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Abstract

Background: Previous animal studies have illustrated a modulatory effect of neonatal pain experience on subsequent pain-
related behaviors. However, the relationship between chronic pain status in adulthood and future pain perception remains
unclear.

Methodology/Principal Findings: In the current study, we investigated the effects of inflammatory pain experience on
subsequent formalin-evoked pain behaviors and fear conditioning induced by noxious stimulation in adult rats. Our results
demonstrated an increase of the second but not the first phase of formalin-induced pain behaviors in animals with a history
of inflammatory pain that have recovered. Similarly, rats with persistent pain experience displayed facilitated acquisition and
prolonged retention of pain-related conditioning. These effects of prior pain experience on subsequent behavior were
prevented by repeated morphine administration at an early stage of inflammatory pain.

Conclusions/Significance: These results suggest that chronic pain diseases, if not properly and promptly treated, may have
a long-lasting impact on processing and perception of environmental threats. This may increase the susceptibility of
patients to subsequent pain-related disorders, even when chronic pain develops in adulthood. These data highlight the
importance of treatment of chronic pain at an early stage.
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Introduction

It is a long-held belief that pain is a highly individual and

subjective experience [1]. Much of this variation may result from

the integration of past experiences and future predictions about

noxious stimulation [2]. The experience of pain significantly

affects the physiological, as well as psychological states of

individuals, resulting in anxiety, depression, and even cognitive

deficits [3,4,5]. A sizable body of clinical literature indicates that

people with a history of persistent pain exhibit increased

responsiveness to noxious events, evidenced by changes in pain

threshold [6,7], pain ratings [8,9], and emotional and cognitive

responses [10]. Moreover, once beliefs and expectancies about

pain are formed, they become stable and difficult to modify, even

after the injury has resolved [11].

Converging evidence from animal studies supports a role of

previous experience in pain perception [12,13,14,15]. Early pain

experiences result in long-lasting and potentially detrimental

alterations in nociceptive systems. Both long-term hypoalgesia

and hyperalgesia have been observed as a result of neonatal

noxious experience, suggesting global abnormalities of pain

regulatory mechanisms [12,14,16,17]. Ruda et al. [15] investigat-

ed long-term effects of early pain in rats. They found that rats that

had received an intraplantar hind paw injection of complete

Freund’s adjuvant (CFA) in the post-neonatal period showed a

significantly enhanced nocifensive response in the formalin test

and exacerbated thermal hyperalgesia when re-inflamed by new

CFA injection as adults. These findings were corroborated by

another study, which showed that long-term excessive thermal or

mechanical hyperalgesia after inflammation manifested not only in

the hind paw that received carrageenan in the neonatal period, but

also in the uninjured paw [14]. With conditioning paradigms,

some studies also assessed the effects of prior pain experiences on

pain-related emotional responses [18,19,20]. For example, Hum-

mel et al. found that young rats (less than 150 g) subjected to

neuropathic injury or inflammatory insult displayed a significant

increase in conditioned place aversion to a pain-paired environ-

ment; this response was prevented by systemic morphine

treatment prior to conditioning trials [18]. Using adult male and

female rats in separate studies, Aliosi et al. also demonstrated long-

term consequences of adult exposure to formalin pain by

investigating the effects of gonadectomy and repeated formalin

treatment on behavioral responses. They found that the effects

were sex-dependent and modulated by gonadal hormones in both

males and females [21,22,23].
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Despite the many animal studies of the modulatory effects of

pain experience on subsequent pain behaviors, at least two

important issues remain unresolved. First, most available evidence

derives from studies of the effects of neonatal injury on pain

responses. The ability of chronic pain experience in adulthood to

shape later pain perception and responses is largely unknown.

Second, very few studies have examined the relationship between

pain experience and later pain expectancy. To address these

issues, the present study investigated the effects of an inflammatory

pain history on subsequent formalin-evoked pain behaviors, as

well as tone-elicited anticipatory pain responses, in adult rats. A

trace conditioning paradigm was applied to associate an auditory

cue with a noxious laser stimulus, and correlation analysis was

used to examine the relationship between pain sensitivity and later

anticipatory responses.

Materials and Methods

Animals
Eighty-two male Sprague-Dawley rats (180–200 g, 8 weeks of

age) from the Laboratory Animal Center of the Academy of

Military Medical Sciences were used in this study. All rats were

housed individually and maintained on a reverse 12 h light cycle

(lights on at 7:00 P.M.). Food and water were available ad libitum.

Rats were handled twice a day and were acclimatized to the

experimental apparatus for 1 h before each behavioral procedure.

Experimental protocols were approved by the Institutional Review

Board of the Institute of Psychology, Chinese Academy of Sciences

(confirmation number: A09013) and were in strict accordance with

the National Institutes of Health Guide for Care and Use of

Laboratory Animals. All attempts were made to minimize the

number of animals used and to avoid any undue suffering.

Drugs
Complete Freund’s adjuvant (CFA; Sigma, St. Louis, MO) was

delivered in a volume of 100 ml per rat. Morphine hydrochloride

(Qinghai Pharmaceutical Factory, Qinghai, China) was dissolved

in sterile saline (0.9% NaCl) at a concentration of 10 mg/ml and

was administered at 5 mg/kg, s.c. to reduce pain associated with

chronic inflammation [24,25]. Stock formaldehyde solution (37%

formaldehyde or 100% formalin; Beijing Chemical Reagents

Company, Beijing, China) was diluted to 5% (v/v) formalin in

isotonic saline.

Experimental design
Two experiments were conducted in this study. We used a

CFA-induced inflammatory pain model to investigate the effects of

chronic pain history on subsequent pain behavior (experiment 1)

and pain expectancy (experiment 2).

Rats were divided into three groups: normal saline (NS, n = 18),

CFA (n = 48), and CFA plus morphine (CFA+MOR, n = 16),

according to the initial treatment on day 0 (i.e., intraplantar

injection of saline for the NS group and CFA for the other two

groups). Rats in the CFA+MOR group received morphine, s.c.

twice per day (12-h interval) for 4 consecutive days (day 0, first

injection at 1 h before CFA inoculation; day 1–3, first injection at

6 h before pain test). Animals were then allowed to recover for 30

days and underwent a formalin test (experiment 1) or pain-related

fear conditioning (experiment 2) on day 31 (Fig. 1A). The design

was between groups, such that each rat participated in only one

experiment and one treatment group.

In the formalin test, all groups of rats (NS, CFA, and

CFA+MOR, n = 8/group) received 5% formalin, s.c. into the

intact hind paws. During the conditioning procedure, tone-laser

pairings and extinction took place in consecutive sessions. Baseline

orientating reactions (ORs) to auditory stimuli and nociceptive

thresholds of laser pulses were measured before conditioning. The

rats in the CFA group were further divided into CFA/

conditioning (n = 26) and CFA/random (n = 14) subgroups,

receiving tone-laser pairing and randomly sequenced tone and

laser stimulations, respectively. In the CFA/conditioning group,

the hind paws ipsilateral (CFA/ip, n = 17) or contralateral (CFA/

con, n = 9) to the previous CFA injection were tested separately. In

the conditioning session, 40 tone-laser pairings were presented,

followed by an immediate 30-trial extinction test to evaluate the

acquisition of a conditioned response (i.e., anticipatory pain

behavior). Retention tests were performed at 2, 4, and 8 weeks

after the extinction session to assess maintenance of the negative

affect (Fig. 1B).

Pain tests
Chronic inflammatory pain. Chronic inflammation and

hyperalgesia were elicited by intraplantar injection of CFA into the

rat hindpaw [26]. Control rats received the same volume of saline.

The CFA/NS injection was counterbalanced across left and right

hind paws. Paw withdrawal latency (PWL) was measured 1 day

before (baseline), and 1, 3, 7, 14, and 28 days after CFA or NS

administration. A beam of light from a radiant heat apparatus

(100-W projector lamp) was focused on the plantar surface of the

hindpaw, and PWL was defined as the time between light onset

and paw lift. The intensity of light was adjusted to achieve PWLs

around 8 s at baseline. A cut-off time of 22 s was used to avoid

tissue damage. For each rat, the PWL was tested five times at 5-

min intervals. Latency was calculated as the mean of four trials,

excluding the first familiarization trial.

Formalin test. Rats received 5% formalin (50 ml, s.c.) into

the plantar surface of the intact hind paw. Nociceptive behaviors

were videotaped for 60 min and quantified by measuring the time

spent biting or licking the injected paw in each 5-min intervals.

Tone-laser conditioning
Apparatus and stimuli. Rats were placed in a custom-

designed Plexiglas chamber (22622630 cm) with holes (3 mm

diameter, 3 mm intervals) in the bottom. Tones (80 dB, 2900 Hz,

100-ms duration) from a speaker on the back wall of the chamber

were used as conditioned stimuli (CS). A surgical CO2 laser

stimulator (Model DM-300, Changchun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Science) was

employed to generate the unconditioned stimulus (US), a noxious

laser radiation beam in the infrared spectrum (10.6-mm wave

length, 20 ms pulse width). The laser beam was applied to the

plantar surface of the rat hind paw with a 1-mm diameter. To

avoid habitation, sensitization, or skin damage, the location of the

stimulation site was varied. The chamber was cleaned with 75%

alcohol between rats.

The laser power was set to the withdrawal threshold to ensure

an equivalent sensation level for each rat. A ramping procedure

was used to measure the threshold intensity of laser pulses, as

described by Brown et al. [27]. Briefly, rats were presented with

laser stimuli beginning at 0.5 W, which was increased by 0.5 W

until significant withdrawal behavior was observed.

Behavioral assessment. The laser- or tone-elicited behavior

was scored according to Fan et al., who proposed five components

of nocifensive behaviors: head turning, flinching, withdrawal,

licking, and body movement [28,29]. Head turning included

shaking or elevating the head. Flinching involved a small abrupt

jerking body movement (#1 cm). Withdrawal was recorded when

a rat retracted its paw by $1 cm away from the stimulus. Licking
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was scored when a rat retracted the paw $1 cm and licked it.

Body movement involved body turning and running. In the

present study, the behavioral scoring criteria were modified as

follows: 0, immobility; 1, head turning or ear pricking; 2, flinching;

3, withdrawal, licking, and body movement. Behavior was

videotaped, only the maximum score was recorded within each

trial, and behavioral responses were assessed by cumulative scores

every 5 successive trials.

Conditioning. A modified trace conditioning paradigm was

applied to associate the auditory cue with the laser stimulus

(Fig. 1B). In each pairing trial, the tone cue was presented 1–3 s

before laser stimulation. The average inter-trial interval was 75 s

(range 60–90 s).

Statistical analysis
Data were expressed as means 6 SEM. GraphPad Prism 5.01

(GraphPad Software, Inc., La Jolla, CA) and Statistica 6.0 were

used for statistical analyses and graph generation. Data affected by

two or three factors were analyzed with multifactor analysis of

variance (ANOVA). Student-Newman-Keuls tests were used for post

hoc comparisons. The relationship between pain threshold and

later anticipatory response was examined using Pearson correla-

tions. Results were considered statistically significant if P,0.05.

Results

Chronic pain experience facilitates later pain behaviors in
the formalin test

In experiment 1, we examined the effect of pain experience on

later responses to formalin-induced spontaneous pain in rats.

Inflammatory pain was produced by CFA, s.c. and evaluated by

measuring thermal hyperalgesia in the CFA-injected paw. As

shown in Figure 2A, intraplantar injection of CFA induced a

significant decrease in PWL, compared to saline controls and the

pre-CFA baseline (two-way ANOVA, group effect: F (2,

79) = 73.88, P,0.0001; time effect: F (5, 395) = 25.54,

P,0.0001; interaction: F (10, 395) = 22.47, P,0.0001). Thermal

hyperalgesia persisted from day 1 through 14 and recovered at day

28 post-inoculation. Early treatment with morphine completely

prevented the development of hyperalgesia, as demonstrated by

stable withdrawal thresholds in the CFA+MOR group over the

28-day observation period (Fig. 2A).

After recovery from inflammatory pain, rats received formalin,

s.c. into the unaffected hind paw. Formalin injection resulted in a

typical biphasic pattern of licking behavior in all three groups, as

shown in Figure 2B. Importantly, licking behaviors of rats in the

CFA group were significantly enhanced relative to the NS and

Figure 1. Schematic representation of the experimental design. (A) Chronic inflammatory pain experience. Animals received an intraplantar
injection of complete Freund’s adjuvant (CFA) or normal saline (NS) on day 0. A subset of CFA animals were given morphine (5 mg/kg, s.c.) twice a
day for 4 consecutive days, as indicated by the thick horizontal bar. Paw withdrawal latency (PWL) tests were performed 1 day before, and 1, 3, 7, 14,
and 28 days after injection, as indicated by arrows. On day 31 after CFA inoculation, a formalin test was conducted with 5% formalin solution (s.c.)
into the intact hind paw to produce spontaneous pain (experiment 1). (B) Conditioning, extinction and retention (experiment 2). A tone-laser
conditioning paradigm with 1–3 s variable intervals was applied for 40 trials, followed by an immediate extinction test of 30 trials and long-term
retention tests at weeks 2, 4, and 8 after extinction, as indicated by arrows.
doi:10.1371/journal.pone.0036767.g001
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CFA+MOR groups (two-way ANOVA, group effect: F (2,

21) = 28.03, P,0.0001; interaction: F (22, 231) = 1.94, P,0.01).

Cumulative licking time showed a striking increase in phase II (11

to 60 min, 738.9639.1 vs. 391.4632.4 and 473.1626.7 s,

respectively, P,0.001) but not in phase I (0 to 10 min,

152.2617.5 vs. 106.7615.4 and 107.4617.1 s, respectively,

P.0.05) in CFA-treated rats (ANOVA followed by Student-

Newman-Keuls test, see Fig. 2C). These results suggest that pre-

exposure to persistent pain may increase the susceptibility to

environmental injuries and magnify the negative perception of

those injuries.

Chronic pain experience enhances fear conditioning
induced by noxious stimulation

In experiment 2, we examined the effect of inflammatory pain

on later anticipatory responses.

Baseline reaction to tone and laser stimulation. After

animals recovered from prior inflammatory insults, aversive

Pavlovian conditioning was conducted in which a non-aversive

auditory stimulus (the CS) was followed by a noxious laser stimulus

(the US). In the baseline test, the orienting response elicited by the

tone was recorded, including head turning, ear pricking, rearing,

and even flinching. Initially, a more intense orienting response was

observed in CFA rats relative to NS or CFA+MOR rats

(interaction: F (10, 275) = 4.30, P,0.001, see Fig. 3A). After

repetition of the auditory stimulus, however, no difference was

found among the three groups in the last 10 trials.

Laser-induced nociception was measured by a ramping

procedure, in which the threshold laser intensity was determined

for each individual rat. The hind paws ipsilateral (CFA/ip) and

contralateral (CFA/con) to the previous CFA injection were tested

separately. A one-way ANOVA revealed no significant differences

in the withdrawal thresholds among NS, CFA/ip, CFA/con,

CFA+MOR, and CFA/random groups (data not shown).

Changes in anticipatory pain behaviors after

inflammatory pain experience. Responses to the tone cue

alone during tone-laser pairing (i.e., conditioning) and testing (i.e.,

acute extinction) are shown in Figure 3B. With repeated tone-laser

pairings, rats in both CFA groups and the saline group exhibited

development of an anticipatory conditional orienting response. It

should be noted that the anticipatory responses in the CFA/

conditioning rats were established within 10 trials of pairing, while

in the NS rats, they were established after 26 trials, and they were

never established in the CFA/random rats (group6time interac-

tion, F (60, 795) = 7.45, P,0.0001; group effect, F (4, 53) = 33.40,

P,0.0001, time effect: F (15, 795) = 93.03, P,0.0001, see Fig. 3B).

A significantly stronger and earlier anticipatory response was

revealed in the CFA/ip group at trials 6–30 and in the CFA/con

group at trials 6–25, in contrast with the NS group (Student-

Newman-Keuls test, all P,0.01). Even in the testing (extinction)

session, the CFA/ip rats maintained a higher response to tone

stimulation (trials 6–30) compared to the NS group, which

dropped rapidly towards zero. Interestingly, rats in the CFA+-
MOR group failed to acquire the conditioned response, evident as

a non-significant increase in the initial 6–20 pairing trials. In

addition, there were no significant differences between the CFA/ip

and CFA/con rats over pairing or testing sessions.

To fully address whether pain experience can cause a prolonged

response to new pain-related events, we examined retention of the

conditioned orienting response at 2, 4, and 8 weeks after the acute

extinction session without any further exposure to the conditioning

paradigm. The results are shown in Figure 4A. Remarkable tone-

evoked ‘‘nocifensive’’ behaviors (e.g., flinching, foot elevation,

licking, and even body movement) were observed in the CFA/ip

group throughout the 8 weeks of retention testing. These rats

displayed significantly higher behavioral scores compared to the

NS, CFA+MOR, and CFA/random groups (group effect, F (3,

35) = 42.62, P,0.0001, at 2 weeks; F (3, 29) = 42.65, P,0.0001, at

4 weeks; F (3, 29) = 23.85, P,0.0001, at 8 weeks). Unlike animals

Figure 2. Effect of chronic pain history on formalin pain. (A) The
time course of CFA-induced thermal hyperalgesia. A significant
decrease was observed in PWL of the CFA-injected paw starting at
day 1 and persisting at least 14 days, compared with baseline and saline
control. Morphine treatment over day 0–3 prevented CFA-induced
hyperalgesia. (B) Time-effect curve of chronic pain experience on
formalin-induced spontaneous pain behaviors. Compared with NS and
CFA+MOR rats, licking behaviors in CFA-treated rats were significantly
enhanced in phase II (11–60 min), but not phase I (0–10 min). (C)
Cumulative licking time in the formalin test. CFA: complete Freund’s
adjuvant; NS: normal saline; MOR: morphine. *, **, ***: P,0.05, P,0.01,
and P,0.001, respectively, compared with the NS group. #, ##, and
###, P,0.05, P,0.01, and P,0.001, respectively, compared with the
CFA+MOR group.
doi:10.1371/journal.pone.0036767.g002
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in the other three groups, CFA-treated rats exhibited a high level

of conditioned orienting with no decrement in responding during

the course of extinction (group6time interaction, F (15,

175) = 7.42, P,0.0001, at 2 weeks; F (15, 145) = 3.98,

P,0.0001, at 4 weeks; F (15, 145) = 2.08, P = 0.014, at 8 weeks),

indicating maintenance of a high degree of negative emotional

and/or cognitive responses due to early chronic pain experience.

Correlation between chronic pain experience and long-

term anticipatory behavior. Pearson correlation coefficients

were calculated to assess the relationship between thermal

hyperalgesia experience and later retention of conditioned

behavior (Fig. 4B and 4C). Significant negative correlations were

found between average PWL during earlier inflammation and

later tone-induced behavior only in CFA rats for all retention

sessions (2 weeks, r = 20.8667, P = 0.0053; 4 weeks, r = 20.8749,

P = 0.0044; 8 weeks, r = 20.8901, P = 0.0030, see Fig. 4B). These

results suggest that more intense early pain experiences are

associated with more persistent acquired pain-related responses. In

contrast, this phenomenon was not observed in either the NS or

CFA+MOR groups.

Figure 3. Effects of chronic pain experience on the formation test and extinction of tone-laser conditioning. (A) Orientating responses
(ORs) and habituation. Relative to the other two groups, rats in the CFA group displayed more intense ORs following tone presentation, which
gradually diminished in the final 10 trials. (B) Tone-induced behavioral responses during baseline, conditioning, and extinction sessions. Scores in the
pairing and testing trials in the CFA/ip group were significantly higher than those in the NS, CFA+MOR, and CFA/random (unpaired CS-US) groups.
There were no significant differences in behavioral scores between CFA/ip and CFA/con rats across all trials. **, ***: P,0.01 and P,0.001, respectively,
CFA/ip vs. NS.
doi:10.1371/journal.pone.0036767.g003
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To determine which period of inflammatory pain can best

predict later aversive conditioning, we further investigated

correlations between CFA-induced thermal hyperalgesia at

different time points and later retention behavior at 2 though 8

weeks (Fig. 4C). A stage-specific effect of pain history was found on

long-term pain-related anticipation. Significant negative correla-

tions were only found at the late stage of CFA-induced

inflammation (day 7–28). These results further corroborated the

contribution of pain history to maintenance of long-term negative

emotion and cognition.

Discussion

The present study investigated the effects of inflammatory pain

history on subsequent formalin-evoked pain behaviors, as well as

pain-related anticipatory responses, in adult male rats. We

confirmed with a CFA inflammatory pain model that chronic

pain experience in adulthood can reshape pain-related behavior in

later life, which is in agreement with Hummel et al. (2008) [18].

We found that after recovery from CFA-induced hyperalgesia,

paw licking behavior in response to formalin injection was elevated

specifically in the second phase, which is presumed to have a

greater motivational-affective component [30]. Furthermore, we

obtained evidence that rats with pain experience showed enhanced

acquisition and persistence of anticipatory responses to threatening

stimuli, indicating that chronic pain history was associated with a

subsequent higher level of vigilance against potential threats. In

addition, we demonstrated that hyperalgesia in the late phase of

the initial inflammatory pain correlated with sustained high

vigilance. Finally, we found that the aforementioned behavioral

changes resulting from pain experience were effectively prevented

by morphine treatment at an early stage of chronic pain.

Prior pain experience influences affective pain processing
One of the central findings of this study was that phase II paw-

licking behavior in the formalin model was exacerbated in rats

with a history of inflammatory pain, even after recovery of CFA-

induced hyperalgesia. This result supports previous findings that

the second phase of the formalin test occurred earlier in neonatal

CFA-treated rats [15]. It has been suggested that biphasic

behaviors in the formalin test depend on direct chemical activation

of nociceptors in the early phase, but on ongoing nociceptor

activity coupled with central sensitization in the late phase [31,32].

Thus, pre-exposure to inflammatory pain may have facilitated

subsequent central sensitization rather than location-specific

nociceptive afferents.

Since the second phase of formalin pain has a relatively longer

duration, it is presumed to have a greater motivational-affective

component than momentary pain [30]. For example, lidocaine

injections into limbic areas, such as the lateral hypothalamus [33],

reticular nuclei [34], and cingulum bundle [32,34], have been

shown to produce analgesia in the formalin test but not in the foot-

flick test. Vaccarino and Melzack [34] maintained that the

response in the formalin test may involve integration of

motivational and affective behaviors to protect the injured area.

Evidence from electrophysiological studies suggests that formalin

injection induced prolonged neuronal activity in the thalamocor-

tical medial pain pathway [35]. Thus, prior inflammatory pain

may selectively intensify the affective-motivational rather than the

nociceptive dimension of subsequent pain.

In further support of this argument, no differences were

observed between rats with and without pain history in withdrawal

thresholds measured by noxious thermal stimuli one month after

CFA/NS injection, whereas the tone cue elicited nocifensive

responses were significantly enhanced by pre-exposure to inflam-

matory pain. Enhanced conditioning in CFA-treated rats may be a

result of enhanced processing of the US, given that the asymptotic

level of conditioning is not increased in CFA-treated rats. In other

words, it is the affective dimension of the painful US that supports

fear conditioning [36]. It is not possible that sustained enhanced

responding to the CS was a result of long-term sensitization

because rats receiving pseudo-conditioning (CFA/random group)

failed to develop a conditioned response, in contrast to those

receiving conditioning training, although both groups experienced

chronic inflammatory pain. The difference in extinction between

NS and CFA groups immediately following conditioning may not

be surprising because the CFA group exhibited asymptotic

conditioning for a longer period of time than the NS group. It

has been suggested that learned behavior (i.e., tone-induced

conditioned avoidance) in rats reflects the affective component of

pain [37]. Clinical observations have demonstrated that in

comparison with the pain perception per se, patients’ expectancies

about potential pain are more likely to be affected by previous

experience [4,38]. Using healthy human subjects, Bayer et al. [10]

showed that prior exposure to ice water remarkably influenced

reactivity to external suggestions of pain but did not increase the

frequency of pain reports. Therefore, the present findings suggest

that a history of chronic pain experience may change the cognitive

aspect of pain in parallel with enhancing the negative affect. This

combination may instill a strong anticipation of negative

consequences. It is possible that enhanced cognitive expectation

and affective reactivity not only generate more pain-related

problems, but also give rise to affective disorders such as anxiety

and depression, which are often found to be comorbidity with

chronic pain [39,40].

Late-stage hyperalgesia in inflammatory pain predicts
future pain vulnerability

Hypervigilance to aversive stimuli is a hallmark of functional

pain disorders [41]. Consistent with previous findings [18], the

current study revealed a persistent hypervigilance represented by

an anticipatory response that lasted for at least 8 weeks without

any additional training. A generalized hypervigilance to potentially

aversive stimuli could explain heightened rates of somatic

symptoms in pain patients [42]. Therefore, previous pain history,

in combination with current painful accidents, may lead to

prolonged pain and disability.

In the current study, we discovered that pre- and early-stage

treatment with morphine fully abolished the effect of CFA-induced

pain on later pain vigilance. This supports the clinical applications

of preemptive analgesia [43,44,45], as well as recent findings that

pre-emptive morphine analgesia can attenuate long-term conse-

quences of neonatal inflammation in rats [46].

Figure 4. Effect of pain experience on long-term retention of conditioned responses. (A) Long-term retention of tone-induced responses
in CFA rats throughout the 8-week period following conditioning. ***: P,0.001, compared with the NS, CFA+MOR, and CFA/random groups. (B)
Correlations between mean PWLs during recovery of CFA and conditioned responses during long-term retention. Significant negative correlations
were observed only in CFA-treated rats. (C) Temporal dynamics of correlations between thermal hyperalgesia and retention responses in CFA-injected
rats. Significant correlations were observed from day 7–28 after CFA inflammation.
doi:10.1371/journal.pone.0036767.g004
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The current studies revealed a significant correlation between

late-stage hyperalgesia (days 7–28 following CFA injection) and

long-term retention of the conditioned response. Supporting

evidence from clinical studies indicates that the chronicity of pain

involves more psychological components than acute pain [47,48]

and is meaningfully related to future disability or distress

[49,50,51]. In contrast, we failed to find any link between early-

stage hyperalgesia (days 1–3) and later retention behavior. Similar

results were reported in a very recent work showing that pain

sensitivity in ‘tail-flick’ and ‘flinch-jump’ tests was unrelated to the

conditioned fear response in normal rats [19]. Therefore, we

propose that the degree of late-stage hyperalgesia during chronic

pain may be a good predictor of long-term pain-related

hypervigilance.

Possible neurophysiological and psychological
mechanisms

One mechanism that may underlie the phenomenon whereby a

history of chronic pain increases the risk of future painful diseases

is long-term plastic changes in the central neural circuits that

process pain [3,52,53]. It is believed that development of chronic

pain is a progressive process from initial changes in presynaptic

release and postsynaptic receptor modifications to a final

reorganization of cortical networks [54]. Our current study

revealed that early treatment with morphine fully prevented

hypersusceptibility to subsequent formalin insult and hypervigi-

lance to threat-indicating cues. This was consistent with previous

reports that early pain management plays a crucial role in

preventing long-lasting alterations of central pain processing

[55,56,57]. However, it is still unclear why an acute analgesic

dose of morphine affects the acquisition of fear conditioning as

long as one month after administration. By employing classical

conditioning of the rabbit’s nictitating membrane response,

Schindler and colleagues found that morphine significantly

retarded (1 and 5 mg/kg) or completely blocked (10 mg/kg)

acquisition of conditioned responses [58,59]. Most importantly,

retarded or blocked acquisition of conditioned responses could still

be detected when rabbits were tested 5 days after cessation of

morphine drug injections. This is consistent with our current

results. Additionally, in a recent study, Nugent et al. found that

even a single dose of morphine was potent enough to impede long-

term potentiation of GABAA-mediated synaptic transmission, even

after 24 h when drug effects are no longer thought to be present

[60]. Additional studies are warranted to further investigate this

question.

Cognitive processing may also underlie this phenomenon. The

association between previous pain experience and long-term

hyper-reactivity may reflect implicit memory, in which previous

experiences alter responses without conscious awareness [61]. It is

presumed that chronic pain states lead to not only the

development of explicit somatosensory pain memories that

manifest in plastic alterations in brain areas related to pain, but

also that more widespread implicit memories are created in

response to psychological processes, such as operant or classical

conditioning [11]. This implicit memory trace, which takes the

form of abstract representations [62] and is invulnerable to

disruption [63,64,65], may enhance pain sensitization [66] and

even lead to pain perception in the absence of peripheral

stimulation [67,68]. In animal studies, conditioned emotion

induced by a single cue is usually used to represent implicit

memory [69,70]. In the current study, conditioned responses

observed in pain-experienced rats were invulnerable to extinction,

which is characteristic of implicit memory [71]. Thus, experience

of chronic pain may alter the implicit content of pain concepts,

hence changing sensitivity to pain-related learning and response

patterns.

In conclusion, inflammatory pain history exacerbated subse-

quent spontaneous pain and exerted facilitatory effects on long-

term negative affective responses to pain-related cues in adult rats.

Furthermore, the extent of hyperalgesia at the late stage of

inflammatory pain was able to predict future emotional dysreg-

ulation. Our findings highlighted the importance of early pain

control in preventing long-term effects on pain perception and

expectation. A limitation of this study was that it did not examine

sex differences, as the results are based only on male rats. Further

studies should extend these findings by including females.

Acknowledgments

The authors are grateful to Dr. George S. Borszcz for his critical comments

and suggestions in interpretation of results.

Author Contributions

Conceived and designed the experiments: FL JYW. Performed the

experiments: SGL. Analyzed the data: SGL JYW FL. Contributed

reagents/materials/analysis tools: FL. Wrote the paper: SGL JYW FL.

References

1. Coghill RC, McHaffie JG, Yen YF (2003) Neural correlates of interindividual

differences in the subjective experience of pain. Proc Natl Acad Sci U S A 100:

8538–8542.

2. Koyama T, McHaffie JG, Laurienti PJ, Coghill RC (2005) The subjective

experience of pain: Where expectations become reality. Proc Natl Acad Sci U S A

102: 12950–12955.

3. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, et al. (2004) Chronic

back pain is associated with decreased prefrontal and thalamic gray matter

density. J Neurosci 24: 10410–10415.

4. Crombez G, Vlaeyen JWS, Heuts PHTG, Lysens R (1999) Pain-related fear is

more disabling than pain itself: Evidence on the role of pain-related fear in

chronic back pain disability. Pain 80: 329–339.

5. Gamsa A, Vikis-Freibergs V (1991) Psychological events are both risk factors in,

and consequences of, chronic pain. Pain 44: 271–277.

6. Bachiocco V, Scesi M, Morselli AM, Carli G (1993) Individual pain history and

familial pain tolerance models - Relationships to postsurgical pain. Clin J Pain 9:

266–271.

7. Hermann C, Hohmeister J, Demirakca S, Zohsel K, Flor H (2006) Long-term

alteration of pain sensitivity in school-aged children with early pain experiences.

Pain 125: 278–285.

8. Robinson ME, Wise EA (2004) Prior pain experience: Influence on the

observation of experimental pain in men and women. J Pain 5: 264–269.

9. Schmelzle-Lubiecki BM, Campbell KA, Howard RH, Franck L, Fitzgerald M

(2007) Long-term consequences of early infant injury and trauma upon
somatosensory processing. Eur J Pain 11: 799–809.

10. Bayer TL, Coverdale JH, Chiang E, Bangs M (1998) The role of prior pain
experience and expectancy in psychologically and physically induced pain. Pain

74: 327–331.

11. Flor H, Diers M (2007) Limitations of pharmacotherapy: Behavioral approaches
to chronic pain. Handb Exp Pharmacol. pp 415–427.

12. Lidow MS (2002) Long-term effects of neonatal pain on nociceptive systems.

Pain 99: 377–383.

13. Melzack R, Scott TH (1957) The effects of early experience on the response to

pain. J Comp Physiol Psychol 50: 155–161.

14. Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, et al. (2004)
Characterization of basal and re-inflammation-associated long-term alteration

in pain responsivity following short-lasting neonatal local inflammatory insult.
Pain 110: 588–596.

15. Ruda MA, Ling QD, Hohmann AG, Peng YB, Tachibana T (2000) Altered

nociceptive neuronal circuits after neonatal peripheral inflammation. Science
289: 628–631.

16. Bhutta AT, Rovnaghi C, Simpson PM, Gossett JM, Scalzo FM, Anand KJ

(2001) Interactions of inflammatory pain and morphine in infant rats: Long-term
behavioral effects. Physiol Behav 73: 51–58.

17. Sternberg WF, Scorr L, Smith LD, Ridgway CG, Stout M (2005) Long-term

effects of neonatal surgery on adulthood pain behavior. Pain 113: 347–353.

Pain History Predicts Hypervigilance to Threats

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36767



18. Hummel M, Lu P, Cummons TA, Whiteside GT (2008) The persistence of a

long-term negative affective state following the induction of either acute or
chronic pain. Pain 140: 436–445.

19. Lehner M, Wislowska-Stanek A, Maciejak P, Szyndler J, Sobolewska A, et al.

(2010) The relationship between pain sensitivity and conditioned fear response
in rats. Acta Neurobiol Exp 70: 56–66.

20. Pedersen LH, Scheel-Kruger J, Blackburn-Munro G (2007) Amygdala GABA-A
receptor involvement in mediating sensory-discriminative and affective-motiva-

tional pain responses in a rat model of peripheral nerve injury. Pain 127: 17–26.

21. Aloisi AM, Ceccarelli I, Fiorenzani P (2003) Gonadectomy affects hormonal and
behavioral responses to repetitive nociceptive stimulation in male rats.

Ann N Y Acad Sci 1007: 232–237.
22. Ceccarelli I, Fiorenzani P, Massafra C, Aloisi AM (2006) Repeated nociceptive

stimulation induces different behavioral and neuronal responses in intact and
gonadectomized female rats. Brain Res 1106: 142–149.

23. Ceccarelli I, Scaramuzzino A, Massafra C, Aloisi AM (2003) The behavioral and

neuronal effects induced by repetitive nociceptive stimulation are affected by
gonadal hormones in male rats. Pain 104: 35–47.

24. Loyd DR, Morgan MM, Murphy AZ (2008) Sexually dimorphic activation of
the periaqueductal gray-rostral ventromedial medullary circuit during the

development of tolerance to morphine in the rat. Eur J Neurosci 27: 1517–1524.

25. Yu YC, Koo ST, Kim CH, Lyu Y, Grady JJ, et al. (2002) Two variables that can
be used as pain indices in experimental animal models of arthritis. J Neurosci

Meth 115: 107–113.
26. Wang N, Wang JY, Luo F (2009) Corticofugal outputs facilitate acute, but

inhibit chronic pain in rats. Pain 142: 108–115.
27. Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AK (2008) Modulation of

pain ratings by expectation and uncertainty: Behavioral characteristics and

anticipatory neural correlates. Pain 135: 240–250.
28. Fan RJ, Kung JC, Olausson BA, Shyu BC (2009) Nocifensive behaviors

components evoked by brief laser pulses are mediated by C fibers. Physiol Behav
98: 108–117.

29. Fan RJ, Shyu BC, Hsiao S (1995) Analysis of nocifensive behavior induced in

rats by CO2 laser pulse stimulation. Physiol Behav 57: 1131–1137.
30. Vaccarino AL, Clemmons HR, Mader GJ, Jr., Magnusson JE (1997) A role of

periaqueductal grey NMDA receptors in mediating formalin-induced pain in the
rat. Neurosci Lett 236: 117–119.

31. Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test -
Characteristic biphasic pain response. Pain 38: 347–352.

32. Vaccarino AL, Melzack R (1992) Temporal processes of formalin pain:

Differential role of the cingulum bundle, fornix pathway and medial
bulboreticular formation. Pain 49: 257–271.

33. Tasker R, Choiniere M, Libman S, Melzack R (1987) Analgesia produced by
injection of lidocaine into the lateral hypothalamus. Pain 31: 237–248.

34. Vaccarino AL, Melzack R (1989) Analgesia produced by injection of lidocaine

into the anterior cingulum bundle of the rat. Pain 39: 213–219.
35. Huang J, Chang JY, Woodward DJ, Baccala LA, Han JS, et al. (2006) Dynamic

neuronal responses in cortical and thalamic areas during different phases of
formalin test in rats. Exp Neurol 200: 124–134.

36. Borszcz GS (1995) Pavlovian conditional vocalizations of the rat - A model
system for analyzing the fear of pain. Behav Neurosci 109: 648–662.

37. Shyu BC, Chai SC, Kung JC, Fan RJ (2003) A quantitative method for assessing

of the affective component of the pain: Conditioned response associated with
CO2 laser-induced nocifensive reaction. Brain Res Brain Res Protoc 12: 1–9.

38. Cipher DJ, Fernandez E (1997) Expectancy variables predicting tolerance and
avoidance of pain in chronic pain patients. Behav Res Ther 35: 437–444.

39. Arnow BA, Hunkeler EM, Blasey CM, Lee J, Constantino MJ, et al. (2006)

Comorbid depression, chronic pain, and disability in primary care. Psychosom
Med 68: 262–268.

40. Leo RJ (2005) Chronic pain and comorbid depression. Curr Treat Options
Neurol 7: 403–412.

41. Whitehead WE, Palsson OS (1998) Is rectal pain sensitivity a biological marker

for irritable bowel syndrome: Psychological influences on pain perception.
Gastroenterology 115: 1263–1271.

42. Schmulson M, Lee OY, Chang L, Naliboff B, Mayer EA (1999) Symptom
differences in moderate to severe IBS patients based on predominant bowel

habit. Am J Gastroenterol 94: 2929–2935.
43. Katz J, Kavanagh BP, Sandler AN, Nierenberg H, Boylan JF, et al. (1992)

Preemptive analgesia clinical evidence of neuroplasticity contributing to

postoperative pain. Anesthesiology 77: 439–446.

44. Kissin I (2000) Preemptive analgesia. Anesthesiology 93: 1138–1143.

45. Moiniche S, Kehlet H, Dahl JB (2002) A qualitative and quantitative systematic

review of preemptive analgesia for postoperative pain relief - The role of timing

of analgesia. Anesthesiology 96: 725–741.

46. Laprairie JL, Johns ME, Murphy AZ (2008) Preemptive morphine analgesia

attenuates the long-term consequences of neonatal inflammation in male and

female rats. Pediatr Res 64: 625–630.

47. Boersma K, Linton SJ (2005) How does persistent pain develop? An analysis of

the relationship between psychological variables, pain and function across stages

of chronicity. Behav Res Ther 43: 1495–1507.

48. Turk DC, Okifuji A (2002) Psychological factors in chronic pain: Evolution and

revolution. J Consult Clin Psychol 70: 678–690.

49. Boersma K, Linton SJ (2006) Psychological processes underlying the

development of a chronic pain problem: A prospective study of the relationship

between profiles of psychological variables in the fear-avoidance model and

disability. Clin J Pain 22: 160–166.

50. Hasenbring M, Hallner D, Klasen B (2001) Psychological mechanisms in the

transition from acute to chronic pain: Over- or underrated? Schmerz 15:

442–447.

51. Pincus T, Burton AK, Vogel S, Field AP (2002) A systematic review of

psychological factors as predictors of chronicity/disability in prospective cohorts

of low back pain. Spine 27: E109.

52. Ko S, Zhuo M (2004) Central plasticity and persistent pain. Drug Discov Today

Dis Model 1: 101–106.

53. Zhuo M (2006) Molecular mechanisms of pain in the anterior cingulate cortex.

J Neurosci Res 84: 927–933.

54. Zhuo M (2008) Cortical excitation and chronic pain. Trends Neurosci 31:

199–207.
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