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Amyotrophic lateral sclerosis (ALS) is
a progressive adult-onset neurode-

generative disorder characterized by the
selective loss of upper and lower motor
neurons. Mutations in superoxide dismu-
tase (SOD1) cause about 20 percent of
familial ALS which is accompanied by
accumulation of misfolded SOD1 onto
intracellular organelles. Recently, we
identified the 12 kDa macrophage
migration inhibitory factor (MIF) as a
chaperone for mutant SOD1 which is
abundant in non-neuronal tissues. Puri-
fied recombinant MIF was shown to
directly inhibit mutant SOD1 misfolding
and association with mitochondria and
ER. Elevating MIF in neuronal cells
inhibited the accumulation of misfolded
SOD1 and its association with mitochon-
dria and ER, and extended survival of
mutant SOD1-expressing motor neu-
rons. Our results revealed that the levels
of MIF protein are very low in motor
neurons, implicating low chaperone
activity as a component of selective vul-
nerability of motor neurons to mutant
SOD1 misfolding and toxicity.

Amyotrophic lateral sclerosis (ALS),
also called Lou Gehrig’s disease, is the
most common form of motor neuron dis-
ease. It is a fatal adult-onset neurodegener-
ative disease with major characteristic
symptoms including muscle weakness,
spasticity, atrophy, paralysis and prema-
ture death. Motor neurons in the cortex,
brain stem, and spinal cord gradually
degenerate in ALS patients, and most ALS
patients die within 2–5 y from disease
onset due to respiratory failure. However,
approximately 10% of patients survive
more than 10 y. The typical age of onset is

between 50 to 60 y for most forms of
ALS. The disease significantly affects the
patient’s quality of life, being character-
ized by progressive muscle weakness, atro-
phy, and spasticity. ALS so far is incurable
and there is only one FDA approved treat-
ment for use in ALS, the drug riluzole.
This drug delays the onset of ventilator-
dependence and may extend life by up to
3 months.1 Accordingly, there is an urgent
need for therapeutics for ALS.

Most of the cases of ALS are sporadic
(SALS) lacking any apparent genetic link-
age, but 10% are inherited in a dominant
manner (FALS). Twenty percent of these
familial cases have been attributed to
dominant mutations in the gene encoding
cytoplasmic Cu/Zn superoxide dismutase
(SOD1)2 which is involved in the cellular
detoxification of superoxide anions.
Native SOD1 forms a very stable homo-
dimer, but almost all ALS-linked SOD1
mutations are susceptible to partial
unfolding at physiological pH and tem-
perature. Furthermore, mutant SOD1-
containing insoluble inclusions are highly
accumulated within affected motor neu-
rons of SOD1-related FALS patients.

Transgenic mice and rats constitutively
expressing SOD1 harboring ALS-linked
mutations develop late onset motor neu-
ron death and muscle atrophy, similarly to
that seen in ALS patients. Given the path-
ological similarities between sporadic and
familial forms of ALS, it is generally
accepted that these transgenic rodents are
valuable models to study the pathogenic
mechanisms. These studies have indicated
that SOD1 mutants provoke selective loss
of motor neurons through acquisition of
one or more toxic effects (yet unidentified)
and not through loss of dismutase activity.
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SOD1-positive inclusions with ALS-
like symptoms were reproduced in a
FALS- mouse model expressing human
SOD1 with a pathogenic mutation and
were found to be stained by Thioflavin S,
supporting the formation of amyloid-like,
b-sheet-rich fibrils in mice.3,4 Insoluble
SOD1 aggregates were also successfully
isolated from the spinal cords of affected
FALS mice, and quite notably, those
SOD1 aggregates exhibited seeding activ-
ity toward fibrillation of purified SOD1
proteins in vitro. Chia et al. have prepared
homogenates of spinal cords from trans-
genic mice expressing human SOD1 con-
taining the G93A mutation and showed
that the homogenates triggered fibrillation
of wild-type as well as mutant SOD1G93A

proteins under in vitro conditions with
acidic pH solution in the presence of gua-
nidine hydrochloride.5 While destabiliza-
tion of SOD1 proteins under artificial
conditions appears to be required for a
seeded acceleration of fibrillar aggregation,
inclusions containing mutant SOD1
would function as seeds and thereby con-
tribute to propagation of pathological
changes among contiguous motor neurons
and then disease progression of SOD1-
related FALS cases.

Currently, more than 171 mutations
have been identified within SOD1 that
are linked to ALS. Approximately 20–
25% of FALS cases and 6% of all ALS
cases are caused by mutations in
SOD1. The majority of these mutations
(>80%) result in amino acid substitu-
tions, while the remaining lesions are a
combination of insertions, polymor-
phisms, and deletions. FALS-linked
mutations are not localized to one por-
tion of SOD1, but rather span the entire
protein. Moreover, relatively conservative
amino acid substitutions within SOD1
can cause ALS, suggesting that even
minor alterations severely affect SOD1
structure and/or function. Much effort
has been focused on determining the
common “toxic” feature within SOD1
that is induced by all of these ALS-linked
mutations. Except for the mutations that
directly interfere with metal coordination,
as copper coordination is required for
catalytic activity, many ALS-linked muta-
tions have no effect on SOD1 dismutase
activity.

The effect of ALS-linked mutations on
SOD1 signaling activity remains largely
unexplored. However, prior hypotheses
for pathogenesis in SOD1-mediated ALS
(reviewed by)6 include aberrant glutamate
handling from delayed synaptic glutamate
recovery by astrocytes,7 mutant damage in
the extracellular space following aberrant
co-secretion with chromogranin8 and
excessive production by microglia of extra-
cellular superoxide following mutant
SOD1 binding to the small G protein
Rac1 and its subsequent stimulation of
NAPDH oxidase.9

Intracellular targets for SOD1 toxicity
include mitochondria, which are essential
for many fundamental cellular processes
including energy production, Ca2C

homeostasis and the urea cycle, and the
endoplasmic reticulum (ER), where mis-
folded mutant SOD1 association with
derlin-1, a component of the endoplasmic
reticulum-associated degradation (ERAD)
pathway, has been implicated in induction
of ER stress from disrupted removal of
misfolded proteins.10,11 Derlin-1 is bound
by at least 132 of the ALS-linked SOD1
mutants, each of which exposes a derlin-1
binding domain buried in correctly folded
SOD1.10

Damage to mitochondria has been
reported not only in rodent models of
ALS but also in inherited and sporadic
human ALS, including altered respiratory
chain function and ultrastructure abnor-
malities within motor neurons, and respi-
ratory and metabolic defects in muscle
mitochondria.12-20 In addition, mito-
chondrial dysfunction(s) within mutant
astrocytes have been recently reported to
cause motor neuron death in astrocyte-
motor neuron co-cultures.21 and mutant
SOD1 astrocytes were reported to cause
mitochondrial dysfunction within motor
neurons22 In the rodent models of mutant
SOD1, there is specific association of mis-
folded mutant SOD1 with spinal cord
mitochondria.20

Most recently, using a combination of
different approaches, including purified
mitochondria and purified voltage-depen-
dent anion channel-1 (VDAC1) and
mutant SOD1 proteins, we have demon-
strated that misfolded SOD1 binds to the
mitochondrial channel protein, VDAC1.
This binding leads to the reduction in

adenine nucleotide permeability through
the outer mitochondrial membrane and
the obligate reduction in energy supply,
making motor neurons more vulnerable
to any of these additional stresses derived
either from mutant SOD1 acting within
motor neurons or their neighboring non-
neuronal cells.23

In addition, SOD1-mutant mediated
deficits in protein import that alter the
mitochondrial protein composition have
been described.24 These effects are specific
for spinal cord mitochondria and are not
observed in non-affected tissues, such as
liver, despite comparable mutant SOD1
abundance in the 2 tissues.23

A direct consequence of mutation-
induced misfolding of SOD1 is aggrega-
tion, which refers to the irreversible assem-
bly of misfolded SOD1 species into an
insoluble structure. SOD1 aggregation
has been extensively investigated in vivo,
both in human post-mortem tissues of
ALS patients and in mutant SOD1 trans-
genic mice. The enhanced aggregation
propensities of FALS-linked SOD1
mutants have also been comprehensively
examined in cell culture and in other in
vitro assays.

Although it remains unclear whether
SOD1 aggregation is a causative or protec-
tive factor in disease progression, several
recent reports demonstrate that misfolded
SOD1 species can spread from cell to cell
in a prion-like fashion.25 Munch et al
demonstrated that the uptake of aggre-
gated ALS-linked SOD1 mutants in cul-
tured neuronal cells seeded aggregation of
endogenous SOD1. These endogenous
SOD1 aggregates persisted well after the
original aggregates dissipated from cell
division, consistent with a prion-like
propagation of aggregated SOD1.26

With the ubiquitous expression of
SOD1, one of the most important
unsolved questions is about the structural
features underlying the selectivity of
mutant SOD1 misfolding and association
with intracellular membranes. We have
now established that mutant SOD1 mis-
folding onto mitochondria is blocked by a
cytosolic factor present in liver cytosol.
This factor was identified as the 12 kD
macrophage migration inhibitory factor
(MIF).27 We showed that recombinant
MIF can suppress both dismutase active
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and inactive SOD1 mutant association
with intracellular membranes and can
inhibit misfolded SOD1 accumulation in
neuronal cells. Furthermore, increased
MIF, which normally accumulates only to
low levels within the cell bodies of motor
neurons, extends mutant SOD1-express-
ing motor neuron survival in culture.27

The low level of MIF accumulated within
motor neurons correlates with the accu-
mulation of misfolded SOD1 species and
their association with different intracellu-
lar organelles within those neurons.

While a proportion of MIF can be
sequestered into vesicles and released
extracellularly in response to a variety of
signals, MIF is synthesized as a soluble,
cytoplasmic protein. Moreover, MIF has
previously been implicated in intracellular
protein chaperone activity. When MIF
switches from multimeric to monomeric
forms, it exposes a hydrophobic surface
that can provide ATP-independent chap-
erone activity.28 Therefore, one possibility
is that MIF function depends on its direct
interaction with SOD1, although the
affinity for such interaction seems to be
relatively low. On the other hand, MIF
has 2 enzymatic activities working as a
tautomerase and an oxidoreductase
enzyme. In our previous studies, in which
we used a MIF mutant that has no thiol-
oxidoreductase activity, we observed that
this activity is not required for MIF chap-
erone-like function. However, the effect
of MIF tautomerase activity on this func-
tion remains unknown and should be
addressed as well.

Apparently unrelated to its chaperone-
like function, MIF was one of the first cyto-
kines to be described29 and has a pivotal
role in the immune response.30 Historically,
T cells were regarded as the major source of
circulating MIF31,32 but studies in the last 2
decades have shown that MIF is released
from numerous other cell types from the
lung, liver, heart, bowel, kidney, spleen,
and skin33,34 as well as in tissues of the
endocrine system35,36 and acts in an auto-
crine and paracrine manner. Cells that are
activated byMIF include immune cells, epi-
thelial and endothelial cells, various paren-
chymal cells, and cancer cells. In addition to
induction by inflammatory stimuli (LPS or
TNF-a), macrophages and T cells secrete
MIF after stimulation with low doses of

glucocorticoids, and MIF also counter-reg-
ulates their immunosuppressive effects.37,38

Through this mechanism, MIF sustains
inflammation. In the cytokine cascade,
MIF is localized upstream of tumor necrosis
factor (TNF)-a, interleukin (IL)-1b, inter-
feron (IFN)-g, and other effector cytokines,
in large part because it is released initially
from preformed cytoplasmic pools.39 Its
rapid release from damaged or necrotic cells
suggests that it may subserve functions of
alarmins or damage-associated molecular
patterns (i.e. DAMPs).

The MIF cell surface receptor is CD74,
which signals via regulated intramembrane
cleavage or by co-activating CD4440,41

and the chemokine receptors CXCR2 and
CXCR4.42,43 As its name indicates, MIF
first was associated with inhibition of the
random migration of macrophages.32 it
was later determined that MIF also inhib-
its directed migration of monocytes
toward chemokines, such as monocyte
chemoattractant protein 1 (MCP-1).44

However, MIF also promotes the recruit-
ment of T cells, monocytes and neutro-
phils via the non-cognate receptors
CXCR2 and CXCR4.43

For decades, any immune activity in
the central nervous system (CNS) was
considered detrimental. However, studies
initiated more than a decade ago45 have
shown that CNS plasticity requires
immune support. Specifically, it was
shown that a local immune response, well
controlled in time, place, and intensity by
peripheral adaptive immune processes, is a
critical requirement for CNS mainte-
nance46 and for post-traumatic neuronal
survival and repair.45 These results and
others suggest that CD4C T cells that rec-
ognize CNS autoantigens are needed for
CNS maintenance and repair.

In the mouse model of ALS, it is
becoming clear that the ability of the
motor neurons to resist the spread of tox-
icity from the surrounding damaged cells
is greatly influenced by peripheral T cells.
Thus, for example, breeding mutant
SOD1 mice with immunodeficient mice
shortens their life span47,48 and as a corol-
lary, active vaccination in some strains of
ALS mice49 or passive transfer of activated
T cells, are able to extend life expec-
tancy.50 Moreover, mutant SOD1 synthe-
sized by astrocytes and microglia leads to

neuroinflammation, driving rapid disease
progression.51–53 In addition, astrocytes
expressing mutant SOD1 or generated
from neural precursor cells (NPCs) iso-
lated from spinal cords of sporadic ALS
patients have been found to be toxic to
co-cultured motor neurons.54-57

Of relevance to MIF’s extracellular
activities, we suggest that one of the mani-
festations of immune deficits in ALS could
be a malfunction of MIF, bridging the gap
between the chaperone and the immune
systems. Moreover, in view of the potential
for cell-to-cell spread of misfolded SOD1
as a means of disease propagation.26,58,59

chaperone activity by extracellular MIF
may act to limit such spreading. Interest-
ingly, lipocalin 2 has been recently reported
as an inducible factor to be secreted by reac-
tive astrocytes, which is selectively toxic to
neurons.60 In this regard, it is possible that
MIF could interfere with lipocalin 2 to pre-
vent its toxic effect.

Now we showed that MIF accumula-
tion is very minimal in the spinal motor
neurons. Since we observed that MIF
mRNA is abundant in these cells, the
question is why is the protein level very
low? There are 2 possible explanations:
MIF can be either secreted or rapidly
degraded in the motor neurons. Com-
bined with the recognition that extracellu-
lar MIF is an inducer of metalloproteinase
9 (MMP9).61 a component contributing
to the selectivity of motor neuron vulnera-
bility to SOD1 mutant-mediated death.62

it may be possible that MIF is highly
secreted from the most sensitive motor
neurons, not only leading to reduced
chaperone activity and accumulation of
misfolded proteins in these cells, but also
inducing extracellular MMP9, leading to
further damage to the surrounded cells.
This idea suggests that approaches to
increase intracellular MIF by reducing its
clearance from motor neurons and thus to
inhibit MMP9 induction could be attrac-
tive therapeutic strategies.

Conclusions

Elucidating the basic mechanisms caus-
ing neurodegeneration in ALS represents
an urgent medical need that would allow
for the development of new therapies. The
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identification of MIF has the potential to
yield important information about the
toxic mechanism of protein misfolding
and may lead to the discovery of new tar-
gets for therapies. The finding of this
novel protective factor may have implica-
tions not only for ALS, but for other neu-
rodegenerative diseases, in which
intracellular targets are affected by one or
more misfolded proteins.
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