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Abstract

Pseudomyxoma peritonei (PMP) is a subtype of mucinous adenocarcinoma mainly

restricted to the peritoneal cavity and most commonly originating from the appendix. The

genetic background of PMP is poorly understood and no targeted treatments are currently

available for this fatal disease. While RAS signaling pathway is affected in most if not all

PMP cases and over half of them also have a mutation in the GNAS gene, other genetic

alterations and affected pathways are, to a large degree, poorly known. In this study, we

sequenced whole coding genome of nine PMP tumors and paired normal tissues in order

to identify additional, commonly mutated genes and signaling pathways affected in PMP.

These exome sequencing results were validated with an ultra-deep amplicon sequencing

method, leading to 14 validated variants. The validated results contain seven genes that

contribute to the protein kinase A (PKA) pathway. PKA pathway, which also contains

GNAS, is a major player of overproduction of mucin, which is the characteristic feature of

PMP. In addition to PKA pathway, we identified mutations in six genes that belong to the

transforming growth factor beta (TGF-β) pathway, which is a key regulator of cell prolifera-

tion. Since either GNAS mutation or an alternative mutation in the PKA pathway was identi-

fied in 8/9 patients, inhibition of the PKA pathway might reduce mucin production in most of

the PMP patients and potentially suppress disease progression.

Introduction

Pseudomyxoma peritonei (PMP) is a rare subtype of intestinal-derived mucinous adenocarci-

noma, with prevalence of approximately 1–2 persons per million per year [1]. PMP originates

most frequently from the appendix, and through its rupture the tumor cells spread into the

peritoneal cavity. A characteristic feature of PMP is the ability of tumor cells to produce large
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amounts of extracellular mucus, which leads to bowel obstruction, breathing difficulties, mal-

nutrition, and eventually death of the patient. According to the World Health Organization

(WHO) classification PMP is categorized into low-grade (LG) and high-grade (HG) disease

[2]. LG PMP is a relatively slowly progressing disease with 5-year survival of 63%, while the

HG type of the disease has the ability to invade and metastasize, leading to 5-year survival of

only 23% [3]. Current standard treatment of PMP is aggressive cytoreductive surgery com-

bined with hyperthermic intraperitoneal chemotherapy [4]. This combinatory treatment, how-

ever, causes morbidity and mortality, and is only amenable for 60–70% of the patients [5].

Furthermore, as a significant proportion of PMPs usually relapse, additional targeted treat-

ments are needed.

The genetic background of PMP is poorly understood due to its low incidence and chal-

lenges related to collection of representative tissue material of this remarkably mucinous

tumor type. The published next-generation sequencing (NGS) studies [6–11] have mostly used

targeted sequencing of mutational hotspot areas of known cancer related genes. These studies

have discovered the characteristic KRAS and GNAS alterations in PMP, together with a lower

frequency of e.g. SMAD4, SMAD2, SMAD3, TP53, PIK3CA, and AKT1mutations. Exome

sequencing enables identification of variants in the whole coding region of the human genome

and allows to expand the analysis of the mutations to pathway level.

In our previous study covering 212 somatic mutation hotspots in 48 cancer related genes in

19 patients [9], we found that all sequenced PMP tumors had an activating KRASmutation

and 12/19 (63%) of the patients harbored a mutation in the GNAS gene. Here, we have

sequenced the whole coding genome of nine of these PMP tumors and paired normal tissues

in order to identify common mutated genes and pathways outside the scope of the targeted

hotspot panels. Mutations in the protein kinase A (PKA) pathway were under special focus,

since PKA pathway activation is involved in the overproduction of mucin [7], and 4/9 tumors

in our sample set lacked the typical GNASmutation, which led to hypothesis that mutations in

other genes in PKA pathway may lead to similar phenotype. Exome sequencing results were

validated with an independent measurement method that is based on ultra-deep amplicon

sequencing.

Materials and methods

Patients

Nine PMP tumor samples (6 LG and 3 HG) with histologically confirmed appendiceal origin

were analyzed with exome sequencing. The tumor cell content of the samples was between

10% and 60% as estimated from hematoxylin and eosin stained (HE) slides. Nine matching

control samples (from skin or gallbladder) were included into the analysis. Tissue samples

were processed at Division of Pathology and Genetics, HUSLAB, at the Helsinki University

Central Hospital between 2006 and 2013. Grading of the tumor samples was done according

to the WHO 2010 classification [2]. This study was approved by the Ethics Committee of the

Helsinki University Central Hospital (code 408/13/03/03/2009) and the patients gave written

informed consent.

DNA extraction

From the formalin-fixed paraffin-embedded (FFPE) tissue specimens, 10 μm flakes were cut

with a Leica SM2000R microtome (Leica Microsystems GmbH, Wetzlar, Germany). Macrodis-

section was used when applicable to increase the yield of tumor DNA. Two to fifteen tissue

flakes were deparaffinized and genomic DNA was extracted using QIAamp DNA Mini Kit

(Qiagen, Venlo, the Netherlands) as previously reported [9]. DNA quality was inspected with
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NanoDrop spectrophotometer (Thermo Fischer Scientific, Waltham, MA) and agarose gel

electrophoresis (with Midori Green Advanced DNA Stain; Nippon Genetics EUROPE GmbH,

Dueren, Germany), and DNA concentration was determined using Qubit dsDNA HS Assay

Kit and Qubit 2.0 Fluorometer (Molecular Probes/Life Technologies, Paisley, UK).

Exome sequencing

Target enrichment for exome sequencing was done with the Agilent SureSelect 51M Capture

Kit (Santa Clara, CA). Paired-end sequencing with 90 base pair read length was performed

with Illumina HiSeq 2000 (San Diego, CA). Alignment of the reads was done by BWA [12]

with parameters bwa aln -o 1 -e 50 -m 100000 -t 4 -i 15 -q 10 -l, and the human genome build

37 (hg19) was used as the reference. Duplicate reads were removed with Picard Tools (http://

picard.sourceforge.net).

Data analyses

Sequence data were analyzed with the Anduril workflow framework [13] (Fig 1). Variants

were called by VarScan somatic (v.2.3.6) [14] and MuTect (v1.1.4) [15] in tumor-normal pairs.

The pileup files for VarScan somatic were created using SAMTools mpileup (v0.1.19) [16]

with default parameters except for -q 1 -Q 10. We estimated tumor cell percentage for each

sample both visually from the HE stained slides and from the variant allele frequencies (VAF)

of KRAS and GNAS variants obtained from our previous targeted deep sequencing of the same

Fig 1. Workflow used for exome sequencing of nine pseudomyxoma peritonei specimens and their matching control samples.

https://doi.org/10.1371/journal.pone.0174898.g001

PKA and TGF-β pathway mutations in pseudomyxoma peritonei

PLOS ONE | https://doi.org/10.1371/journal.pone.0174898 April 20, 2017 3 / 16

http://picard.sourceforge.net
http://picard.sourceforge.net
https://doi.org/10.1371/journal.pone.0174898.g001
https://doi.org/10.1371/journal.pone.0174898


samples [9] (Table 1). The average read coverage of the targeted sequencing was 3,580X, mak-

ing the VAFs and, thus, tumor cell percentages, more reliable than using VAFs from exome

sequencing (average coverage 120X). Tumor purity estimated from the targeted sequencing,

ranging from 6% to 28%, was then used as the purity parameter for each tumor sample in the

VarScan variant caller algorithm. Other default parameters for VarScan were used except—

min-avg-qual 10. VarScan derived somatic single nucleotide variation (SNV) and short inser-

tion and deletion (indel) calls were filtered with Fisher test p-value< 0.05 to obtain statistically

significant calls. VarScan results were further filtered to contain cancer related genes from the

Cancer Gene Census [17] in addition with kinome genes [18] to prioritize functionally rele-

vant calls. SNV calls from MuTect were not filtered, since the method itself contains stringent

filtering, and allowed thus calls from the whole exonic regions. In order not to miss true posi-

tives we preferred sensitivity over specificity and combined the calls from VarScan and

MuTect. The increase in false positives in the discovery set is overcome by the use of indepen-

dent validation method. Synonymous changes were disregarded. Resulting variants were

annotated with Annovar [19] and CADD (v1.2) functional scores [20]. Scaled CADD

score > 10 was used to gain the set of most pathogenic variants. All resulting variants were

inspected visually by unpublished genome analysis tool Rikurator (R. Katainen, V. Mäkinen,

L.A. Aaltonen, E. Pitkänen, manuscript under preparation). Variants with mis-alignment or

having reads only in single direction were regarded as unreliable and removed. Variant genes

were annotated with Gene Ontology terms [21] and pathway analyses were done with DAVID

Bioinformatics Resources 6.7 [22].

Amplicon sequencing

Ultra-deep amplicon sequencing was used to validate exome sequencing results. Ninety-four

most relevant variants detected with exome sequencing were validated using ultra-deep ampli-

con sequencing (S1 Table). We selected variants that belong to the protein kinase A (PKA) or

transforming growth factor beta (TGF-β) pathway, and sites in genes which were mutated in

at least two patients. Variants on PKA pathway, which is shown to play a key role in PMP

pathogenesis [7], were selected since 4/9 PMP tumors lacked GNASmutation and we hypothe-

sized that in these cases mutations in other genes in the PKA pathway may lead to similar

Table 1. Tumor cell content of pseudomyxoma peritonei FFPE samples estimated from HE stainings, and variant allele frequencies (VAF) of

KRAS and GNAS from targeted sequencing.

VAF from targeted seq*

Patient Grade HE T% KRAS GNAS Seq T%**

2 LG 40 0.179 0.077 16

201 LG 20 0.083 0.062 12

202 HG 10 0.054 10

206 HG 60 0.103 20

210 LG 20 0.034 6

214 LG 25 0.041 0.034 6

28 HG 50 0.078 0.079 16

29 LG 30 0.144 0.278 28

31 LG 20 0.081 16

LG: low-grade; HG: high-grade; HE: hematoxylin and eosin; T%: tumor cell percentage; VAF: variant allele frequency; seq: sequencing

* Ref. [9]

**Tumor cell percentage calculated by multiplying the heterozygote VAF (lower value of either KRAS or GNAS) by factor of two.

https://doi.org/10.1371/journal.pone.0174898.t001
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phenotype. Variants on TGF-β pathway were selected since it showed high enrichment in

pathway analysis (Bonferroni corrected p-value 0.001; S2 Table). MAPK and ErbB pathways

showed the highest enrichment of signaling pathways (Bonferroni corrected p-values

1.53x10-6 and 3.89x10-5, respectively), but these pathways were not validated due to the fact

that all PMP tumor samples had an activating mutation of the KRAS oncogene [9], which is

sufficient to activate these pathways [23]. Sample 29 could not be validated due to lack of

DNA. PCR primers (Sigma-Aldrich, St. Louis, MO; S3 Table) were designed by Primer3 [24]

with amplicon size of 150–200 bp, GC percentage 30–70%, primer length 18–35 bp, and melt-

ing temperature 60–62˚C. PCR reactions were done in 20 μl reaction volume containing 20 ng

gDNA, 0.4 μl dNTP mix (100 mM), 2 μl of each primers (10 μM), 2.5 U Expand High Fidelity-
PLUS Enzyme Blend and 1X Expand High FidelityPLUS Reaction buffer with final concentration

of 1.5 mM MgCl2 (Roche, Basel, Switzerland). The cycling conditions were as previously

reported [25] except that denaturation time in each cycle was 30 seconds, annealing tempera-

ture was 60˚C, and the number of PCR cycles was 32–35. Half of the PCR reaction was then

analyzed with gel electrophoresis and the other half was used for amplicon purification. Each

separate amplicon was purified with Beckman Coulter AMPure XP Beads (Pasadena, CA)

according to the manual with bead:DNA ratio of 2X (20 μl of nuclease free water and 60 μl of

AMpureXP Beads were added to 10 μl of sample). Purified amplicons were quantified using

Qubit and all the amplicons of each patient sample were pooled in equimolar basis. The con-

centrations of all the amplicon pools were then adjusted to 0,54 ng/μl and 10 μl of these pools

were used for library preparation. Library preparation was done using ThruPLEX DNA-seq

Kit (Rubicon Genomics, Ann Arbor, MI) according to the instruction manual and libraries

were checked with Agilent 2100 Bioanalyzer. Finally, the samples were sequenced with MiSeq

v2 (Illumina) using paired-end sequencing with 150 base pair read length. Reads were aligned

by BWA mem with default parameters and human genome build 37 (hg19) as the reference.

Variants were calculated by SAMtools mpileup (v0.1.19) and VarScan (v.2.3.6) readcounts

commands. Variants with coverage greater than 1,000X and frequency at least one third of the

corresponding KRASVAF in the same sample were regarded as confident.

Comparison of KRAS and GNAS mutations detected with targeted

sequencing, exome sequencing, and validation sequencing

Average coverage of the exome sequencing was 120X, and on average 95.9% of the target was

covered with at least 20X. With this coverage, the two applied variant caller algorithms were

not able to detect all the somatic mutations that we previously detected in the same samples by

the targeted sequencing with the average coverage of 3,580X [9]. For KRASwe detected 5/9,

and for GNAS 5/5 of the mutations (Table 2). To validate the exome sequencing results we

used ultra-deep amplicon sequencing with average coverage ranging from 60,000X to

400,000X per sample. With this validation sequencing we were able to detect the KRAS and

GNAS variants with similar VAF as previously with the targeted sequencing (Table 2).

Results

Somatic exome-wide SNVs and short indels in PMP tumors

Results of exome-wide analysis of the filtered somatic SNVs and indels are summarized in

Fig 2. After all the filtering steps, we retained an average 67 high confidence, protein chanc-

ing somatic SNVs and indels per tumor (range 15–180) (S2 Table). In total, we found 535

transitions (Ts; A$G or C$T) and 59 transversions (Tv; A:G$C:T), giving an overall Ts

to Tv ratio 9.1. Ts to Tv ratios for each tumor ranged from 2.8 to 28.3. High rate of Ts is a

PKA and TGF-β pathway mutations in pseudomyxoma peritonei
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common feature in FFPE samples caused by PCR induced errors, promoted by DNA modifi-

cations [26, 27].

Validation of the mutations

We performed ultra-deep sequencing validation for altogether 94 potentially relevant variants

in 53 genes detected in the exome sequencing experiment. As internal controls, we included

amplicons for the KRAS and GNAS hotspot areas. Since all the sequenced samples had a KRAS
mutation, we filtered our validation results using the corresponding KRAS variant allele fre-

quencies (S1 Table). Altogether 14 mutations in 13 genes passed all the quality filtering steps,

resulting in validation rate of 14.9%. All validated 14 variants were considered to affect protein

function as ten of them are missense mutations, three are nonsense mutations, and one is a

canonical splice site mutation. All of these mutations were predicted to be potentially func-

tional by the in silico prediction tool CADD and six of them exist in the COSMIC database

[28] (Table 3; the gene, transcript, and chromosomal positions are from Ensembl build 37

[29]). Evaluation of the reliability of these variants, considering the bias in FFPE samples, was

accomplished by applying six separate criteria specified in the Table 3.

Validation confirmed mutations in the PKA and TGF-β pathways

From the selected 21 variants in 19 genes that belong to the PKA pathway, the validation con-

firmed seven variants in seven genes occurring in 4/9 patients (OXTR, EDNRA, PRKAR1A,

Table 2. Comparison of KRAS and GNAS mutations detected with targeted sequencing, exome sequencing and validation sequencing.

KRAS

Targeted sequencing* Exome sequencing Validation sequencing

Patient Position Coverage Call Frequency Coverage Call Frequency Coverage Call Frequency

2 12:25398284 2346 C/T 0.179 29 C/T 0.207 56166 C/T 0.163

201 12:25398284 3775 C/T 0.083 54 ND ND 310144 C/T 0.050

202 12:25398284 4159 C/T 0.054 55 C/T 0.073 415544 C/T 0.052

206 12:25398284 3640 C/T 0.103 48 ND ND 84351 C/T 0.096

210 12:25398284 8797 C/T 0.034 48 C/T 0.083 160119 C/T 0.033

214 12:25398284 2844 C/T 0.041 56 ND ND 165996 C/T 0.035

28 12:25398284 3495 C/T 0.078 49 C/T 0.061 259844 C/T 0.080

29 12:25398281 2765 C/T 0.144 47 C/T 0.085 NA NA NA

31 12:25398284 1611 C/T 0.081 28 ND ND 25378 C/T 0.085

GNAS

Targeted sequencing* Exome sequencing Validation sequencing

Patient Position Coverage Call Frequency Coverage Call Frequency Coverage Call Frequency

2 20:57484420 2811 C/T 0.077 116 C/T 0.060 61926 C/T 0.094

201 20:57484421 3405 G/A 0.062 117 G/A 0.103 368512 G/A 0.048

202

206

210

214 20:57484420 2509 G/A 0.034 153 G/A 0.033 265484 G/A 0.031

28 20:57484420 2726 G/A 0.079 139 G/A 0.094 164773 G/A 0.082

29 20:57484420 1763 G/A 0.278 134 G/A 0.164 NA NA NA

31

* [9]; ND: not detected; NA: not available.

https://doi.org/10.1371/journal.pone.0174898.t002
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Fig 2. Exome-wide statistics of filtered somatic SNV and indel calls. (A) Number of SNVs and indels. (B)

Total number of somatic nucleotide base changes. (C) Ts to Tv ratio of each tumor. SNV: single nucleotide

variation; indel: insertion/deletion; Ts: transition; Tv: transversion.

https://doi.org/10.1371/journal.pone.0174898.g002
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RYR2, GUSB,GRIA2, and CNGB1) (Table 3 and Fig 3). From the selected 19 variants in 14

genes that belong to the TGF-β pathway, validation confirmed six variants in five genes occur-

ring in 4/9 patients (LTBP1, THBS1, TGFBR2, PPP2R1B, and ACVR1B) (Table 3 and Fig 3).

Each of these genes was mutated exclusively in one patient except TGFBR2which was found to

be mutated in two cases.

Other validated mutations

Finally, we selected 25 genes that were mutated in at least two PMP patients in the exome data.

This led to validation sequencing of 52 variants in 25 genes. TGFBR2was the only mutated

gene that was confirmed in multiple PMP patients (2/9). Interestingly, a mutation in DUSP22
was confirmed in one HG PMP patient (Table 3). DUSP22 activates the JNK pathway [30] and

is involved in apoptosis. Thus, mis-regulation in apoptosis may contribute to the high-cellular-

ity of this PMP tumor with 20% tumor cell percentage.

Discussion

The genetic background of PMP is incompletely characterized. It is known that the RAS sig-

naling pathway activation is frequently if not always present in PMP and most often facilitated

by a mutation of the KRAS oncogene in codons 12 or 13 (S4 Table) [6–11,31–34]. In addition

Table 3. Variants detected on pseudomyxoma peritonei by exome sequencing and validated by ultra-deep amplicon sequencing.

Patient Gene Ensembl gene Ensembl transcript Chromosomal

position

Nucleotide

(cDNA)

Amino

acid

(protein)

CADD

score

Evidence* Criteria for

annotating

variant as a

potential

artefact**

2 OXTR ENSG00000180914 ENST00000316793 3:8809260 c.C614G p.T205R 19.8 2, 3, 4

201 LTBP1 ENSG00000049323 ENST00000354476 2:33335707 c.G922A p.V308M 11.3 Cosmic 1, 2, 3, 5

202 THBS1 ENSG00000137801 ENST00000260356 15:39885810 c.A3208G p.T1070A 24.3 3, 4

206 DUSP22 ENSG00000112679 ENST00000344450 6:348195 c.G356A p.R119H 34 1, 2, 3, 4

206 EDNRA ENSG00000151617 ENST00000324300 4:148441016 c.G434A p.R145H 23.8 1, 3, 4

206 PRKAR1A ENSG00000108946 ENST00000589228 17:66518896 c.178-1G>C splice site

variant

24.7 1, 3, 4, 6

206 RYR2 ENSG00000198626 ENST00000366574 1:237693756 c.G2852T p.G951V 23 3, 4

210 TGFBR2 ENSG00000163513 ENST00000295754 3:30729968 c.C1489T p.R497X 50 Cosmic

210 PPP2R1B ENSG00000137713 ENST00000527614 11:111626081 c.C781T p.R261X 38 1, 3, 4

210 ACVR1B ENSG00000135503 ENST00000257963 12:52374813 c.G641T p.G214V 31 Cosmic 3

210 GUSB ENSG00000169919 ENST00000304895 7:65439369 c.G1304A p.R435H 26.9 1, 3, 4

214 TGFBR2 ENSG00000163513 ENST00000295754 3:30732957 c.G1570A p.D524N 35 Cosmic 1, 6

31 GRIA2 ENSG00000120251 ENST00000296526 4:158233974 c.C613T p.R205W 28 Cosmic 1, 3, 6

31 CNGB1 ENSG00000070729 ENST00000251102 16:57950065 c.C2185T p.R729X 17.9 Cosmic 1, 3

X: stop-gain. CADD score reflects the deleteriousness of the mutation.

*Cosmic: Occurence of similar mutation in the COSMIC database [28].

** Criteria for annotating a variant as a potential artefact are:

1. C!T/G!A reported only by one variant caller

2. VAF < average in a sample

3. found only in a single sample

4. not reported as recurrently mutated in COSMIC

5. CADD score < 15

6. coverage < 50% of sample average

https://doi.org/10.1371/journal.pone.0174898.t003
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to KRAS, one NRASmutation has been reported in a patient lacking KRASmutation [10],

emphasizing the crucial role of RAS pathway activation in PMP. These mutant RAS proteins

are constitutively active promoting cell proliferation and suppressing apoptosis [35]. KRAS
andNRASmutated colorectal cancers (CRC) are known to be resistant to epithelial growth fac-

tor receptor (EGFR)-targeted therapy [36], suggesting that this type of treatment may also be

ineffective in PMP. In addition, BRAFmutations are rare events in PMP [7–11] and thus anti-

BRAF therapy may also not be applicable. In addition to RAS pathway activating mutations,

GNAS codon 201 is mutated with high frequency in PMP [6–11,34]. GNAS encodes the α-sub-

unit of the stimulatory G protein that transduces signals from seven-transmembrane receptors.

A mutation at codon 201 leads to constitutive activation of adenylyl cyclase leading to elevated

levels of cyclic AMP (cAMP) and activation of the PKA pathway. In a CRC cell line, activated

GNAS has been shown to induce expression ofMUC2 andMUC5AC [34], which belong along

with MUC5B to the most prominent mucins produced by PMP tumors [37,38]. Further, acti-

vated PKA has been shown to stimulate secretion of mucins in human colonic epithelial cells

[39]. Thus, GNAS or PKA inhibition might reduce mucin secretion in PMP patients, relieving

obstruction related symptoms and disease progression.

PKA has been reported to be strongly phosphorylated and activated in PMP tumors even in

the absence of GNASmutation [7], which lead to the hypothesis that in addition to GNAS, also

other members of PKA pathway may be affected. As four out of nine of our exome sequenced

samples lacked the GNAS hotspot mutation (Fig 3), we targeted our search to identify other

mutations of the PKA pathway (Fig 4A). One of our HG PMP patients harbored three mutated

genes of this pathway: PRKAR1A, EDNRA, and RYR2. PRKAR1A encodes regulatory subunit

of PKA and had a canonical splice site mutation (c.178-1G>C) in the dimerization/docking

domain, suggesting a loss of function. Similarly, Alakus et al. [7] found a mutation in another

subunit of PKA (PRKACA) in a PMP patient lacking GNASmutation. Interestingly, patients

of Carney complex, which is an autosomal dominant disease caused by inactivation of the

PRKAR1A gene, have a high prevalence of pancreatic tumors, including intraductal papillary

mucinous neoplasms (IPMN) [41]. This also supports functionality of PRKAR1A in PMP,

Fig 3. Gene mutations identified in pseudomyxoma peritonei (PMP). Nine appendix-derived PMP

samples were analyzed for grade and cellularity, using HE slides and NGS, respectively. Somatic mutations

were identified using exome sequencing and validated by ultra-deep amplicon sequencing. HG: high-grade;

LG: low-grade. * [9].

https://doi.org/10.1371/journal.pone.0174898.g003
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since mutational profiles of IPMN and PMP are highly similar [7,9,34]. Importantly, inactiva-

tion of PRKAR1A gene in Carney complex cells has been found to constitutively activate PKA

[42,43]. In our series, mutations in the EDNRA (p.R145H) and RYR2 (p.G951V) genes were

missense, altering the amino acid structure of seven-transmembrane receptor and RyR

Fig 4. Gene mutations related to PKA and TGF-β pathways in pseudomyxoma peritonei. (A) Variants of PKA

pathway. (B) Variants of TGF-β pathway. Pathways have been modified from KEGG [40]. PKA: protein kinase A; TGF-β:

transforming growth factor beta.

https://doi.org/10.1371/journal.pone.0174898.g004
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domain, respectively. One LG PMP patient had a missense mutation in the GUSB (p.R435H)

gene, which is known to interact with the PRKACA subunit of PKA [44]. Furthermore, germ-

line mutations of GUSB gene cause autosomal recessive disorder, mucopolysaccharidoses,

characterized with production of excessive mucus. Another LG PMP patient had two mutated

genes of the PKA pathway, CNGB1 (p.R729X) and GRIA2 (p.R205W), harboring a nonsense

and a missense mutations, respectively. In summary, we were able to detect mutations in PKA

pathway in 3/4 patients lacking GNAS mutation. Altogether, 8/9 patients seemed to have

affected PKA pathway, making it a potentially interesting molecular target in PMP.

TGF-β pathway is dysregulated in many cancers, including PMP (S4 Table) [7,9–11]. Thus

far, SMAD4, SMAD2, SMAD3, TGFBR1, and TGFBR2mutations have been the most often

detected ones in PMP. Similarly to Alakus et al. [7], we detected TGFBR2mutations (p.R497X

and p.D524N) in two PMP patients, both affecting kinase domains. Since TGFBR2-R497X is a

nonsense mutation and mutations in the same residue as TGFBR2-D524N have been detected

in inherited diseases [45], it indicates loss of function for both cases. TGFBR2 has been found

mutated also in CRC leading to inactivation of the TGF-β pathway [46]. Interestingly, only the

combination of KRAS activation and TGFBR2 inactivation in mice have been found to induce

formation of intestinal neoplasms [47]. In addition, we detected other mutations in the TGF-

β pathway: LTBP1 (p.V308M), THBS1 (p.T1070A), PPP2R1B (p.R261X), and ACVR1B (p.

G214V) genes, which may contribute to the development and progression of PMP (Fig 4B).

Both LTBP1 and THBS1 have been shown to control the activity of TGFB1 [48,49] and they

were mutated in different patients. PPP2R1B encodes the beta isoform of the A subunit of the

serine/threonine protein phosphatase 2A (PP2A), which has been found to be mutated also in

colon and lung cancers [50]. ACVR1Bmutation in the catalytic domain was found in a patient

who also had mutated TGFBR2.ACVR1B encodes activin A type IB receptor and is frequently

mutated in CRC [46]. Interestingly, loss of ACVR1B was recently reported to accelerate devel-

opment of IPMN in mice with activated KRAS [51]. Altogether, 4/9 PMP patients were identi-

fied to have TGF-β pathway alterations, which further highlight the importance of the TGF-β
pathway in PMP pathogenesis.

Most likely also other dysregulated pathways than RAS, PKA and TGF-β have a role in the

development and progression of PMP, and further investigation of these pathways is needed

(S2 and S4 Tables). For example, TP53 has been shown to be mutated in HG PMPs [7–11].

The PI3K-AKT pathway is affected through PIK3CA and AKT1mutations [9–11], andMCL1
amplification [6], and the Wnt pathway through CTNNB1mutation [7,11] and amplification

of JUN [6]. Furthermore, mechanisms, such as somatic structural rearrangements, intronic

variants, microRNA expression changes, and epigenetic events, may also influence the devel-

opment of PMP but have not yet been examined.

Due to the low proportion of neoplastic cells in the PMP samples, sensitivity and functional

prioritizing was emphasized in the exome sequencing data analysis. Ultra-deep targeted

sequencing was then used to eliminate false positives resulting from the reduced specificity.

Transition substitutions, C!T or G!A, are the most abundant mutations in PMP [7], which

was evident also in our results (Fig 2B), suggesting similar mechanisms of DNA mutagenesis

as in CRC [52]. It is, however, important to note that hydrolytic deamination of cytosines

leads to overrepresentation of C to T (C!T/G!A), and therefore variant artefacts are com-

mon in next-generation amplicon sequencing of formalin-fixed tumor samples [27]. Preva-

lence of C to T artefacts is indeed highest in low concentration samples in VAFs < 10%.

Although such variants are rarely of high functional relevance and do not usually locate in

mutational hotspots [53], some clinically actionable mutations have been shown to be false

positives [54,55]. To minimize the number of formalin-fixation caused false positive alter-

ations in the final results, we applied the filtering steps represented in the Fig 1. In total, 14
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variants (Table 3) survived after filtering and included 64% of C!T/G!A transitions (9 out

of 14 substitutions), which is a higher proportion compared to the average of 40.8% in the

human genome [53]. It is, however, extremely unlikely that identical artifacts emerge and pass

all our filtering steps in two independent experiments utilizing distinct targeting methods, i.e.

Agilent’s whole-exome hybrid capture assay for mutation identification and custom-designed

PCR amplicons for ultra-deep validation sequencing. However, mutations which resemble

typical artefacts in formalin-fixed tumor sequences must always be treated with a caution

(Table 3).

In conclusion, we have used FFPE samples with deep sequencing to characterize the muta-

tional landscape in PMP. FFPE samples are more abundant and easier to access than fresh

samples but their computational analysis is challenging. Thus, the successful use of the freely

available computational pipeline developed herein paves way to use FFPE samples in future

PMP studies. Our major finding include novel mutated genes in the PKA pathway possibly

contributing to the characteristic mucin production of the PMP disease. Inhibition of the PKA

pathway could potentially be a universal target in reducing mucin production in the PMP

patients, which could prolong survival of these patients. Our results also highlight the impor-

tance of TGF-β pathway in the development and progression of PMP and therapies targeting

this pathway could also suppress progression of the disease.

Conclusions

Genetic background of pseudomyxoma peritonei (PMP) is not well characterized and there

are no targeted therapies for the treatment of this disease. In this study, we used exome

sequencing to expand the mutational analysis of PMP tumors beyond the mutational hotspot

areas of known cancer genes and validated the results with an ultra-deep amplicon sequencing

method. Validated results indicate that in addition to the fundamental KRAS and GNASmuta-

tions, somatic mutations in the PKA and TGF-β pathways possibly account for the increased

mucus secretion and cell proliferation, respectively.
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