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Abstract. Trauma is a prevalent cause of coagulopathy, with 
traumatic brain injury (TBI) accompanied by coagulation 
disorders particularly linked to adverse outcomes. TBI is 
distinguished by minimal bleeding volume and unique injury 
sites, which precipitate complex coagulation disturbances. 
Historically, research into trauma‑induced coagulopathy has 
primarily concentrated on the molecular biology and patho‑
physiology of endogenous anticoagulation and inflammation. 
Nonetheless, recognizing that cells are the fundamental 
units of structure and function in all living organisms, 
the present review aimed to distill our understanding of 
coagulopathy post‑TBI by elucidating the intricate cellular 
mechanisms involving endothelial cells, neutrophils and 
platelets. Additionally, this study evaluates the strengths and 
weaknesses of various diagnostic tools and discusses the 
characteristics of pharmacological treatments and potential 
therapies for patients with TBI and coagulation disorders. The 
aim of this review is to amalgamate recent updates in mecha‑
nistic research and innovative diagnostic and therapeutic 
methodologies, thereby fostering the progression of precision 
medicine within this specialized domain.
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1. Introduction

Traumatic brain injury (TBI) encompasses a series of complex 
pathological processes wherein brain tissue structure and 
function are compromised due to mechanical force applied 
to the head, stemming from various causes. Of considerable 
interest is the potential link between genetic modifications 
and an augmented susceptibility to TBI. Specifically, the poly‑
morphisms within the apolipoprotein E promoter region, the 
TAU gene (1) and the brain‑derived neurotrophic factor gene 
have been implicated in elevating the risk of concussion and 
contributing to adverse outcomes subsequent to a TBI episode. 
Additionally, alterations in the dopamine receptor D2 gene may 
potentiate brain injury risk by impacting cognitive functions 
and behavioral traits in affected individuals. Nevertheless, the 
precise contribution of NEFH gene mutations to the pathology 
of concussion remains an area requiring further elucidation 
through research (2).

The incidence and mortality rates of TBI are notably 
higher in low‑ and middle‑income countries compared with 
high‑income countries (3), affecting an estimated 10 million 
individuals worldwide annually (4). Falls are the predominant 
cause of TBI, especially among individuals >50 years old (5). 
This demographic often presents with comorbidities and may 
be using anticoagulant medications prior to injury, factors 
that amplify the complexity and mortality risk associated 
with coagulation abnormalities post‑TBI (6). Coagulopathy 
in patients with TBI typically manifests as abnormalities in 
conventional coagulation assays. However, the prevalence of 
early coagulopathy varies widely due to inconsistent definitions 
and differences in the severity of the injury (7).

Most patients with severe TBI demonstrate abnormal 
coagulation test results shortly after injury, whereas this is less 
common in those with mild injuries (8). The severity of TBI is 
generally assessed utilizing the Glasgow Coma Scale, catego‑
rizing injuries as mild (14‑15 points), moderate (9‑13 points) 
and severe (3‑8 points) (9). The mortality rate for severe TBI 
cases is approximately one‑third, and ~60% of survivors 
suffer from enduring physical, mental and social deficits (10). 
Patients with TBI accompanied by coagulopathy are often 
closely associated with poor prognosis (11), thus advancing 
research and treatment for coagulopathy following TBI is of 
paramount importance.

In the human body, cells are the fundamental units of 
structure, function and biological processes. The present 
review updated and simplified the series of coagulopathy‑
related events occurring after TBI by summarizing the 
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mechanistic changes and roles of three types of cells [endothe‑
lial cells (ECs), neutrophils and platelets] in the coagulation 
process post‑TBI. Additionally, by consolidating the pharma‑
cological treatments and potential therapeutic applications for 
patients with TBI with coagulation dysfunction, the present 
study aimed for this review to provide more insights into preci‑
sion medicine by summarizing updated mechanistic studies 
and innovative diagnostic and therapeutic techniques. To 
facilitate a better understanding of the content for the readers, 
definitions for the specialized terminology mentioned in this 
article have been provided (Table I).

2. Cellular mechanisms of coagulopathy following TBI

The mechanisms underpinning coagulopathy subsequent 
to TBI are multifaceted, encompassing a broad spectrum of 
cellular alterations. These primarily include alterations in 
ECs, neutrophils and platelets (Fig. 1).

Endothelium and blood‑brain barrier (BBB). The endothelium 
and BBB are pivotal in maintaining hemostatic balance. Under 
normal conditions, the ECs function as a barrier to prevent the 
release of procoagulant factors, such as cerebral microvesicles, 
into the circulation (12,13). However, these cells can sustain 
rapid damage during the acute phase of trauma, thereby 
intensifying coagulation disorders (14,15). Research from 
2003 demonstrated that systemic coagulopathy can manifest 
within minutes following TBI (16), characterized by activa‑
tion of protein C and enhanced fibrinolysis (17). Ordinarily, 
tissue‑type plasminogen activator (tPA) struggles to access 
fibrin structures shielded by platelet aggregates, thus impeding 
the efficiency of subsequent enzymatic reactions essential for 
clot resolution (18). Moreover, the mechanical forces imparted 
on the brain during TBI mechanically disrupt the BBB in a 
pattern akin to a Gaussian distribution (19), precipitating 
secondary ischemic and inflammatory injuries. These injuries 
enhance the permeability of adjacent BBB segments, exacer‑
bating the condition. Brain‑derived microvesicles (BDMVs) 
enriched with tissue factor (TF) and phosphatidylserine (PS) 
are implicated in the exacerbation of brain injury, the initia‑
tion of early coagulation abnormalities and the promotion 
of hyperfibrinolysis (12). The elevated presence of TF and 
PS (12) in brain tissue not only facilitates the expansion of 
brain injury (20,21) but also instigates platelet dysfunction and 
depletion, as well as disseminated intravascular coagulation 
(DIC) (22,23). Lactoferrin, through its interaction with these 
microvesicles, has shown promise in mitigating coagulation 
disturbances and enhancing prognosis in a mouse model of 
TBI (24). Nonetheless, the specific mechanisms through which 
lactoferrin exerts its effects and the precise operational defini‑
tions of these cellular microvesicles continues to be elusive.

Neutrophils. Upon bodily injury, neutrophils are among 
the first cells to respond (25). Neutrophil extracellular traps 
(NETs), which are web‑like structures released by activated 
neutrophils under specific conditions into the extracellular 
space, play a crucial role in entrapping and neutralizing 
microorganisms. The formation of NETs is a form of the 
programmed cell death process (26). Allen et al (27) have 
revealed that in the context of acute TBI, neutrophils are 
capable of penetrating cerebral vascular ECs and initiating the 

release of extracellular traps. This process triggers the release 
of procoagulant factors, including brain‑derived microparticles 
and damage‑associated molecular patterns (DAMPs) (27). The 
delayed apoptosis of neutrophils leads to an exacerbation of 
NETs formation and coagulation dysfunction during the acute 
phase of TBI (28). Platelet‑neutrophil aggregation interactions 
play a pivotal role in traumatic coagulopathy. In patients with 
TBI who exhibit coagulation abnormalities, activated platelets 
enhance the formation of NETs generation through the secre‑
tion of high mobility group box 1 protein (HMGB1) (29,30). 
NETs exacerbate the disruption of the EC barrier by 
promoting phosphatidylserine exposure and TF expression 
on ECs (28,31,32). Moreover, NETs induce a procoagulant 
phenotype in ECs through the action of interleukin‑1α and 
cathepsin G (33), which contributes to neurological impair‑
ment (34,35). Furthermore, inflammation plays a critical role 
in underlying secondary injury following TBI (36), with NETs 
significantly mediating the interaction between inflammation 
and coagulation (37). Given the comprehensive implications of 
these processes, NETs may offer a novel therapeutic targets for 
coagulopathy associated with TBI.

Platelets. Low platelet counts and/or functional platelet 
defects in platelets markedly enhance the risk of bleeding; a 
platelet count below 175x109/l is associated with an elevated 
risk of progressive intracranial hemorrhage progression, and 
counts below 100x109/l are strongly associated with increased 
mortality (38,39). This clinical presentation contrasts with 
traumatic coagulopathy (TIC), which is distinct from DIC, 
the latter typically characterized by thrombocytopenia (40). 
Firstly, in patients with TBI a reduced level of platelet reac‑
tivity is positively associated with improved prognoses (41,42). 
During TBI, the depletion of von Willebrand factor hampers 
platelet aggregation in vitro (43). This impairment is exacer‑
bated by diminished platelet responsiveness to agonists such 
as adenosine diphosphate (ADP) and/or arachidonic acid (AA), 
leading to a specific defect in aggregation defects due to inhi‑
bition of ADP and AA receptors a phenomenon closely linked 
to TBI severity (22,44). These defects occur independently 
of hemorrhagic shock or the absolute platelet count (22,45). 
Additionally, elevated circulating levels of catecholamine 
platelet agonists, such as epinephrine and norepinephrine, are 
associated with compromised platelet aggregation function in 
patients with TBI (46).

This observation elucidates why even patients with mild 
injuries may exhibit suppressed platelet function in vitro (47). 
Variations in platelet activity may relate to systemic isch‑
emia‑reperfusion and oxidative stress (48), with declining 
platelet counts closely associated with injury severity and 
increased mortality risk (42,49). Overactive platelets may 
lead to secondary thrombocytopenia, heightening the risk 
of bleeding (22). Patients with TBI often exhibit moderately 
low platelet counts, with frequent activation of these cells, 
which generate microvesicles and display procoagulant 
activity (50,51). Secondly, platelet adhesion dysfunction is 
recognized as a pivotal factor in trauma response. Studies 
have revealed that in the aftermath of severe trauma, a 
notable reduction in in platelet adhesion to collagen is 
observed (52,53), along with diminished expression of 
specific receptors on platelets (54,55). These alterations may 
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stem from fibrin‑induced shedding of glycoprotein VI (GPVI) 
receptor (an important receptor on the surface of platelets that 
participates in collagen binding) (56) and interference with its 
signaling pathway (57).

Research conducted by Montague et al (58) has illus‑
trated that inhibiting GPVI shedding by obstructing the 
fibrin‑GPVI interaction offers a potential therapeutic avenue. 
Furthermore, GPVI shedding is predominantly facilitated by 

Table I. Definitions of specialized terminology.

Specialized terminology Explanation

Gaussian distribution pattern  A pattern of injury where the brain tissue at the center of the trauma experiences the 
highest and most severe damage, with the severity of the injury diminishing radially 
outward.

Brain‑derived cell microvesicles  Small vesicles secreted by brain tissue cells and vascular endothelial cells containing 
biomolecules such as proteins, DNA and RNA from their cell of origin.

Lactoferrin A member of the transferrin family with antioxidant and anti‑inflammatory properties.
Neutrophil extracellular traps   Web‑like structures released extracellularly by activated neutrophils containing 

components such as DNA and histones that have the ability to trap and kill pathogens 
among other functions.

Damage‑associated molecular patterns   Endogenous molecules released by host cells upon injury which include high mobility 
group box 1, DNA and RNA, triggering immune and inflammatory responses.

Platelet‑derived extracellular vesicles  Vesicles released by platelets through budding or exocytosis, participating in processes 
such as inflammation and immunomodulation. Platelet‑derived exosomes represent a 
specific subset of these extracellular vesicles.

Multimodality monitoring   A comprehensive monitoring method that combines multiple monitoring technologies 
and parameters to assess the functional status of the brain. This approach aims to 
provide an integrated view of cerebral pathophysiology in real‑time.

Figure 1. Schematic illustration of cellular mechanisms following TBI. At the time of brain injury, direct forces and subsequent inflammatory responses cause 
progressive damage to the endothelium and the blood‑brain barrier, extending outward peripherally. Simultaneously, there is a massive accumulation of TF 
and thrombin, the latter of which participates in the activation of protein C, alongside tPA‑mediated hyperfibrinolysis. BDMVs increase under the influence 
of NETs produced by neutrophils, binding to TF and PS in the circulation; however, lactoferrin can phagocytose and degrade BDMVs. Brain injury promotes 
platelet activation, which although can enhance NET production, leading to a vicious cycle between NETs and inflammatory responses, further exacerbating 
tissue damage. However, due to hyporeactivity to various platelet agonists in circulation, it results in impaired platelet aggregation. Moreover, shedding of the 
GPVI receptor (an important receptor on the surface of platelets that participates in collagen binding) leads to adhesion defects in activated platelets. ‘Swollen 
morphology’ prothrombotic platelets and PMVs generated by activated platelets also contribute to the occurrence of coagulopathy. TBI, traumatic brain injury; 
TF, tissue factor; tPA, tissue‑type plasminogen activator; BDMV, brain‑derived microvesicles; NETs, neutrophil extracellular traps; PS, phosphatidylserine; 
PMVs, platelet microvesicles; GPVI, platelet glycoprotein VI.
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the metalloprotease ADAM10 (59). In the context of trauma, 
platelets exhibit a distinctive ‘procoagulant’ phenotype, 
characterized by an unusual ‘swollen morphology’. This 
phenotype involves the translocation of PS from the inner to 
the outer leaflet of the cell membrane, thereby exposing PS 
on the platelet surface and creating a high‑affinity substrate 
interface for thrombin generation (60). The prevalence of this 
morphological alteration correlates with injury severity, and 
these procoagulant platelets demonstrate compromised func‑
tionality in primary hemostasis (61). This indicates not only 
a diminished capacity for platelet aggregation in severe cases 
but also elevated markers of thrombin generation (62).

Collagen and thrombin, frequently found at sites of endo‑
thelial damage, conjointly stimulate the central mechanism for 
the development of procoagulant platelets in vitro, amplifying 
thrombin production (63). This process is accompanied by 
significant release of extracellular vesicles (EVs) (64). Certain 
studies have reported increased levels of platelet‑derived EVs 
in plasma following major trauma, suggesting that purified 
platelet‑derived EVs could potentially ameliorate thrombotic 
events post‑trauma (65‑68). Consequently, targeting the 
emergence of procoagulant platelets presents a promising 
therapeutic strategy for TIC.

3. Treatment of coagulation disorders following TBI

The early rectification of coagulopathy in patients with TBI is 
critically associated with survival rate (69). The predominant 
strategy for addressing TBI‑induced coagulopathy entails the 
blood components, with a growing emphasis on the admin‑
istration of clotting factors and related substances. Moreover, 
hemostatic agents are an essential element of the therapeutic 
arsenal employed in these cases, as their indispensable role in 
the management of coagulopathy post‑TBI.

Pharmacological interventions. Tranexamic acid (TXA), a 
synthetic derivative of lysine, has proven effective in reducing 
active hemorrhage (70) and mortality (71) in trauma patients 
when administered within 3 h of injury, as demonstrated by 
the CRASH‑2 trial (clinical randomization of an antifibrino‑
lytic in significant hemorrhage) (71,72). Building on this, the 
CRASH‑3 trial revealed that early administration of TXA 
within the same timeframe significantly reduces mortality risk 
in patients with mild‑to‑moderate TBI (67,73), thus endorsing 
its immediate use in such scenarios, whereas its efficacy 
diminishes in patients with severe TBI cases. Considering 
TXA's ability to enhance platelet function (74), coupled with 
its cost‑effectiveness and proven efficacy in trauma manage‑
ment, it continues to be a dependable therapeutic option for 
patients with TBI.

Furthermore, desmopressin, as tested in a rat model 
of hemorrhagic shock, has been observed to elevate von 
Willebrand factor and factor VIII levels, as well as augment 
platelet aggregation (75). Given its short‑acting nature and 
relative safety, desmopressin presents as a suitable alter‑
native (76). Additional pharmacological agents such as 
progesterone, vitamin K2, Butylphthalide and recombinant 
interleukin‑1 receptor antagonist (77) have demonstrated 
potential in the treatment of TBI. Conversely, administration 
of high‑dose corticosteroids for 48 h to patients with moderate 

to severe brain injury has been associated with an increased 
mortality rate at two weeks (78). Amantadine may accelerate 
the rate of functional improvement in delirium‑rating scale 
scores (79,80); however, due to its heterogeneity when used in 
patients with TBI (80), the benefits for this patient population 
requires further robust investigation. Although theoretically 
cytidine diphosphocholine (CDP‑choline) might have positive 
effects on cell membrane integrity and cellular edema, studies 
indicate that its impact on cognitive function improvement 
in brain‑injured patients appears to be negligible (81,82). 
Hemostatic agents can reduce bleeding in trauma patients, but 
excessive dosing or prolonged use may lead to acquired throm‑
bosis (83). Therefore, when planning treatment, it is important 
to assess the risk and extent of thrombosis.

Transfusion of blood components following TBI. Post‑TBI, 
blood component transfusions typically refer to the admin‑
istration of platelets, red blood cells or plasma based on the 
individual needs of the patient. In scenarios of ongoing hemor‑
rhage, platelet transfusions have not been proven effective in 
restoring aggregation function (84) nor have they demon‑
strated improvements in patient outcomes (85). Notably, the 
administration of refrigerated platelets has shown to confer 
superior hemostatic benefits compared with those stored 
at room temperature (86), a protocol now implemented in 
numerous trauma centers throughout the United States.

Furthermore, transfusions of packed red blood cells 
(pRBCs) have been recognized to enhance cerebral oxygen‑
ation; recent investigations into the combined administration 
of pRBCs with plasma in patients with TBI with coagulopathy 
have associated this practice with an escalation in adverse 
reactions and deteriorated prognoses (87). It is particularly 
noteworthy that establishing higher transfusion thresholds 
at 10 g/dl has been correlated with an upsurge in bleeding 
complications as opposed to a lower threshold of 7 g/dl (88), 
indicating that transfusion decisions should extend beyond 
mere adherence to rigid hemoglobin level. Consequently, a 
restrictive strategy for pRBC transfusion is advocated, except 
in instances where patients exhibit intolerance to anemia (89). 
The determination of the optimal timing and volume of 
transfusions remains a pivotal focus of ongoing research.

Hemostatic factors and associated substances. In recent 
years, advancements in the study of coagulation factors have 
significantly progressed the treatment of trauma patients. 
Fujiwara et al (90), employing a rat model of controlled 
cortical impact, demonstrated that daily intravenous injections 
of 350 mg/kg of a synthetically derived activated peptide of 
factor IX (termed F9‑AP) significantly mitigated adjacent 
neuronal loss associated with secondary brain injury, markedly 
reducing both the volume of brain injury and associated edema. 
Moreover, recombinant activated factor VII, which exhibits 
lesser dependence on platelet function, appears to offer distinct 
advantages for patients with severely compromised platelet 
function or severe thrombocytopenia, effectively diminishing 
the risk of intracranial hemorrhage (91). Prothrombin complex 
concentrate (PCC), an inactivated blend comprising of factors 
II, IX, VII and X, has been proven to be highly efficacious 
in managing refractory bleeding to conventional treatment 
methods and in correcting elevated international normalized 
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ratio (INR) levels (92). In TBI, where fibrinogen levels can 
be depleted, it is imperative to restore these levels to within 
normal ranges to alleviate inflammation and reduce endo‑
thelial permeability (93). The supplementation of factor XIII 
plays equally a critical role in inhibiting hyperfibrinolysis, 
stabilizing clot formations and minimizing surgical blood 
loss (94,95). However, compared with plasma, PCC may 
reduce hematoma expansion, yet shows no significant differ‑
ence in 90‑day mortality or Glasgow Coma Scale scores (96).

Reversal agents for direct oral anticoagulants (DOACs). With 
an aging population, the number of patients with TBI concur‑
rently taking oral anticoagulants is increasing. To ameliorate 
adverse outcomes including bleeding in patients undergoing 
surgery or those suffering from TBI while on these therapies, 
the development of antidotes for the reversal of DOACs has 
emerged as a crucial area of research. In 2015, publication of 
the first study demonstrating the safety and efficacy of idaruci‑
zumab, a targeted monoclonal antibody fragment for the acute 
reversal of dabigatran, a direct thrombin inhibitor, marked a 
significant advancement in anticoagulation management (97). 
This was followed by the introduction of Andexanet alfa, an 
antagonist of the facto Xa inhibitors, into clinical practice (98). 
Protamine sulfate is employed for the reversal of both unfrac‑
tionated heparin and low molecular weight heparin (LMWH). 
However, its routine administration for reversing prophylactic 
subcutaneous heparin is not recommended unless there is a 
significantly prolonged activated partial thromboplastin time 
(aPTT) (99).

Notably, non‑specific hemostatic agents such as PCC and 
activated prothrombin complex concentrate may also serve 
to reverse the effects of DOACs. However, FDA‑approved 
reversal agents are not applicable to all DOACs or all clinical 
scenarios where reversal may be considered. Furthermore, the 
complexity of clinical use is compounded by factors such as 
cost, preparation and the lack of standardized protocols (97).

Potential therapies. Research underscores the complex and 
heterogeneous nature of TBI progression, necessitating explo‑
ration beyond conventional treatments toward interventions 
that may confer additional benefit to patients. This section 
delineates several promising potential therapeutic avenues 
post‑TBI, aiming to foster groundbreaking advancements in 
the management during process.

It has been demonstrated that elevated levels of matrix 
metalloproteinase‑9 (MMP‑9) following brain injury contrib‑
utes to the dysfunction of the BBB (100). Encouragingly, 
administration of MMP inhibitors in rodent models of 
brain injury has led to improved outcomes (101), indicating 
that MMP inhibition may represent a viable therapeutic 
strategy for patients with TBI. Moreover, the integration 
of medical science and nanotechnology has facilitated the 
development of platelet‑mimicking nanovesicles, which incor‑
porate the biological characteristics of platelet membranes 
into a lipid‑based nanostructure. Through bioengineering 
manipulations, these particles can partially or fully emulate 
the hemostatic functions of natural platelets to varying 
extents (102), thus offering a promising alternative to platelet 
transfusion therapy. Additionally, novel resuscitative agents, 
known as platelet‑derived extracellular vesicles (103), have 

surfaced, exhibiting remarkable hemostatic potency in patients 
with TBI via multiple mechanisms. However, current investiga‑
tional agents remain in the experimental phase and additional 
research and data are required before they can advance to 
clinical application. As research advances and technology 
evolves, it is anticipated that additional mechanisms will be 
elucidated and applied to strategies aimed at ameliorating the 
outcomes for TBI survivors.

4. Complications

TBI can be accompanied by a wide array of complications, 
including but not limited to epilepsy, cerebral herniation, 
hydrocephalus and cerebrocardiac syndrome (104‑106). These 
concomitant complications are intimately associated with 
a diminished quality of life and heightened mortality rates. 
Specifically, in the period following the initial day post‑TBI, 
the emergence of multiple organ dysfunction and thrombotic 
events become the predominant causes of mortality among 
critically ill patients (107). Besides emphasizing early preven‑
tive strategies, it is equally essential to unravel the mechanisms 
that underlie the initiation and progression of these complica‑
tions is equally indispensable. This underscores the imperative 
for a thorough comprehension and the formulation of precise 
intervention strategies.

Multiple organ dysfunction syndrome (MODS). Post‑
traumatic MODS is widely recognized as a consequence of 
deregulated responses to trauma. The primary pathogenic 
mechanism likely involves the activation of both coagulation 
and inflammatory cascades (108,109). Furthermore, MODS 
is intimately associated with extracellular histones, HMGB1 
and S100A8/9, among other factors. Notably, elevated levels 
of HMGB1 contribute to organ injury (109). Additionally, the 
dynamic interaction between platelets and leukocytes facili‑
tates leukocyte recruitment to sites of injury, facilitating tissue 
repair (110). Nevertheless, an excessive immune response 
appears to inflict organ damage (111). Fortunately, proactive 
management of coagulopathy exhibits promising potential in 
ameliorating the incidence of organ failure (112).

Thrombosis. Thromboembolic events play a significant 
cause in increasing morbidity and disability rates among 
patients, particularly those who have suffered TBI and 
are severely injured or unable to mobilize independently. 
Considering TBI as an established independent risk factor 
for venous thromboembolism (VTE) (113,114). The present 
discussion predominantly focuses on VTE, extending 
beyond traditional triggers to explore the pivotal role 
played by the interaction between platelets and monocytes 
in the initiation and propagation of VTE (115). Moreover, 
factors including NETs, platelet‑derived microparticles and 
protein C depletion (38) are intimately associated with VTE 
development. In intensive care units, the occurrence of VTE 
among critically ill trauma patients is notably elevated, with 
an estimated incidence of up to 35% (116). Even with the 
implementation of mechanical prophylaxis measures for 
deep vein thrombosis (DVT), residual DVT and pulmonary 
embolism (PE) rates remain substantial at 31 and 3% (114), 
respectively. A recent large comprehensive observational 

https://www.spandidos-publications.com/10.3892/br.2024.1844


HOU et al:  COAGULOPATHY FOLLOWING TRAUMATIC BRAIN INJURY6

study emphasized that de novo pulmonary thrombi are more 
prevalent than PEs originating from DVT, often manifesting 
early in the clinical course (117). In animal models of TBI, 
microthrombi are predominantly observed in the pericontu‑
sional cortex (118), composed of fibrin, platelets and other 
components. LMWH has demonstrated superior efficacy in 
preventing thromboembolism compared to unfractionated 
heparin (119), indicating that, following a thorough patient 
evaluation and confirmation of no contraindications, early 
initiation of LMWH for thromboprophylaxis is recom‑
mended. Apart from LMWH, factor XI inhibitors, such 
as Abelacimab, have shown effectiveness in preventing 
VTE (120), offering an alternative preventive strategy in 
managing thrombotic risks.

Consequently, early detection, prevention and manage‑
ment of MODS and thrombotic events assume paramount 
importance. Identification and assessment of disease severity, 
as well as prediction of risks in patients, are facilitated 
through monitoring vital signs, imaging changes, laboratory 
parameters and scoring systems such as APACHE II, SOFA 
and qSOFA (121,122). Management of these patients should be 
viewed as a dynamic process, necessitating close surveillance 
and prompt adjustment of therapeutic strategies as needed. 
Given the unique nature of each patient's condition, treatment 
plans should be individualized, with the overarching goals of 
maximizing organ function recovery, preventing thrombosis 
and enhancing quality of life.

5. Diagnostic tools for coagulopathy following TBI

Laboratory assessments aimed at detecting coagulopathy 
and techniques reflecting brain injury are crucial in diag‑
nosing and managing coagulation disorders that arise 
following TBI (Table II). Conventional coagulation assays, 
routinely employed in clinical settings to evaluate hemo‑
static function, encompass prothrombin time, aPTT and 
INR (123,124), which aid in prognostication post‑cranial 
injury. Nonetheless, these tests fail to capture the full 
complexity of coagulation processes and have limitations in 
accurately representing thrombin generation and precision in 
hemostatic evaluation (125,126).

More advanced global hemostasis assessments, including 
rotational thromboelastometry (ROTEM), thromboelas‑
tography (TEG) and thrombin generation tests, may offer 
a superior real‑time analysis of hemostatic status. These 
provide swift feedback for therapeutic intervention and 
enable more precise predictions treatment outcomes (127). 
These methodologies further facilitate goal‑directed transfu‑
sion strategies (128) and guide heparin administration for 
thromboembolism prophylaxis (129), with TEG particularly 
unaffected by the administration of TXA (130). A fibrinogen 
level concentration 2.0 g/l is recognized as a risk factor 
for coagulopathy and associated complications post‑TBI. 
Both ROTEM and TEG have proven effective in swiftly 
and precisely measuring fibrinogen levels (127). Moreover, 
recent research involving bleeding adult and pediatric 
patients has demonstrated that transfusion strategies guided 
by viscoelastic tests improve survival rates, decrease blood 
product usage and reduce the incidence of renal failure 
when compared with other methods (131). Point‑of‑care 

platelet function testing (POC‑PFT), exemplified by systems 
including VerifyNow, Plateletworks, PFA‑100/200, show 
promise in identifying platelet dysfunction or guiding 
antiplatelet therapy (6,20). However, the absence of a gold 
standard for POC‑PFT and substantial variation among 
available analyzers in terms of implementation technique 
and platelet agonists utilized hinder widespread acceptance. 
Consequently, current European guidelines on massive 
hemorrhage and coagulation management in trauma do not 
advocate for the routine use of POC‑PFT (132).

6. Neurocritical care monitoring tools

For patients suffering from moderate to severe brain injuries, 
the mere reliance on conventional blood tests is insufficient, 
Conventional coagulation tests measure only ~4% of total 
thrombin generation and do not assess the overall hemostatic 
state. Furthermore, these tests do not reflect the interactions 
between multiple coagulation pathway mechanisms (133‑135). 
Therefore, the incorporation of cutting‑edge neurocritical care 
monitoring instruments is of utmost importance. In this context, 
multimodal monitoring (MMM) encompasses a range of 
techniques, including intracranial pressure (ICP)‑monitoring, 
cerebral microdialysis (CMD), cerebral tissue oxygenation 
monitoring and continuous electroencephalography (EEG) (3), 
amongst others. Through the amalgamation of these diverse 
monitoring modalities, MMM provides a comprehensive, 
real‑time evaluation of the patient's cerebral pathophysiology. 
This significantly bolsters the management of brain disor‑
ders, elevates patient outcomes and propels clinical research 
forward.

Primarily, ICP monitoring stands as a pivotal component, 
as elevated ICP can diminish cerebral perfusion [cerebral 
perfusion pressure=mean arterial pressure (MAP)‑ICP], 
subsequently augmenting the peril of ischemia and hernia‑
tion (136,137). In accordance with the established guidelines, 
maintaining ICP at 20‑25 mmHg (138), with MAP kept 
at 60‑70 mmHg in severe patients with TBI, is paramount in 
effectively mitigating adverse outcomes. Furthermore, CMD 
emerges as an invasive yet invaluable technique. It involves 
hourly sampling and analysis of cerebral extracellular fluid 
metabolites, offering an unprecedented glimpse into the 
biochemical shifts within the brain (139). Complementing 
this, cerebral tissue oxygenation monitoring employs 
near‑infrared spectroscopy for a non‑invasive, continuous 
assessment of regional concentrations of oxygenated and 
deoxygenated hemoglobin in the brain (140). This, in turn, 
aids in evaluating the risk of cerebral hypoxia and shaping 
individualized therapeutic strategies. However, it's worth 
noting that its application remains primarily confined 
to superficial areas such as the frontal cortex, owing to 
technological limitations.

In the realm of severe TBI, post‑traumatic seizures affect 
roughly one in ten patients, with asymptomatic seizure activity 
prevalence potentially escalating to 20‑25% (141). Continuous 
EEG enables the early detection of these cerebral pathologies 
and guides antiepileptic therapy. As previously reported, the 
successful management of a 25‑year‑old comatose patient 
following a car accident was achieved through the utiliza‑
tion of the MMM monitoring and management system. This 
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case underscores the practical utility of MMM. The system 
is capable of providing real‑time updates on physiological 
changes and offering early indications of potential issues 
before they escalate, thereby guiding preemptive interven‑
tions (142). In conclusion, with the progression of technology 
and the accumulation of clinical experience, the application of 
MMM is likely to evolve into a more refined and widespread 
practice. IF so, it would be an indispensable component of 
modern neurointensive care.

7. Summary and perspectives

TBI triggers swift and substantial modifications in cellular 
behaviors, thereby amplifying the intricacy of coagulopathy 
mechanisms and complicating treatment options by altering 
both intra‑ and intercellular connections. The diverse changes 
induced by TBI are still inadequately targeted by current thera‑
peutic approaches. As a result, there is an urgent necessity for 
deeper investigation to clarify the fundamental mechanisms 

Table II. Advantages and disadvantages of various diagnostic tools.

Diagnostic    Clinical 
 tools Content Advantages Disadvantages application

CCAs Tests such as prothrombin time, It can indirectly predict It is unable to provide real‑time Conventional 
 activated partial thromboplastin the prognosis of information on coagulation methods
 time and international patients with changes; it does not assess the 
 normalized ratio coagulopathy levels of thrombin or the extent 
   of clot formation involved in 
   the reaction 
ROTEM Detailed kinetics of blood It allows for real‑time It requires stringent technical Preferred methods
 coagulation such as clot assessment of hemostatic expertise; interpretation of 
 initiation time, fibrin formation status, rapid feedback on results still relies heavily on the 
 velocity, clot firmness and test results and operator's experience, with 
 fibrinolysis activity prediction of treatment lower standardization compared 
  efficacy; it can quickly to conventional tests; and it is 
  and accurately evaluate relatively more costly 
  fibrinogen levels; and it  
  can guide therapeutic  
  interventions  
TEG Reaction time; kinetic time; It allows for real‑time It demands strict technical Preferred methods
 alpha angle; maximum assessment of requirements; results can be 
 amplitude; lysis at 30 min hemostatic status, rapid influenced by human factors; 
  feedback on test results and it is time‑consuming 
  and prediction of  
  treatment efficacy; it  
  can quickly and  
  accurately evaluate   
  fibrinogen levels;  
  and it can guide  
  therapeutic interventions  
POC‑PFT TEG (TEG 5000/6 s It enables real‑time There is no universally Not routinely
 Hemostasis Analyzer monitoring of platelet recognized ‘gold standard’; it utilized
 System), ROTEM function: Reducing blood requires stringent technical 
 (ROTEM Delta System), transfusion in cardiac expertise; and the results can 
 platelet reactivity surgery and in predicting be subject to human‑related 
 turbidimetry test the risk of perioperative variables 
 (VerifyNow System), blood loss in high risk  
 multiple electrode cardiac surgery patients  
 platelet aggregometry   
 (Multiplate Analyzer) and   
 PFA (PFA‑100/200)   

ROTEM, rotational thromboelastography; TEG, thromboelastography; PFA, platelet function analyzer. 
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underlying coagulopathy of post‑TBI and to refine precision 
therapies accordingly. This involves establishing diagnostic 
thresholds and developing targeted therapeutic interven‑
tions aimed at effectively managing coagulation disorders. 
Current research lacks prospective diagnostic modalities that 
can accurately determine the timepoint of hemostatic failure, 
making it challenging to define the optimal timing for initi‑
ating anticoagulation therapy in patients with coagulopathy. 
The aging population of patients with TBI, coupled with 
the widespread use of antiplatelet medications and antico‑
agulants, poses a considerable challenge in comprehending 
the distinct impacts of various antiplatelet medications and 
anticoagulants on post‑TBI coagulopathy. Tackling these 
challenges is paramount for improving clinical outcomes and 
minimizing the morbidity and mortality associated with this 
condition. Hence, there is a critical need for more expeditious 
and efficacious techniques to restore coagulation, thereby 
limiting the progression of brain injury in patients on anti‑
coagulant and antiplatelet medications, with the ultimate aim 
of improving outcomes. Moreover, future research focusing 
on the management of coagulopathies in both critically and 
non‑critically ill patients post‑TBI should prioritize not just 
survival rates, but also enhancements in quality of life for 
patients.
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