation, differentially alter the expression of D1 

and D2 DA receptors in PFC-NAc excitatory projections during adolescence [165].

Conclusion

There is substantial evidence that the reward pathway plays a key role in maternal 

responding to infant cues. This is supported by an extensive literature in rodent models of 

maternal behavior and also human neuroimaging and psychosocial/clinical research. 

Postpartum depression and drug use disorders may entail alterations in the reward pathway, 

particularly in striatal and prefrontal areas, which may affect maternal attachment to 

offspring and heighten the risk of transgenerational effects on the OXT and DA systems. 

Alterations may involve neural circuitry changes, genetic factors that impact monoaminergic 

neurotransmission, as well as growth factors such as BDNF and stress-associated signaling 

in the brain. Improved maternal reward-based preventative measures and treatments may be 
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specifically effective for mothers and their offspring suffering from depression and/or 

addiction.
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