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Abstract

Base editing (BE) can be applied to characterize single nucleotide variants (SNVs) of unknown 

function, yet defining effective combinations of single guide RNAs (sgRNAs) and base editors 

remains challenging. Here, we describe modular BE-activity ‘sensors’ that link sgRNAs and 

cognate target sites in cis and use them to systematically measure the editing efficiency and 

precision of thousands of sgRNAs paired with functionally distinct base editors. By quantifying 

sensor editing across >200,000 editor–sgRNA combinations, we provide a comprehensive 

resource of sgRNAs for introducing and interrogating cancer-associated SNVs in multiple model 

systems. We demonstrate that sensor-validated tools streamline production of in vivo cancer 

models, and that integrating sensor modules in pooled sgRNA libraries can aid interpretation of 

high-throughput BE screens. Using this approach, we identify several previously uncharacterized 

mutant TP53 alleles as drivers of cancer cell proliferation and in vivo tumor development. We 

anticipate that the framework described here will facilitate the functional interrogation of cancer 

variants in cell and animal models.
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INTRODUCTION

Genome sequencing studies have revealed a complex, heterogeneous mix of cancer-

associated mutations, including both known and druggable oncogenic mutations (e.g. 

BRAF-V600E), and a large collection of variants of uncertain significance (VUS). 

Understanding the impact of specific oncogenic mutations requires functional analysis. 

Even subtle changes in cancer-associated single nucleotide variants (SNVs) can have 

major functional consequences in tumorigenesis and drug sensitivity1–6. Thus, while DNA 

sequencing has enormous potential to support clinical decision making, it is limited by a 

lack of understanding of how specific variants contribute to disease.

Base editing (BE) can introduce SNVs with high specificity and in the absence of DNA 

double strand breaks (DSBs) or exogenous DNA templates7. We and others have developed 

BE tools that enable efficient BE in cell lines, primary cells, and in vivo8–10. However, 

unlike Cas9-mediated DNA targeting of DSBs, predicting the efficiency and precision of BE 

guides remains challenging.

To expand the capability and feasibility of studying VUS at scale, we set out to develop 

a framework for systematic engineering of thousands of cancer-associated genetic variants. 

To do this, we developed a modular ‘BE sensor’ platform that couples a single guide RNA 

(sgRNA) with its cognate genomic target in cis. Thus, in the presence of a base editor, 

sgRNAs drive editing of a physically linked surrogate, or ‘sensor’ target site. We find that 

sensor-based measurement of editing efficiency correlates closely with endogenous gene 

targeting and that sensor-validated sgRNAs can be used to streamline the engineering and 

characterization of cancer-associated SNVs in vivo. Further, integrated sensors support the 

interpretation of pooled BE library screens, by providing a surrogate readout of sgRNA 

activity in parallel to sgRNA abundance or ‘screen fitness’.

To aid the development of future mutation-focused sensor libraries, we developed a flexible 

computational pipeline (AMINEsearch) that generates BE sensor libraries from annotated 

genomic data, and a web application (BE-SCAN) that simplifies selection of effective BE 

tools for generating cancer-associated SNVs. We expect the resources described here will 

accelerate the functional interrogation of VUS.

RESULTS

Development and validation of a base editing sensor

To measure the activity of individual sgRNAs in a high-throughput manner, we designed a 

BE sensor, in which an sgRNA is linked to its cognate target site within a lentiviral vector, 

allowing for high-throughput measurement of editing efficiency by PCR amplification and 

sequencing of the sensor cassette (Fig. 1a). To test whether BE sensors could measure 

qualitative and quantitative features of BE across different targets and editors, we generated 

a library containing 10 human and 8 mouse sgRNAs, in which sensor target sites were 

modified to contain all 64 possible 3 nucleotide protospacer adjacent motifs (PAMs) (ALL-

PAM (AP) library; Fig. 1a; Supplementary Table 1a). We next generated MDA-MB-231 

cells that stably expressed one of 9 base editors that span a range of PAM specificities, 
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editing window sizes, and overall editing efficiency. These include: FNLS10, AncBE4max9, 

FNLS-2X (F2X)10, FNLS-HF1 (HF1) (ref.10–11), FNLS-HiFi (HiFi)12, 13, FNLS-NG 

(NG)12, 14, FNLS-HiFi-NG (HiFi-NG)12, 14, FNLS-VQR (VQR)11, and xFNLS10, 15 (Fig. 

1a). We also generated Cas9 and Cas9-NG nuclease controls to assess the frequency of 

SNVs following DSBs. As expected, apart from Cas9 and Cas9-NG, each line showed 

efficient BE activity as measured by a fluorescent reporter12 (Fig. 1b). We next transduced 

each base editor- or Cas9-expressing line with the AP library in duplicate at >2000X 

representation and cultured cells for one week to allow base editing. We amplified and 

sequenced entire sgRNA-scaffold-target cassettes from each cell population and quantified 

insertion or deletion (indel) frequency and target cytosine editing (Supplementary Table 

1b). All lines showed high correlation of C>T editing efficiency between replicates 

(Supplementary Fig. 1) and, as expected, Cas9 and Cas9-NG showed indel formation but 

little-to-no target C>T editing (Fig. 1c; Supplementary Fig. 2 & 3). The sensor assay 

accurately reported the relative efficiency and known PAM preferences of individual 

base editors (Fig. 1c). FNLS, AncBE4max, F2X, HF1, HiFi, and xFNLS had maximum 

C>T editing at NGG PAMs and lower, but detectable editing, at NAG and NGA PAMs. 

Consistent with previous publications, VQR showed higher C>T editing at NGA PAMs11, 

while FNLS-NG and FNLS-HiFi-NG showed broad editing capabilities at NGN PAMs12, 14 

(Fig. 1c and Extended Fig. 1). In general, high-fidelity variants showed editing patterns 

identical to parental base editors, albeit with overall lower efficiency (Fig. 1d). Together, 

these data show that BE sensor libraries reliably report known features of well-characterized 

base editors.

AMINEsearch generates BE sensor libraries from genomics data

To establish a flexible pipeline to facilitate BE screens driven by clinical genomics data, we 

developed AMINEsearch (Annotated Mutation-Informed Nucleotide base Editing sgRNA 

search), a BE sgRNA design algorithm that compiles ready-to-clone libraries of annotated 

sgRNAs to model user-defined mutations (Fig. 2a). We first implemented AMINEsearch 

to generate sensor libraries to model cancer-associated mutations derived from targeted 

sequencing data (MSK-IMPACT)16, providing deep coverage of 462 cancer-relevant genes 

in >21,000 tumors at the time of library generation (Fig. 2b). BE is well-suited for creation 

of cancer-associated alterations, as they are highly enriched for C•G to T•A transition 

mutations (Fig. 2c). Most BE-compatible SNVs were missense mutations, followed by 

nonsense and splice site alterations (Fig. 2d). We identified 2,608 SNVs as recurrent (≥4 

occurrences), with mutation frequency ranging from 0.02% to 5.1% (Fig. 2e).

By inputting the parameters of well-characterized, efficient Cas modules (SpCas9, Cas9-NG, 

xCas9, ScCas9) and a BE targeting window of 4–11bp, we identified 5855 sgRNAs covering 

1450 unique mutations. This human BE sensor (HBES) library represented ~56% of all 

recurrent mutations in the dataset (Supplementary Table 2c–d). While the MSK-IMPACT 

targeted sequencing assay is specifically designed to focus on known cancer-associated 

genes (Fig. 2f), cross-referencing with the OncoKB precision oncology knowledge base 

(sop.oncokb.org)17, 18 showed that the plurality of SNVs targeted in HBES are VUS, with 

the most frequent subset of mutations being enriched in variant-level annotation (Fig. 2g; 

Extended Fig. 2).
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To model cancer-associated mutations in the mouse genome, we included additional steps 

in the AMINEsearch workflow to identify orthologous murine sites. For simplicity, unless 

otherwise stated, we refer to sgRNAs using the human mutation nomenclature. The mouse 

BE sensor (MBES) library contained 4686 sgRNAs targeting 1177 unique mutations 

(Supplementary Tables 2c–f). We noted modest attrition of BE sgRNAs when targeting the 

mouse genome due to lack of sequence conservation (Fig. 2d,f,h). The diversity of available 

BE tools allows for distinct trade-offs. For instance, using base editors with an expanded 

editing window (F2X) or PAM flexibility (FNLS-NG) increases theoretical coverage (Fig. 

2h) at the expected cost of reduced local specificity (Fig. 2i) or potentially increased global 

off-target effects (Extended Fig. 3 and Supplementary Table 3), respectively.

BE sensor identifies optimal sgRNAs for engineering variants

To measure editing efficiency of sgRNAs in the HBES and MBES libraries, we transduced 

each in duplicate into MDA-MB-231 cells expressing one of three base editors: FNLS10 

(highest editing efficiency), F2X10 (expanded editing range), or FNLS-NG12, 14 (PAM 

flexibility) (Fig. 3a, Supplementary Tables 4 & 5). Cas9-expressing cells served as a control 

to measure baseline C>T transitions in the absence of BE. Base editors were expressed to 

approximately equal levels, while Cas9 showed higher protein abundance (Supplementary 

Fig. 4a). We observed excellent correlation of cytosine editing between replicates from 

each library and base editor combination (Supplementary Fig. 5). As observed in AP 

screens, editing efficiency was strongly influenced by PAM, target cytosine position, 

and dinucleotide sequence context (TC>AC=CC>GC) (Fig. 3a–b; Supplementary Fig. 6). 

Consistent with previous studies, FNLS and FNLS-NG showed maximum editing efficiency 

at positions 3–9 of the protospacer while F2X showed expanded editing at positions 3–13 

(ref. 10) (Extended Fig. 4). While F2X had an extended editing range, its average efficiency 

within the canonical editing window (3–9bp) was lower than FNLS (Supplementary Fig. 

7). As expected, FNLS and F2X had maximum editing efficiency at NGG PAMs, while 

FNLS-NG showed broad activity at NGN PAMs (Fig. 3a). Cas9 showed no detectable 

BE activity, with ≤0.1% C>T editing across all base editor-PAM combinations (Fig 3a,b; 

Supplementary Fig. 6).

To determine whether sensor editing scores identified in one cell line could be extrapolated 

to other cell types, we repeated HBES and MBES screens in four additional cell lines: 

human PC9 and murine KrasG12D;Trp53−/− mutant (KPT1) lung adenocarcinomas19, as 

well as immortalized NIH3T3 and KrasG12D/+; Trp53WT/WT pancreatic (PDECs) cells20. 

In all, we measured editing across > 200,000 base editor-sgRNA-cell line combinations. 

Each cell line showed high concordance between replicates and different base editors 

(Supplementary Fig. 5). Average editing efficiency varied by cell line; however, PAM 

specificity, editing range, and relative efficiency of individual sgRNAs remained highly 

correlated (Fig. 3c; Supplementary Fig. 4b and Extended Fig. 5). We observed a moderate, 

non-linear relationship between Cas9-induced indels and BE across all cell lines, where 

sgRNAs with high BE scores were a subset of sgRNAs with efficient Cas9-mediated indel 

generation (Extended Fig. 6). These data suggest that the relative potency of individual 

sgRNAs across different cell systems can be predicted en masse using the BE sensor assay.
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Base editors can exhibit collateral (bystander) cytosine editing, whereby C>T mutations 

are induced in both target and neighboring cytosines within the editing window7. To 

investigate collateral editing, we calculated C>T editing “purity” as the frequency of target 

C>T editing without additional mutations. As expected, purity decreased with the presence 

of additional cytosines within the target window, especially with immediately adjacent 

bystander cytosines (Supplementary Fig. 8). Collectively, these results demonstrate that 

the sensor platform can be used to assess on-target and collateral cytosine editing across 

multiple base editors and thousands of target sites in a high-throughput manner.

To directly test how well the BE sensor scores predicted activity at endogenous targets we 

measured editing at 12 independent genomic sites with a panel of 13 sgRNAs, that showed 

high editing in the sensor assay. Using either FNLS or AncBE4max, endogenous editing 

aligned well with sensor-based estimates, with more than 50% of cases (7/13) within 10% of 

the sensor reported efficiency (Fig. 4a, Supplementary Fig. 9a). To ask whether BE sensor 

scores could predict the relative efficiency of target editing given a range of possible options, 

we tiled the R213 site in TP53 with a series of 7 sgRNAs. In this case, we used the F2X 

base editor to allow editing across the wide range of target positions in this series (5–11bp). 

Consistent with the data described above (Fig. 4a, Supplementary Fig. 9a) sensor estimates 

closely resembled editing at the endogenous locus (Fig. 4b).

Arbab et al recently reported a machine learning tool – BE-Hive – for predicting base 

editing outcomes21. We noted that BE-Hive predictions for the TP53.R213 series did not 

accurately predict editing outcomes for non-NGG sgRNAs, likely because BE-Hive does 

not incorporate the PAM sequence as a prediction feature. To assess this more broadly, we 

determined the similarity of BE-Hive predictions to the sensor-measured editing activity 

for the HBES and MBES libraries. As expected, given the strong dependence on PAM 

for editing activity, comparison of all sgRNAs showed relatively low overall correlation 

between BE-Hive and BE sensor estimates (Fig. 4c; Supplementary Fig. 10; Supplementary 

Table 6). Restricting our analyses to sgRNAs associated with NGG PAMs improved the 

correlation (Supplementary Fig. 11); however, much of it was driven by low-scoring guides, 

as focusing on sgRNAs with >5% BE sensor activity led to lower overall similarity (Fig. 4c; 

Supplementary Fig. 12). Together, these data show that BE sensor editing is well correlated 

with editing at endogenous sites, allowing reliable identification of sgRNAs with high 

editing efficiency across multiple biological contexts.

Non-canonical editing identified by BE sensor

APOBEC-driven mutation signatures in cancer include transitions (C>T; signature 2) and 

transversions (C>G; signature 13) (ref. 22). Cytosine base editors containing rAPOBEC1 

can induce C>G mutations in some contexts12, 21. Such ‘non-canonical’ transversion editing 

could be leveraged to increase the breadth of mutations that can be modeled using BE (22% 

of MSK-IMPACT dataset) (Fig. 2c). Transversion editing was apparent in our sensor screen 

(Fig. 4d) and for some targets, C>G editing occurred at levels greater than C>T editing 

(Extended Fig. 7a). Instances of transversion editing (C>R) closely resembled editing 

outcomes at three endogenous loci, chosen for their high (30–60%) predicted C>R editing 
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rates (Fig. 4e). As expected, C>R editing by AncBE4max was slightly lower, likely due to 

the presence of an additional uracil glycosylase inhibitor domain23 (Supplementary Fig. 9b).

We next looked at sequence features affecting C>R editing outcomes and noted that 

transversion mutations were strongly disfavored at CC dinucleotides (average 4% of BE 

events) but were ~3-fold higher in AC and TC contexts (13% and 12%, respectively) 

(Fig. 4d, Extended Fig. 7b). Transversions were also disfavored when target cytosines 

were followed by another cytosine (NCC, particularly CCC and GCC) and enriched when 

followed by a thymine (NCT, particularly ACT and TCT) (Extended Fig. 7b). Comparison 

across lines revealed that not all cells induce transversions with equal efficiency. While 

MDA-MB-231 and PC9 cells showed frequent and high level transversion editing, NIH3T3, 

PDEC, and KPT1 cells had a very low frequency of C>R alterations (Fig. 4d).

We developed a lentiviral BE reporter that drives GFP induction following target C>G 

editing (Extended Fig. 7c). This construct accurately reported cellular C>G editing bias, 

showing efficient C>G induction in MDA-MB-231, PC9, and HCC1806, but not NIH3T3 or 

PANC1, consistent with sensor measurements (Fig. 4f). Notably, C>G editing efficiency in 

the reporter was similar to average C>G editing seen at TCT motifs (Fig. 4d,f; Extended Fig. 

7b), suggesting it is a useful tool for gauging C>R editing potential in different cells. Thus, 

transversion editing bias is not a universal feature of human cancer cells. Systematic studies 

employing this reporter could provide insight into mechanisms that dictate this activity.

Sensor-validated sgRNAs streamline in vivo model development

A major advantage of sensor-based validation is the ability to identify active sgRNAs that 

generate specific missense mutations with little-to-no collateral editing. Such guides can 

be used to interrogate the impact of specific mutations in vitro and in vivo. As proof-of-

concept, we focused on the TP53 tumor suppressor gene, which is the most frequently 

mutated gene in cancer and shows remarkable mutational heterogeneity24. Hundreds of 

TP53 SNVs have been identified16, most of which are missense variants that may have loss-

of-function, gain-of-function, dominant negative, or neomorphic behavior24, 25. Our mouse 

sensor library contained 244 sgRNAs targeting 62 distinct and recurrent p53 mutations were 

represented in the mouse library. To measure the tumorigenic potential of p53 variants, 

we used immortalized murine KrasG12D/+; Trp53WT/WT PDECs, a genetically defined and 

physiologically relevant setting to model pancreatic cancer20. To test this concept, we cloned 

five sensor-validated sgRNAs to introduce specific missense mutations in Trp53 with low 

collateral activity (high “purity”) (C135Y, M237I, G199E, E271K, and R337C; human TP53 
gene nomenclature) (Fig. 5a–b). Introduction of each sgRNA into F2X-PDECs enabled 

low density growth in the presence of Nutlin-326 (Fig. 5c), suggesting these mutations 

compromise p53 function. To test whether these mutations impaired tumor suppression in 
vivo, we transplanted PDECs transduced with Trp53 or control sgRNAs into the pancreas of 

recipient mice (n=5 mice per sgRNA) (Fig. 5d). In cases where the sensor assay predicted 

multiple sgRNAs for a single mutation, we included all available sgRNAs to rule out 

off-target effects (Extended Fig. 8a). Orthotopic transplantation of control PDECs does not 

lead to pancreatic tumor development (up to 200 days), but all mice transplanted with 

PDECs carrying Trp53 sgRNAs succumbed to pancreatic tumors (46–99 days) (Fig. 5e and 
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Extended Fig. 8a). In each case, analysis of bulk tumor tissue showed high frequency of 

C>T mutations at their respective sites in the Trp53 gene (Fig. 5f, Extended Fig. 8b and 

8e, Supplementary Fig. 13 and 14). Identical results were obtained with FNLS-PDECs (n=5 

mice per mutation) (Extended Fig. 8c–d). Thus, BE-sensor validated sgRNAs can be used 

to synchronously engineer endogenous patient-derived mutations in experimental in vivo 
systems, facilitating systematic variant-to-phenotype studies in cancer and other diseases.

Pooled BE sensor screens to interrogate cancer variants

The experiments above demonstrated the robustness of BE sensor-validated sgRNAs for 

in vivo interrogation of cancer variants. Encouraged by these results, we set out to test 

whether BE sensor libraries could be coupled with high-throughput screening approaches 

for massively parallel functional interrogation of cancer-associated SNVs. An advantage of 

screening BE sensor libraries is that cells should harbor editing at both the sensor module 

and endogenous target site. Hence, variant-specific effects on cellular phenotype can be 

correlated with editing precision and efficiency at sensor target sites, minimizing false 

positives. In theory, this approach should also identify sgRNAs that edit their target but 

induce no phenotypic effect. To test this concept, we transduced KrasG12D/+; Trp53WT/WT 

FNLS-PDECs with the MBES library at low MOI and >1000X representation (Fig. 6a). 

Six technical replicates of PDEC-MBES cells (Supplementary Fig. 15) were used for a 

multi-time point in vitro proliferation screen performed for ~36 cumulative population 

doublings to quantitatively assess sgRNA activity and abundance in parallel.

Pairwise correlation analyses at the first timepoint (day 5) demonstrated excellent technical 

screening performance and replicates diverged at later time points (Fig. 6b). To quantify 

sensor editing and sgRNA enrichment, we used our analytical pipeline to calculate target 

editing efficiency, followed by MAGeCK27, 28 to determine changes in sgRNA abundance 

(Supplementary Table 7). Focusing on day 30 vs day 5 comparisons, our analysis identified 

150 sgRNAs that appeared to promote (n=125; LFC ≥ 1.5) or inhibit (n=25; LFC ≤ −1.5) 

PDEC proliferation (FDR ≤ 0.01) (Fig. 6c–d and Supplementary Table 7b). Significantly 

enriched sgRNAs were predicted to install mutations in genes with known oncogenic 

activity, including Jak3, Fgfr2, and Egfr (Supplementary Table 7d). Mutations in genes 

with known tumor suppressive function were also represented, including Trp53, Apc, 

Fbxw7, Nf2, and Chek2 (Supplementary Table 7d). In fact, after filtering for sgRNAs 

with >20% editing activity, 72% of enriched sgRNAs (26/36) targeted known or likely 

oncogenic mutations, compared to 38% in non-enriched sgRNAs (p=0.0003; Fisher’s exact 

test) (Extended Fig. 9a–b). Notably, more than half (19/36) of the enriched sgRNAs targeted 

Trp53, consistent with our proof-of-concept experiments (Fig. 6) and the role of p53 in 

suppressing mutant Kras-driven proliferation29 (Fig. 6c,d). In fact, collapsing the data to 

‘gene-level’ scores identified Trp53 as the only significantly scoring gene in this screen 

(FDR < 0.01) (Supplementary Table 7c).

Using Trp53 as a case study, we next compared fitness scores with sensor editing data 

from the same screen. Most sgRNAs enriched in the proliferation screen showed high 

editing activity, including two potent sgRNAs we previously validated in vivo (C135Y and 

M237I) (Fig. 6e and Extended Fig. 8c). We identified several Trp53 missense and nonsense 
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mutations that were enriched exclusively in vitro or in vivo (E271K, R337C, G199E), 

highlighting the importance of the context in measuring p53 variant fitness advantage. Most 

enriched sgRNAs demonstrated relatively high sensor editing, but notably, Trp53-R213 
sgRNA showed >10-fold enrichment in the screen, despite <3% sensor target editing. 

Inspection of the cognate sensor cassette revealed that this sgRNA showed a high level 

of editing at an adjacent cytosine, creating a T211I mutation (Fig. 6e), a variant also 

observed in human cancers16, 30. Mice transplanted with Trp53T208I cells (corresponding 

to human TP53T211I) succumbed to a fully penetrant disease (median survival of 53 days) 

(Fig. 6f). Sequencing analysis of bulk tumor tissue gDNA confirmed the C>T (Trp53T208I) 

mutation, with <15% C>T editing at the cytosine within R210 (corresponding to human 

TP53R213) (Fig. 6g), implying T208I is the oncogenic driver in this case. These data identify 

multiple TP53 missense mutations as drivers of proliferation in non-transformed pancreatic 

epithelium and establish Trp53T208I/TP53T211I as a bona fide driver mutation in this mouse 

model of pancreatic cancer.

A flexible platform of BE sensor predictions

Mutation databases are expanding, and new Cas and base editor variants are being identified 

at a rapid pace. Motivated by this reality, we expanded the capabilities of AMINEsearch (see 

Methods) and applied it to a more recent release of MSK-IMPACT that contains sequencing 

of 47,550 tumors (Extended Fig. 10, Supplementary Table 8g–j). The characteristics of an 

expanded set of Cas variants and base editors (including adenine base editors/ABEs8) were 

included as input and can be leveraged to select tools tailored to experiments that require 

maximum coverage or specificity (Supplementary Fig. 16).

DISCUSSION

BE is an efficient strategy to engineer and study SNVs, yet the identification of effective 

sgRNA-base editor combinations remains challenging. Here, we describe a versatile sensor-

based BE platform that enables identification of efficient sgRNAs from large, pooled 

libraries across multiple species, cell lines, and base editor configurations. We show that 

sensor predictions can accelerate the characterization of cancer-associated SNVs in vivo 
and demonstrate that integrating a BE sensor can support the interpretation of BE genetic 

screens.

All-in-one library strategies have been described for measuring Cas9 and BE 

outcomes21, 31–34. Such libraries have been used to develop machine learning tools to 

predict activity and purity of BE tools21, 32, 33, 35. These tools are useful for their scope of 

prediction, but predictions can diverge significantly from experimentally observed editing 

at endogenous sites (Fig. 4 and Supplementary Fig. 6, 10–12). Our work shows that sensor-

based activity estimates closely reflect editing outcomes at endogenous loci. Moreover, 

while it is possible that cell-specific differences in DNA accessibility or expression levels of 

base editors could impact editing efficiency, our results show relative consistency across cell 

lines, suggesting that sequence context is an important determinant of editing.

In addition to expected target C>T editing, we observed frequent ‘non-canonical’ (C>R) 

transversion editing. Transversion frequencies were influenced by local sequence features 
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surrounding target cytosines (Fig. 4 and Extended Fig. 7b) and cell line. Analysis of 

multiple cell lines revealed that transversion editing is not universal and cannot be easily 

predicted by association with Signature 13 (APOBEC-driven C>G mutations)22. Our data 

showed that C>R editing occurs most frequently at DCT motifs (ACT>TCT>GCT) and is 

strongly disfavored when the target C is flanked by another cytosine. This observation is 

similar but not identical to that reported by Arbab et al21, who reported RCT motifs as 

the most prone to transversion editing. This distinction may reflect different cell types used 

or enrichment of specific genomic sites from cancer-associated mutations in our dataset 

compared to rationally designed sequences used in their study. Recently, multiple groups 

have described new base editors (CGBEs) that enable efficient transversion editing9, 36–38. 

The ability to engineer transversions will significantly expand the mutation repertoire that 

can be engineered using BE. It remains unclear whether CGBE editors can overcome cell 

line-dependent effects that limit transversion editing.

Gene function is complex, reflected by the diversity of phenotypes, including therapeutic 

responses, that can be driven by distinct variant alleles39. Building defined genetic models 

of specific oncogenic alterations is critical to define their direct impact and to reveal 

new treatment strategies. Similarly, BE screens offer a new approach to interrogate gene 

variant function en masse40, 41. Unlike traditional CRISPR screens that provide ‘gene-

level’ information, BE screens reveal ‘amino acid level’ information and, as such, cannot 

always rely on the activity of multiple sgRNAs to define ‘scoring’ hits. We argue that 

incorporation of a BE sensor cassette in BE libraries will enhance the interpretation 

of BE screens by providing preliminary validation of sgRNA activity, flagging possible 

false positives, and improving the classification of phenotype-neutral mutational events. 

Indeed, our proof-of-concept fitness screen in non-transformed pancreatic epithelial cells 

identified multiple candidate oncogenic variants spread across a collection of genes. These 

included Trp53 mutations that drive increased proliferation, but also those that induce target 

mutations without driving increased cellular fitness (at least in vitro) or that potentially 

exhibit context-specific phenotypes. Future iterations of this approach could employ unique 

molecular identifiers embedded within sensor backbones or sgRNAs42 to account for 

clonal phenotypes or elucidate variant-specific transcriptional effects using single cell RNA 

sequencing43–45. Furthermore, the sensor framework should be compatible with emerging 

genome editing technologies like Prime Editing46, 47.

For those who wish to use individual validated BE sgRNAs or design alternate 

BE sensor libraries, we developed a web application, BE-SCAN (BE sensor-validated 

cancer-associated mutations; https://dowlab.shinyapps.io/BEscan/), that allows browsing 

and selection of guides by species, gene, target mutation, and/or base editor. Further, 

the expanded AMINEsearch-defined (non-sensor validated) collection of somatic cancer 

mutations is also available as an interactive portal within BE-SCAN. To enable the creation 

of sensor-based BE libraries beyond those described in this study, the full AMINEsearch 

pipeline is available (https://github.com/Kastenhuber/AMINEsearch) and can be run on 

any set of mutations and base editor characteristics. Beyond cancer-associated somatic 

mutations, we envision this approach could be employed to functionally annotate GWAS 

variants and mutations associated with heritable genetic disease. While we performed 

proliferation screens in immortalized cells, screening of genetic variants could just as 
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easily be conducted using any sortable cellular feature or biosensor. We expect that 

the compendium of experimentally vetted BE tools described here will accelerate the 

development of next generation allele-focused in vitro and in vivo cancer models.

MATERIALS AND METHODS

DATA AVAILABILITY

All source data (including p-values) are available in Supplementary Table 10. Processed 

screening data is available in Supplementary Tables 1, 4 & 5 and primary sequencing data is 

available at the Sequence Read Archive (SRA) under accession PRJNA746395.

CODE AVAILABILITY

Code for analysis and data visualization is available at: https://github.com/schmidt73/base-

editing-analysis, https://github.com/Kastenhuber/AMINEsearch, and https://github.com/

lukedow/BEsensor

Plasmids and sgRNA cloning

Base editor plasmids: The following lentiviral base editing plasmids were used in this 

manuscript: FNLS (Addgene, #110841), AncBE4max (this manuscript), FNLS-2X (F2X) 

(Addgene, #110840), FNLS-HF1 (HF1) (Addgene, #110866), FNLS-HiFi (HiFi) (Addgene, 

#136902), FNLS-NG (NG) (Addgene, #136900), FNLS-HiFi-NG (HiFi-NG) (Addgene, 

#136903), FNLS-VQR (VQR) (this manuscript), and xFNLS (Addgene, #110872). All new 

plasmids and libraries will be available Addgene.

CRISPR nuclease plasmids: The following CRISPR nuclease plasmids were used in this 

manuscript: lentiCas9-Blast (Addgene, #52962), Cas9-NG (Addgene, #117919), and Cas9-

Puro (Addgene, #110837).

Single guide RNA plasmids: The following sgRNA plasmids were used in this manuscript: 

LRT2B (Addgene, #110854) (ref. 1), pUSEPR (U6-sgRNA-EFS-Puro-P2A-TurboRFP)2, 

and pUSEBR (pUSE-Blast-P2A-TurboRFP) (this manuscript). We cloned Esp3I/BsmBI-

compatible annealed and phosphorylated oligos encoding sgRNAs into Esp3I/BsmBI-

linearized pLRT2B, pUSEPR, or pUSEBR using high concentration T4 DNA ligase (NEB). 

A 5’ G (to boost U6 transcriptional initiation) was added to sgRNAs that lacked it either by 

appending it to the 5’ or by substituting the first nucleotide in the 5’ position for a G. All 

sgRNA sequences used are listed in Supplementary Table 2.

Other plasmids: The GO (C>G) reporter was cloned by modifying the GO reporter 

system as described in ref.3. Briefly a custom GFP(ATC) gBlock cassette was inserted 

to EcoRI- and BsrgI-digested mUGISGO by standard InFusion assembly protocol. To insert 

GO3 sgRNA (C>G targeting guide), mU6-GO3-scaffold was amplified. Both inserts were 

digested with XhoI and Nsil and ligated using T4 DNA ligase.

Cell culture—HEK293T (ATCC CRL-3216), A549 (CCL-185), MDA-MB-231 (ATCC 

HTB-26), and KPT1 cells were cultured in DMEM supplemented with 10% fetal bovine 
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serum (FBS) and 100 IU/mL of penicillin/streptomycin. KP cells4 were a kind gift from 

Dr. Tyler Jacks (MIT). PC9 cells were a kind gift from Dr. Harold Varmus (Weill Cornell) 

and cultured in RPMI supplemented with 10% fetal bovine serum (FBS) and 100 IU/mL 

of penicillin/streptomycin. NIH3T3 cells (ATCC CRL-1658) were cultured in DMEM 

supplemented with 10% fetal calf serum (FCS) and 100 IU/mL of penicillin/streptomycin. 

Pancreatic ductal epithelial cells (PDECs)5 were a kind gift from Dr. Dafna Bar-Sagi 

(New York University) and cultured in collagen-coated plates (100 μg/mL PureCol 5005, 

Advanced Biomatrix) with Advanced DMEM/F12 supplemented with 10% FBS (Gibco), 

100 IU/mL of penicillin/streptomycin (Gibco), 100 mM Glutamax (Gibco), ITS Supplement 

(Sigma), 0.1 mg/mL soy trypsin-inhibitor (Gibco), Bovine Pituitary Extract (Gibco), 5 nM 

T3 (Sigma), 100 μg/mL Cholera toxin (Sigma), 4 μg/mL Dexamethasone (Sigma), and 10 

ng/mL human EGF (Preprotech).

Virus production—Lentiviruses were produced by co-transfection of HEK293T cells with 

the relevant lentiviral transfer vector and packaging vectors psPax2 (Addgene, #12260) 

and pMD2.G (Addgene, #12259) using Lipofectamine 2000 (Invitrogen). Viral supernatants 

were collected at 48 and 72 hours post transfection and stored at −80°C.

Drug treatments—Nutlin-3 (Selleck Chemicals, S1061) was dissolved in DMSO at a 

stock concentration of 10 mM and used at a final concentration of 10 μM.

Flow cytometric analyses—GO validation experiments were measured in either a 

Thermo Fisher 2018 Attune NxT flow cytometer or a Guava Easycyte (Millipore). 

Fluorescence assisted cell sorting was performed in either BD FACS Aria II or Sony MA900 

cell sorters.

Protein analysis—231’s, PC9’s, and 3T3s screen pellets were resuspended with 500ul 

RIPA buffer then centrifuged at 4°C at 13,000rpm to collect protein lysates. Antibodies 

used for western blot analyses were: Cas9 (CellSignaling, #19526S) and Actin (Abcam, 

#ab49900).

Animal work

Animals: All mouse experiments were approved by the Memorial Sloan-Kettering Cancer 

Center (MSKCC) Internal Animal Care and Use Committee under MSKCC IACUC 

protocol 11–06-018. Mice were maintained under specific pathogen-free conditions, and 

food and water were provided ad libitum. Foxn1nu (Swiss nude) mice were purchased from 

Envigo. All mice used were 6 to 8 week-old females.

Pancreatic orthotopic transplants: For transplantation of PDEC cells into the pancreas of 

adult mice, animals were anesthetized and a survival surgery was performed to expose the 

pancreas. Independent of genotype, a total of 1×105 PDEC cells resuspended in 25 μL of 

growth factor reduced Matrigel (354230; Corning) diluted 1:1 with cold OptiMEM (Gibco) 

were injected into the tail region of the pancreas of each mouse. Mice were monitored for 

tumor development over time by abdominal palpation and were euthanized upon developing 
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overt disease and becoming moribund following disease monitoring guidelines of IACUC 

and the MSKCC Animal Facility.

Genomic DNA isolation

Isolation of gDNA from cells: Genomic DNA was extracted from cells using the DNeasy 

Blood and Tissue Kit (Qiagen) following manufacturer’s instructions. Cell pellets were 

processed in parallel and resulting gDNA was resuspended in 100–200 μL of 10 mM Tris-

Cl; 0.5 mM EDTA; pH 9.0. Samples from corresponding replicates from MBES and HBES 

screens were pooled at the gDNA level, measured using a NanoDrop 2000 (ThermoFisher), 

and normalized before performing sequencing deconvolution.

Isolation of gDNA from tumor tissues: Genomic DNA was extracted from tissues using 

the DNeasy Blood and Tissue Kit (Qiagen) following manufacturer’s instructions. Multiple 

tumor fragments or nodules were microdissected and either processed immediately by finely 

mincing the tissue and incubating overnight in a lysis buffer containing proteinase K and 

following the manufacturer protocol or snap-frozen in liquid nitrogen and stored at −80°C 

until day of processing. Resulting gDNA was resuspended in 100–200 μL of 10 mM Tris-Cl; 

0.5 mM EDTA; pH 9.0, measured using a NanoDrop 2000 (ThermoFisher), and normalized 

before assessing genome editing at the relevant locus of interest using deep sequencing.

AMINEsearch bioinformatic pipeline—We developed a genome editing design 

tool, AMINEsearch (Annotated Mutation-Informed Nucleotide Editing sgRNA search), 

implemented in R, to comprehensively build libraries of annotated gene editing reagents 

to model a user-defined set of mutations. This algorithm can be applied to any sequencing 

dataset that uses standard maf format files. For further description of the algorithm and 

analysis, including the process of library design, Off-target analysis, and conservation of 

variant protein sequence between human and mouse, please see Supplementary Note 1.

HBES and MBES library design: MSK-IMPACT sequencing data (n=21694 tumors) was 

used to design sgRNAs and sensors compatible with commonly used BE configurations, 

incorporating Cas variants (SpCas9, Cas9-NG, xCas9, and ScCas9) combined within 

the FNLS or F2X (expanded window) BE vector variants (Supplementary Table 2a–b). 

IMPACT-derived outputs of AMINEsearch (Supplementary Table 2c,e) were used to 

compile unique sensor constructs to construct HBES (Supplementary Table 2d) and MBES 

libraries (Supplementary Table 2f) that target the human and mouse genome, respectively. 

These libraries served as the basis for experimental validation and screening of base editing 

sensors, which are available under the “Sensor validated” tab of the BE-SCAN web portal 

(https://dowlab.shinyapps.io/BEscan/).

AMINEsearch v2—Modifications to the algorithm were made to increase functionality 

of the AMINEsearch algorithm. Specifically, modifications were made to accommodate 

BE variants that edit outside the region complementary to the sgRNA (CDA-BE4). 

As the demands of running larger dataset grew, we incorporated the capacity to run 

parallel execution on multiple cores or processors. The option to reverse the effects of 

mutations, rather than model them, given a list of pathogenic mutations as input, was 
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added. A known issue was addressed to handle multiple genotypes that converge on 

the same protein sequence substitution as independent mutations. Version 2 includes the 

ability to track expected variant protein sequence when modeling human mutations in 

the mouse genome (See Supplementary Note 1). Versions 1 and 2 of the algorithm can 

be accessed at https://github.com/Kastenhuber/AMINEsearch/tree/AMINEsearch_v1.0 and 

https://github.com/Kastenhuber/AMINEsearch/tree/AMINEsearch_v2.0, respectively and 

are generalizable to analyze new mutation datasets and/or new base editor configurations.

Exploratory set of BE sensor predictions: We applied the algorithm to the recently 

updated mutation dataset from the MSK-IMPACT platform6, containing 341,736 total 

somatic cancer SNVs derived from targeted sequencing of 47,550 tumor samples 

(Supplementary Fig. 17). This targeted sequencing panel captures the coding region of up to 

580 genes. Candidates for base editing included 5542 unique SNVs, classified as missense, 

nonsense, splice site, or nonstop mutations, which were observed greater than six or more 

times (>0.01% frequency). We considered all combinations of 13 Cas9 orthologs and 11 

deaminases, yielding 143 possible base editor configurations (Supplementary Table 8). This 

includes configurations that have been extensively characterized as well as combinations of 

Cas9 orthologs and deaminases that have not yet been assembled and used experimentally. 

Collectively, this exploratory set of sgRNA predictions provides a broad set of options to 

generate mutations in human and mouse (Supplementary Table 8). A searchable, filterable 

interface for the exploratory predicted set of sgRNAs are available under the “Sensor Design 

- Human” and “Sensor Design - Mouse” tabs in the shiny app web portal alongside sensor 

validated sgRNAs in BE-SCAN (https://dowlab.shinyapps.io/BEscan/).

Design and construction of mouse and human base editing sensor libraries

Base editing sensor module design: Each sensor module is composed of the following 

parts: 1) a 22nt long 5’ adapter/priming site with a Esp3I restriction site; 2) a 20nt long 5’ 

G-containing sgRNA; 3) a 93nt long improved SpCas9 sgRNA scaffold partially based on7; 

4) an 11nt long sequence corresponding to the 5’ flanking sequence of the endogenous target 

site; 5) the 23nt cognate target site; 6) a 7nt long sequence corresponding to the 3’ flanking 

sequence of the endogenous target site; 7) and a 28nt long 3’ adapter/priming site with a 

EcoRI restriction site. Thus, oligos encoding individual sensor modules are 204nt long.

Cloning of mouse and human base editing sensor libraries: Due to longer-than-

average oligo length, early attempts at design and construction of sensor libraries showed 

unacceptable synthesis and assembly error rates where, in some instances, over half of 

the sensors before or after assembly into the backbone were found to harbor insertions, 

deletions, single nucleotide mutations, and incorrect chimeric sgRNA-target site molecules 

(data not shown). Through extensive trial and error, we found that assembling sensor 

libraries using Agilent’s High Fidelity oligo synthesis platform significantly mitigated these 

issues.

All PAM sensor (APS) (1,152 oligos white-listed), MBES (4,686 oligos), and HBES (5,855 

oligos) libraries were cloned into the pLRT2B backbone1 as follows (all library oligos are in 

Supplementary Table 2). Briefly, each oligo pool was amplified using forward and reverse 
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primers that append Esp3I and EcoRI sites to the 5’ and 3’ ends of the sensor insert, 

purified using the QIAquick PCR Purification Kit (Qiagen), and ligated into Esp3I-digested 

and dephosphorylated pLRT2B vector using high-concentration T4 DNA ligase (NEB) (all 

cloning and sequencing oligos are in Supplementary Table 9). To ensure maximum library 

recovery, we set up n=24 parallel PCR reactions per pool. A minimum of 2.4 ug of ligated 

pLRT2B plasmid DNA per pool (corresponding to n=8 ligations) was electroporated into 

Endura electrocompetent cells (Lucigen), recovered for one hour at 37C, plated across four 

15cm LB-Carbenicillin plates (Teknova), and incubated at 37°C for 16 hours. The total 

number of bacterial colonies per pool was quantified using serial dilution plates to ensure 

a library representation of >10,000X. The next morning, bacterial colonies were scraped 

and briefly expanded for 4 hours at 37°C in 500mL of LB-Carbenicillin. Plasmid DNA 

was isolated using the Plasmid Plus Maxi Kit (Qiagen). To assess sensor distribution and 

fidelity of assembly per pool, we amplified the sensor region using primers that append 

Illumina sequencing adapters on the 5’ and 3’ ends of the amplicon, as well as a random 

nucleotide stagger and unique demultiplexing barcode on the 5’ end (Supplementary Table 

9). Library amplicons were size-selected on a 2.5% agarose gel, purified using the QIAquick 

Gel Extraction Kit (Qiagen), and sequenced on an Illumina MiSeq instrument.

Analysis of base editing activity using GO reporter system: Base editor expressing cells 

were plated at a density of 5,000 cells/well in 12 well plates and transduced 24 hours 

later with a defined amount of GO reporter to achieve 20–50% transduction efficiency. 

Virus-containing media was replaced with complete media 24 hours post-transduction and 

cells were harvested for flow cytometry at 96 hours post-transduction. We used an Attune 

NxT flow cytometer (Thermo Fisher). Cells were trypsinized with a 100 μl of 0.25% 

Trypsin+EDTA and resuspended in 300 μl of complete medium in a 96 well U bottom plate. 

Data was acquired at a flow rate of 500 μl/min and at least 10,000 events from the single cell 

population gating were recorded.

Screening and deconvolution of mouse and human base editing sensor 
libraries

Screening of mouse and human base editing sensor libraries: We first screened the APS 

library in MDA-MB-231 cells expressing one of nine different base editors, as well as 

either the Cas9 or Cas9-NG nucleases as cutting controls. APS screens were performed 

essentially as described below in detail. We then screened a total of five mouse and 

human base editor-expressing cell lines with either MBES or HBES libraries using the 

following approach. Human cell lines (MDA-MD-231 and PC9) were screened with MBES 

to minimize fitness differences between sensor modules due to endogenous targeting of 

genes that suppress cellular proliferation. Following the same rationale, mouse cell lines 

(KPT1, NIH3T3, and PDECs) were screened with HBES. Each screen (including the 

APS set) was performed as follows. To ensure that most cells harbor a single sgRNA 

integration event, we determined the volume of viral supernatant that would achieve an 

MOI between ~0.3–0.5 upon standard transduction of a population of base editor-expressing 

cells. All screens were performed in technical duplicate and each step of the screen – from 

infection to sequencing – was optimized to achieve a minimum representation of 1000X. 

For instance, to ensure a representation of >1000X for HBES libraries at the transduction 
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step, we spinfected a total of 24 million cells across two 12-well plates per technical 

replicate using the volume of viral supernatant that would achieve a 30% infection rate 

(~7.2 million transduced cells per technical replicate). 24 hours after infection, cells from 

each corresponding replicate were pooled into a minimum of 2 × 150mm tissue culture 

dishes (Corning) and selected with Blasticidin S (Gibco) at an empirically-determined 

final concentration ranging from 5 μg/mL to 30 μg/mL depending on the cell line. Cells 

were cultured and kept under Blasticidin selection for seven days post-transduction. When 

needed, cells were trypsinized and re-plated at a minimum of 6 million cells per replicate 

to ensure a minimum representation of 1000X. For PDEC screens, cell representation per 

replicate was maintained at >600X at all points. Subsequently, at least 6 million cells were 

pelleted and stored at −20°C. Genomic DNA (gDNA) from cells was isolated using the 

DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s guidelines. Genomic 

DNA was harvested from all timepoints and both sensor BE activity and sgRNA abundance 

were assessed via NGS.

Deconvolution of mouse and human base editing sensor screens: We assumed that each 

cell contains approximately 6.6 pg of gDNA. Therefore, screen deconvolution at 1000X 

required sampling ~6 million × 6.6 pg of gDNA, or ~39.6 ug. We employed a modified 

2-step PCR version of the protocol published by Doench et al8 adapted to our unique 

library design. Briefly, we performed an initial PCR, whereby the integrated sensor cassettes 

were amplified from gDNA, followed by a second PCR to append Illumina sequencing 

adapters on the 5’ and 3’ ends of the amplicon, as well as a random hexamer and unique 

demultiplexing barcode on the 5’ end. Each “PCR1” reaction contained either 25 μL of Q5 

High-Fidelity 2X Master Mix (NEB), 2.5 μL of Sensor_v6_Fwd Primer (10 μM), 2.5 μL of 

Sensor_v6_Rev Primer (10 μM), and 5 μg of gDNA in 20 μL of water (for a total volume 

of 50 μL per reaction) or 10μL of Herculase II 5X Master Mix (Agilent), 0.5 uL dNTPs, 

2.5 μL of Sensor_v6_Fwd Primer (10 μM), 2.5 μL of Sensor_v6_Rev Primer (10 μM), 1 

uL of Herculase II polymerase, and 5 μg of gDNA in 33.5 μL of water (for a total volume 

of 50 μL per reaction). The number of PCR1 reactions was scaled accordingly; therefore, 

we performed eight PCR1 reactions per technical replicate and time point for all screens. 

PCR1 amplicons were purified using the QIAquick PCR Purification Kit (Qiagen) and used 

as template for “PCR2” reactions. Each PCR2 reaction contained either 25 μL of NEBNext 

2X Master Mix (NEB), 2.5 μL of a uniquely barcoded PCR2_Fwd Primer (10 μM), 2.5 μL 

of a common PCR2_Rev Primer (10 μM), and 300 ng of PCR1 product in 20 μL of water 

(for a total volume of 50 μL per reaction). We performed two PCR2 reactions per PCR1 

product. Library amplicons were size-selected either on a 2.5% agarose gel and purified 

using the QIAquick Gel Extraction Kit (Qiagen) or using AMPure XP beads (Beckman 

Coulter) followed by normalization, pooling, and sequencing on an Illumina NextSeq 500 

instrument (150 nt paired-end reads). All primer sequences are available in Supplementary 

Table 6. PCR program for PCR1 using Q5 High-Fidelity 2X Master Mix (NEB) was: 1) 

98°C × 30s; 2) 98°C × 10s; 3) 55°C × 30s; 4) 72°C × 30s; 5) Go to step 2 × 24 cycles; 

6) 72°C × 2 min; 7) 4°C forever. When using Herculase II, denaturation steps were done 

at 95°C and the initial denaturation lasted for 2 minutes. PCR program for PCR2 using 

NEBNext 2X Master Mix (NEB) was: 1) 98°C × 30s; 2) 98°C × 10s; 3) 65°C × 30s; 4) 72°C 

× 30s; 5) Go to step 2 × 17 cycles; 6) 72°C × 2 min; 7) 4°C forever.
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Analysis of mouse and human base editing sensor screening data: To quantify base 

editing outcomes, raw paired-end FASTQ reads were paired using Pandaseq and merged 

FASTQ files were used as input for downstream analysis. We first removed reads with 

mutated sgRNAs or scaffolds, or reads with non-matching sgRNA and target sequences (due 

to templates switching during PCR amplification). Next, the 5’ scaffold and linker were used 

to associate each sgRNA with the read; sgRNAs that did not match the whitelist were also 

discarded. All remaining reads were aligned to their cognate target found in the whitelist and 

aligned reads with no indels were considered for base editing analysis. Sensors that deviated 

from the expected length were flagged as indels and their actual frequency calculated as a 

specific insertion or deletion. Editing events were classified over all cytosines within a −5 to 

20 position window of the target, where 1 is defined as the first position of the protospacer. 

Target cytosine editing (tCTN, tCGN, tCAN) quantified the frequency of editing at the target 

cytosine regardless of editing at other adjacent cytosines. Target cytosine editing without 

collateral editing (tCT) was measured as specific C>T editing without associated mutations 

at adjacent sites. Purity values were calculated as the ratio of tCT/tCTN. Custom code to 

perform the BE analysis is available at: https://github.com/schmidt73/base-editing-analysis. 

All data for APS, HBES, and MBES screens can be found in Supplementary Tables 1, 4, and 

5, respectively.

Comparison of base editing sensor screening outcomes with BE-Hive: To consider the 

performance of the BE-Hive base-editing outcome prediction model in relation to our data, 

we pulled the fully trained network from the Github repository linked by Arbab et. al9. This 

model is split into two parts: a component that predicts the probability of any edit occurring 

and another that predicts the probability of a specific base editing outcome, conditioned on 

any editing occurring. These are referred to as the editing efficiency and bystander model, 

respectively. Per instructions, we fed in our input spacer and its 50-mer context to both 

models and computed the posterior probability of each observed outcome using the chain 

rule. One caveat is that the editing efficiency model directly predicts an un-transformed 

score, not a probability. To convert this to a probability, we sigmoid transformed it into the 

unit interval [0, 1]. Following the recommendations provided in their README file, we first 

linearly re-scaled the score using the mean and standard deviation of reads prior to sigmoid 

transforming it into a probability to account for variance in base editor expression by 

experimental condition and cell-type. We note that this is a monotonic operation; therefore, 

it should not affect any SpearmanR correlations used to analyze performance.

BE-Hive does not consider PAM sequence as a feature in their prediction mode. Given that 

the PAM is an important determinant of the activity of standard base editors, we considered 

two different sets of sgRNAs in our comparisons. First, we considered all sgRNAs used in 

our screen. Second, we considered only the sgRNAs with canonical NGG PAMs.

Phenotypic screens using base editing sensor libraries: Stable base editor-expressing 

KrasG12D/+; Trp53WT/WT pancreatic ductal epithelial cells (PDECs)5 were generated by 

lentiviral transduction with FNLS (Addgene, #110841) and validated using GO3 (Addgene, 

#136896). Phenotypic MBES screens in FNLS-PDECs were set up essentially as described 

above for HBES/MBES sensor screens with a few modifications. MBES FNLS-PDEC 
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screens were performed across six independent transduction replicates in parallel. Each 

replicate was maintained at a minimum 500X representation at every step of the screen 

by replating 3 million cells per time point and pelleting the rest of the cells for gDNA 

isolation and screen deconvolution. Screens ran for approximately 36 cumulative population 

doublings across 34 days, after which we isolated gDNA and proceeded to perform screen 

deconvolution essentially as described above for MBES/HBES screens.

Proliferation screen analysis: Paired-end reads were joined using Pandaseq. Merged reads 

were processed as described for BE analysis above. Total read counts for each replicate 

were used as input for MAGeCK10, 11 analysis. Any sgRNA with read counts < 100 were 

removed from analysis. Comparisons of T0 (day 5 post-transduction) versus T1 (day 14) 

and T2 (day 30 post-transduction) for each replicate were performed using MAGeCK 

to determine log fold changes. Base editing outcomes at the sensor target site were 

concurrently measured using the sensor screen pipeline described above.

Validation experiments: For validation of individual targets, sgRNAs were cloned into 

the lentiviral guide expression vector LRT2B (Addgene, #110854) and lentiviral particles 

were produced as described above. Base editor expressing cells were plated at a density of 

25,000 cells/well in 12 well plates and were infected 24-hours later with enough virus to 

achieve 50% transduction efficiency. Virus-containing media was replaced with complete 

media 24 hours post-transduction and cells were plated into selection media containing 

3 μg/mL Blasticidin S (Gibco). Experimental cells remained in selection media until the 

final collection time point at 7 days post-transduction. Final LRT2B infection efficiency 

was determined by measuring the levels of tdTomato in 10% of the cells remaining at 

day 7 using flow cytometry. Genomic DNA was isolated using the protocol found on 

dowlab.org/protocols, and targets were amplified using a 100 μl reaction following the 

standard NEB Taq 2x MM protocol with primers found in Supplementary Table 9. Each 

PCR was performed 3X/target and pooled. Amplicons were confirmed on a 2% agarose 

gel and PCR purified using QIAGEN QIAquick PCR purification kit. DNA concentration 

was measured using a Nanodrop and samples were normalized to 20 ng/μl and sequenced 

using EZ-amplicon sequencing (MiSeq; 2 × 250bp) by GENEWIZ, Inc (South Plainfield, 

NJ, USA).

Analysis of deep sequencing data from validation experiments: CRISPResso212 

was used to process sequencing reads from the validation experiments and the 

corresponding sensor sequencing results for each individual target. The data was 

analyzed on default CRISPResso2 base editor mode with the exception to the 

following parameters for endogenous locus results: -quantification_window_center −15 

and sensor results: --quantification_window_size 10 --quantification_window_size 10 

--base_editor_output --quantification_window_center −15 --exclude_bp_from_right 1 --

plot_window_size 18. To calculate target C>T editing and non-canonical editing we used 

the “Alleles_frequency_table_around_sgRNA.txt” file to get the read counts for a specific 

allele.
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Statistical analyses and Data Visualization

Analysis and data visualization in R: Heatmaps, dotplots, and correlation analyses 

(including correlation graphs) were performed in R version 3.6.3 and plots were produced 

using the ggplot2 and ggpubr package. Statistical considerations are reported in each figure 

legend.

Analysis and data visualization in GraphPad PRISM: Additional bar plots, survival 

curves, and associated statistical analyses were generated using Prism 8 (GraphPad) and are 

indicated in figure legends. Error bars represent standard deviation, unless otherwise noted. 

We used Student’s t-test (unpaired, two-tailed) to assess significance between experimental 

and control groups, and to calculate P values. P<0.05 was considered statistically significant. 

Schematics were created using BioRender.com.

Source data availability: All source data (including p-values) are available in 

Supplementary Table 10. Processed screening data is available in Supplementary Table 7 

and primary data has been deposited in the SRA repository under accession PRJNA746395.
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Extended Data

Extended Data Fig. 1. BE efficiency for mouse sgRNAs in the APS library.
C>T editing efficiency (%) at each APS library mouse target site across base editor 

enzymes, as indicated. Cas9 and Cas9-NG serve as nuclease controls. Rows denote sgRNAs; 

columns denote PAM subclass.
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Extended Data Fig. 2. Cancer somatic mutation-derived base editing sensor libraries.
(a) Number of unique recurrent SNVs per gene, ordered by mutation frequency of gene. 

Bars are split to indicate proportion of SNVs targeted (red) or not (black) in the HBES 

library. (b) Focality of mutations by cancer gene classification. Number of cumulative 

mutations observed in recurrent sites with respect to the number of unique SNVs observed 

per gene. Oncogenes are indicated by red dots and tumor suppressor genes are indicated 

by blue dots. Mutations in oncogenes tend to be more focal on distinct hotspot sites, with 

greater number of recurrent mutations per unique SNV allele (11.1 vs 6.2 mutations per 
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unique recurrent SNV, p=0.011, two-tailed t-test). (c) Venn diagram of sgRNAs in HBES 

library compatible with each base editor configuration. (d) Venn diagram of sgRNAs in 

MBES library compatible with each base editor configuration. (e) SNV-level annotation with 

each color bar sorted in order of observed mutation frequency (top). NV characteristics are 

indicated, including oncogenic function (OncoKB assertion of oncogenic/Likely oncogenic/

VUS) and therapeutic implications (OncoKB highest level of evidence for drug sensitivity or 

resistance) {Chakravarty, 2017 #76;Chakravarty, 2021 #105}
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Extended Data Fig. 3. Off-target editing predictions for base editing sensor libraries.
(a) For sgRNAs in HBES library, distribution of potential off-target (OT) sites identified by 

PAM specificity and extent of mismatch. (b) Number of sgRNAs in HBES library targeting 

the human genome with 0 (white) and 1 or more (black) predicted OT sites depending 

on SPCas9 or Cas9-NG PAM specificity. A greater number of sgRNAs have no predicted 

OT sites used in conjunction with SpCas9 than with Cas9-NG. p<2.2e-16, 2-sided Fisher’s 

exact test. (c) For sgRNAs in HBES library, distribution of potential OT sites identified by 

PAM specificity and extent of mismatch. (d) Number of sgRNAs in MBES targeting mouse 

genome with 0 (white) and 1 or more (black) predicted OT sites depending on SPCas9 or 

Cas9-NG PAM specificity. A greater number of sgRNAs have no predicted OT sites used 

in conjunction with SpCas9 than with Cas9-NG. p<2.2e-16, 2-sided Fisher’s exact test. (e) 

Distribution of not-target editable bases (C for CBE) within the editing window for HBES 

library targeting human genome. (f) Distribution of not-target editable bases (C for CBE) 

within the editing window for MBES library targeting mouse genome.

Extended Data Fig. 4. Comparison of editing range (editing window) across FNLS, F2X, and 
FNLS-NG base editors as a function of dinucleotide context.
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Plots represent the mean normalized BE editing efficiency for each base editor (FNLS = 

yellow, F2X = blue, FNLS-NG = grey) across 5 cell lines (rows) and 4 dinucleotide contexts 

(columns). Area shaded in grey denotes maximum editing range in each condition where 

normalized BE is above 30% (dotted line).

Extended Data Fig. 5. Correlation of sgRNA efficiency ranking.
Plots represent correlation of individual sgRNA efficiency rankings between MDA-MB-231 

and NIH3T3, KPT1, and PDEC cells, as indicated. To reduce noise created by low efficiency 

sgRNAs, only HBES sgRNAs that had >1% activity in the sensor were included. Pearson 

correlation coefficients are shown; for all comparisons, p<2.22 e-16.
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Extended Data Fig. 6. Indel and BE correlation across cell lines.
Correlation of indel and C>T editing frequencies for all sgRNAs in the HBES library across 

5 screen cell lines. Pearson correlation coefficients were calculated using ggpubr(0.4.0) 

package in R, the p value represents the significance of two-sided t-test.
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Extended Data Fig. 7. Non-canonical cytosine editing identified by BE Sensor
(a) Plots of C>T and C>G editing of sensor constructs in MDA-MB-231 and PC9 cells 

as indicated. Dotted line indicated 1:1 ratio of C>T/C>G editing for a given target. R 

represent Spearman correlation. (b) Ratio of C>G/C>T editing in FNLS-MDA-MB-231 

cells transduced with the HBES library classified by dinucleotide context (fill) and 

trinucleotide context (column). Data includes all base editors (FNLS, F2X and FNLS-NG) 

and is filtered for sgRNAs that show more than 5% C>T editing in the sensor assay. 

Boxplots show the median and interquartile range (IQR) and whiskers represent 1.5*IQR. 
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Outliers are shown as individual points. ns indicate p>0.05; p values were determined 

with two-sided Wilcoxon signed rank test. Complete list of all comparisons is available in 

Supplementary Table 10g. (c) Schematic of (C>G) reporter developed by modifying the GO 

(C>T) reporter.

Extended Data Fig. 8. In vivo validation of cancer-associated TP53 missense mutations using BE.
(a) Survival analysis of mice transplanted with F2X-expressing PDECs transduced with 

specific Trp53-targeting base editing sgRNAs. N=5 mice per sgRNA per mutation. (b) 
Frequency of target C>T editing in tumors from transplanted mice. Each individual 

point represents a single isolated tumor (n=3+ per sgRNA) Target C>T editing was 

measured by next generation sequencing of amplified target loci and data was analyzed 
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using CRISPResso2. Data are presented as +/− SD. (c) In vivo validation of M237I and 

C135Y mutations via orthotopic transplantation of FNLS-expressing PDECs transduced 

with sgRNAs designed to introduce the corresponding mutations in the mouse Trp53 gene 

(M234I and C132Y, respectively). N=5 mice per mutation. (d) Representative macroscopic 

(left) and microscopic (right; H&E) images of pancreatic tumors isolated from mice 

transplanted with FNLS-expressing PDEC cells transduced with specific Trp53-targeting 

base editing sgRNAs. (e) Representative Sanger sequencing traces from tumors in (d). Red 

arrows denote target cytosines that, when mutated to thymine, give rise to the corresponding 

amino acid changes in the p53 protein. Nucleotide triplets on the right denote the precise 

mutational events that give rise to mutant p53 proteins. * p ≤ 0.05, ** p ≤ 0.01. P-values 

were calculated using the log-rank test.
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Extended Data Fig. 9. Classification of screen hits by OncoKB.
(a) sgRNAs from the MBES proliferation screen were binned by categories: i) all sgRNAs; 

ii) sgRNAs depleted by <1.5 LFC and exhibiting 20% editing at the sensor; iii) sgRNAs 

enriched by >1.5 LFC; or iv) sgRNAs enriched >1.5 LFC and exhibiting 20% editing 

at the sensor followed by calculation of the percentage of each OncoKB classification. 

P-values indicate two-sided Fisher’s exact test comparison of the frequency of known or 

likely oncogenic mutations in each subset. (b) Bubble plot comparing sgRNA log fold 

changes with mean frequency of C>T editing in the sensor target site between days 5 and 
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30 post-transduction. Bubbles were colored by their OncoKB classification. Size denotes 

MaGeCK score (see Supplementary Table 6d).

Extended Data Fig. 10. Expanded base editing predictions.
(a) We used the MSK-IMPACT clinical tumor sequencing dataset and the characteristics of 

commonly used base editors to inform the design of base editing sensor libraries used in 

the experiments in Fig. 3–6. These results are available in the Shiny web portal (https://

dowlab.shinyapps.io/BEscan/). Using updated and expanded versions of MSK-IMPACT 
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sequencing data, base editing configurations, and AMINEsearch v2, we generated an 

exploratory set of sgRNA and sensor predictions, which are also available in the Shiny web 

portal. The more recent version of MSK-IMPACT contains increased numbers of (b) tumors 

sequenced, (c) total SNVs observed, and (d) candidate unique recurrent SNVs. These factors 

in the input led to to an increase in the exploratory set (v2) compared to the HBES and 

MBES libraries (v1) in respect to (e) Cas variants (determining PAM recognition) and base 

editor variants (determining editing window), collectively making base editor configurations 

with distinct properties (f). These factors in the input led to to an increase in the exploratory 

set (v2) compared to the HBES and MBES libraries (v1) in respect to (g) number of sgRNAs 

designed and (h) unique SNVs targeted by one or more sgRNAs in the database.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A high-throughput sensor assay to characterize base editing outcomes at thousands of 
target sites
(a) Schematic of the sensor assay. A sgRNA is paired with its cognate target site in cis such 

that editing outcomes can be quantitatively assessed in a massively parallel fashion using 

next-generation sequencing. Here, we illustrate the design of an All PAM sensor (APS) 

library that queries 18 target sites with all 64 possible PAM combinations upon lentiviral 

integration into cells expressing a range of base editors and cultured for 7 days followed by 

genomic DNA isolation and screen deconvolution via next generation sequencing.

Sánchez-Rivera et al. Page 35

Nat Biotechnol. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(b) Schematic of the GO base editing reporter (top) used to confirm the activity of each 

of the 9 base editors used in APS screens by measuring C>T-dependent induction of GFP 

expression in mScarlet infected cells (bottom).

(c) C>T editing efficiency at each AP library human target site across the full range of 

base editors (n=9). Cas9 and Cas9-NG serve as nuclease controls. Rows denote target sites. 

Columns denote PAM subclass. See also Extended Fig. 1 and Supplementary Fig. 2 and 3.

(d) Head-to-head comparison of C>T editing efficiency at different PAMs by ‘standard’ 

cytosine base editors (CBEs) (top row) and PAM flexible CBEs (bottom row). * p≤0.01. 

p-values were determined with two-sided Wilcoxon signed rank test. Boxplots show the 

median and interquartile range (IQR) and whiskers represent 1.5*IQR.
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Figure 2. AMINEsearch: a versatile computational pipeline to identify cancer-associated 
mutations compatible with base editing.
(a) AMINEsearch pipeline. Provided a maf mutation file, Cas protein properties (e.g. PAM 

usage), and base editor editing ranges, AMINEsearch produces libraries of human and 

mouse sgRNAs and sensor constructs designed to engineer specific mutations using BE.

(b) Deploying AMINEsearch to analyze tumor mutation data from cancer patients profiled 

with the MSK-IMPACT clinical DNA sequencing platform. Human and mouse base editing 

sensor libraries (abbreviated as HBES and MBES) were developed to systematically 

interrogate thousands of cancer-associated mutations using BE.

Sánchez-Rivera et al. Page 37

Nat Biotechnol. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(c) Mutation signatures of recurrent single nucleotide variants (SNVs) observed in the 

MSK-IMPACT dataset relative to their frequency. Note that this dataset is enriched for C•G 

to T•A mutations, which can be modeled using cytosine base editing.

(d) Distribution of missense, nonsense, and splice site variants among recurrent mutations in 

the MSK-IMPACT dataset, variants targeted in the HBES library, and variants targeted in the 

MBES library. Splice site mutations were less likely to be included in MBES libraries due to 

lower sequence conservation in noncoding regions (Fig. 2d) (p=0.0009, two-tailed Fisher’s 

exact test).

(e) Distribution observed frequency of cancer-associated mutations in the MSK-IMPACT 

dataset. Mutations were classified as targeted (red circle, compatible with BE) and not 

targeted (black square, incompatible with BE). Well established oncogene and tumor 

suppressor gene mutant alleles are highlighted in red.

(f) Gene-level annotation of cancer-associated function of recurrently mutated genes in the 

MSK-IMPACT dataset, genes targeted in the HBES library, and genes targeted in the MBES 

library.

(g) Pie chart denoting OncoKB annotations of variants targeted in the HBES library, split by 

level of evidence (oncogenic, likely/predicted oncogenic, or unknown significance).

(h) Predicted coverage (fraction of sites with at least one predicted sgRNA) in HBES and 

MBES libraries relative to the base editor used.

(i) Predicted specificity (fraction of sgRNAs with no expected off-target editing of bystander 

nucleotides within the locus) in HBES and MBES libraries relative to the base editor used.
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Figure 3. Massively parallel assessment of base editing outcomes across thousands of cell line/
editor/sgRNA combinations using the sensor assay.
(a) Top: Percentage of all C>T editing (y-axis) across Cas9, FNLS, F2X, and FNLS-NG at 

every cytosine among the −5 to 20 positions of the target site (x-axis). Colored dots specify 

dinucleotide contexts. Bottom: Percentage of target C>T editing (y-axis) across Cas9, FNLS, 

F2X, and FNLS-NG relative to PAM class (x-axis). Box plots represent median (line), 

25th, and 75th percentiles as upper and lower bounds, largest and smallest value within 1.5 

times interquartile range (whiskers), and outliers (dots). Colored dots specify dinucleotide 

contexts. See also Supplementary Fig. 6.
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(b) Heatmap of base editing efficiency across MDA-MD-231, NIH3T3, PC9, PDEC, and 

KPT1 cell lines (columns) at every cytosine among the −5 to 20 positions of the target site 

classified by cytosine base editor and PAM class (rows). See also Supplementary Fig. 6.

(c) Correlation of individual sgRNA efficiency across screen cell lines (PC9, NIH3T3, 

PDEC, and KPT1) compared to MDA-MB-231. Only HBES sgRNAs that had >1% activity 

in the sensor were ranked. See also Extended Fig. 5.
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Figure 4. Validation of canonical and non-canonical base editing activity predicted by the sensor 
assay.
(a) Experimental validation of C>T editing activity observed in the sensor (blue) when 

targeting endogenous (yellow) loci in FNLS-PC9 cells. Each dot corresponds to a single 

replicate (n=2 for sensor screening data; n=3 for endogenous validation). Data are 

presented as mean values +/− SEM. Base editing rates (efficiencies) across endogenous 

loci were determined via next-generation sequencing of edited loci and analyzed using 

CRISPResso248. See also Extended Fig. 7 and Supplementary Fig. 9. No direct statistical 

Sánchez-Rivera et al. Page 41

Nat Biotechnol. Author manuscript; available in PMC 2022 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparisons were performed between sensor and endogenous C>T editing data because 

sensor screens were performed in duplicate.

(b) Top: schematic of the human TP53-R213 locus. Horizontal bars denote sgRNAs, and 

numbers to the right denote sgRNA identifiers (based on HBES whitelists). Target cytosine 

is labeled in blue. Bottom: heatmap comparing C>T editing efficiency in an allelic series 

of TP53-R213 sgRNAs between the sensor results, F2X-MDA-MB-231 cells targeting the 

endogenous locus, and BE-Hive predictions (CP1028) (ref. 21).

(c) Correlation of observed base editing efficiency measured by the sensor in MDA-MB-231 

cells vs. efficiencies predicted by the BE-HIVE algorithm21 classified by base editing 

enzyme and cytosine position (fill). Here, the HBES library was stratified to include all 

targets (top) and all NGG targets showing >5% editing in the sensor (bottom). FNLS and 

FNLS-NG values were compared to BE4 prediction results and F2X values were compared 

to CP1028 prediction results. See also Supplementary Fig. 10–12.

(d) Canonical (C>T) and non-canonical (C>A and C>G) base editing activity profiled across 

all screen cell lines (rows) at every cytosine in position −5 – 20 of HBES library targets.

(e) Validation of non-canonical C>R editing events at sensor target sites (blue) and 

endogenous targets (yellow). Each dot corresponds to a single replicate (n=2 for sensor 

screening data; n=3 for endogenous validation). Data are presented as mean values +/− 

SEM. Base editing rates (efficiencies) across endogenous loci were determined via next-

generation sequencing of edited loci and analyzed using CRISPResso2 (ref. 48). See also 

Extended Fig. 7 and Supplementary Fig. 9.

(f) A heatmap of a panel of mammalian cell lines expressing FNLS and/or AncBE4max 

transduced with either canonical C>T (top) or non-canonical C>G (bottom) GO reporters 

measuring GFP induction in mScarlet infected base editor cells. See also Extended Fig. 7.
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Figure 5. In vivo validation of cancer-associated single nucleotide TP53 variants using base 
editing
(a) Candidate TP53 variant-specific base editing sgRNAs sorted by C>T efficiency scores 

obtained from FNLS-MDA-MB-231 MBES screening data. Only TP53 sgRNAs with a 

percentage of C>T editing >25% and no collateral cytosine editing are shown. Data are 

presented as mean values +/− SEM.

(b) Lollipop plot showing frequency of candidate TP53 variants detected in the MSK-

IMPACT cohort. TAD = transactivation domain; DBD = DNA binding domain; OD = 

oligomerization domain.
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(c) FNLS-expressing KrasG12D/+; Trp53WT/WT pancreatic ductal epithelial cells (PDECs) 

were transduced with sgRNAs designed to introduce defined mutations in the mouse Trp53 
gene followed by plating at low density (1,000 cells per well in 6-well plates; three wells 

per variant) and treatment with DMSO or Nutlin-3 (10 μM). Upper panel: plates were 

stained with crystal violet to assess colony formation capacity. Bottom panel: quantification 

of crystal violet staining. N=3 wells per variant (or control) per treatment arm (control or 

Nutlin-3). Data are representative of n=3 independent experiments and are presented as 

mean values +/− SD. * p ≤ 0.05, ** p ≤ 0.01. P-values were calculated using unpaired, 

two-sided t-test.

(d) Schematic for in vivo validation of candidate TP53 variants via orthotopic 

transplantation of F2X-expressing KrasG12D/+; Trp53WT/WT pancreatic ductal epithelial cells 

(PDECs) transduced with sgRNAs designed to introduce defined mutations in the mouse 

Trp53 gene.

(e) Survival analysis of mice transplanted with F2X-expressing PDECs transduced with 

specific Trp53-targeting base editing sgRNAs. N=5 mice per mutation. See also Extended 

Fig. 8 and Supplementary Fig. 13 and 14. * p ≤ 0.05, ** p ≤ 0.01. P-values were calculated 

using the log-rank test.

(f) Frequency of target C>T editing in tumors from transplanted mice. Each dot corresponds 

to a single tumor or tumor fragment. Data are presented as mean values +/− SD. Target C>T 

editing was measured by next generation sequencing of amplified target loci and data was 

analyzed using CRISPResso2 (ref. 48). See also Extended Fig. 8 and Supplementary Fig. 13 

and 14.
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Figure 6. Massively parallel interrogation of cancer-associated single nucleotide variants via 
pooled base editing screening
(a) Schematic of base editing proliferation screen. Briefly, FNLS-expressing PDECs were 

transduced with a library of ~5,000 MBES constructs at 1000X representation followed 

by selection and culture for a total of ~36 cumulative population doublings. A total of 

n=6 independent transduction replicates were established and cultured separately. Cells 

were sampled at multiple time points over the course of the screen until reaching the final 

time point at day 30 post-transduction. Screens were deconvoluted using next-generation 

sequencing (see Methods for more details).
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(b) Heatmap for correlation coefficients between samples. See also Supplementary Fig. 15.

(c) Waterfall plots comparing sgRNA log fold changes with mean percentage of C>T editing 

in the sensor target site between days 5 and 30 post-transduction. Top plot denotes all 

sgRNAs (and corresponding sensor target sites). Bottom plot denotes Trp53 sgRNAs (and 

corresponding sensor target sites).

(d) Bubble plot comparing sgRNA log fold changes with mean frequency of C>T editing 

in the sensor target site between days 5 and 30 post-transduction. Blue bubbles denote 

Trp53 sgRNAs (and corresponding sensor target sites). Yellow bubbles denote all other 

sgRNAs (and corresponding sensor target sites). Inset denotes MaGeCK27, 28 score (see 

Supplementary Table 7). Note the use of human gene-based nomenclature of protein 

residues (e.g. p53_Q100 corresponds to Q97 in mouse Trp53).

(e) Schematic of the mouse Trp53-R210 locus (TP53-R213 in humans). The number to the 

right of the sgRNA is the sgRNA identifier (Trp53_4315; based on MBES whitelists). Target 

cytosines are labeled in red. As denoted by the black arrows in the diagram, C>T base 

editing of C6 and C11 is predicted to produce the T208I and R210C mutations, respectively. 

See also Supplementary Fig. 13.

(f) In vivo validation of T208I mutation via orthotopic transplantation of F2X-expressing 

PDECs transduced with the Trp53_4315 sgRNA. Median survival for mice harboring 

tumors initiated by the Trp53_4315 sgRNA was 53 days. N=5 mice per condition. Data 

are presented as mean values +/− SD. * p ≤ 0.01, Log-rank test. See also Supplementary Fig. 

13.

(g) Frequency of target C>T editing in tumors from mice transplanted with F2X-expressing 

PDECs transduced with the Trp53_4315 sgRNA. Each dot corresponds to a single tumor or 

tumor fragment (total n=8). Data are presented as mean values +/− SD. Target C>T editing 

was measured by next generation sequencing of amplified target loci and data was analyzed 

using CRISPResso2 (ref. 48). See also Supplementary Fig. 13.
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