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Abstract

Temporally and spatially highly resolved information on population characteristics, in-

cluding demographic profile (e.g. age and sex), ethnicity and socio-economic status (e.g.

income, occupation, education), are essential for observational health studies at the

small-area level. Time-relevant population data are critical as denominators for health

statistics, analytics and epidemiology, to calculate rates or risks of disease. Demographic

and socio-economic characteristics are key determinants of health and important con-

founders in the relationship between environmental contaminants and health.

In many countries, census data have long been the source of small-area population denomi-

nators and confounder information. A strength of the traditional census model has been its

careful design and high level of population coverage, allowing high-quality detailed data to

be released for small areas periodically, e.g. every 10 years. The timeliness of data, however,

becomes a challenge when temporally and spatially highly accurate annual (or even more

frequent) data at high spatial resolution are needed, for example, for health surveillance and

epidemiological studies. Additionally, the approach to collecting demographic population in-

formation is changing in the era of open and big data and may eventually evolve to using

combinations of administrative and other data, supplemented by surveys.

We discuss different approaches to address these challenges including (i) the US

American Community Survey, a rolling sample of the US population census, (ii) the use

of spatial analysis techniques to compile temporally and spatially high-resolution demo-

graphic data and (iii) the use of administrative and big data sources as proxies for demo-

graphic characteristics.
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Introduction

Geographically referenced population counts are com-

monly used as the denominator in investigations of dis-

eases in small areas such as those conducted by the UK

Small Area Health Statistics Unit (SAHSU). Reliable and

time-relevant denominator population counts are vital to

calculate rates or risks of disease, and for temporal and

spatial health surveillance. Establishing a reliable estima-

tion of detailed, spatially and temporally defined popula-

tion data is, therefore, crucial for observational or

descriptive health studies at small-area scale. This is partic-

ularly important for studies of rare non-communicable dis-

eases or covering long periods of time in order to compute

stable disease rates. Examples from SAHSU include a study

on associations of aircraft noise from Heathrow airport

and cardiovascular disease outcomes,1 mortality in relation

to road traffic noise exposure in London,2 respiratory dis-

ease patterns in the vicinity of composting sites3 and the

Environment and Health Atlas for England and Wales.4

These studies rely on spatially and temporally detailed de-

nominator population counts, ideally across consistent

small-area boundaries. Such information is not readily

available from routine sources in most countries.

In 1999, SAHSU published a series of methodological

papers on how best to obtain population counts in small

areas and discussed the implications of various methods

for studies on environment and health.5 Approaches, such

as the use of ancillary data, e.g. patient registration data,

vital statistics and surveys or statistical frameworks, were

all found to have their own inherent challenges including

under-enumeration, misreporting or misalignment due to

geographical boundary changes. Twenty years on, and ar-

guably little has changed. In the UK, as in many other parts

of the world, the only reliable individual enumeration of

the population remains the decennial census. Some coun-

tries have established national registers, most notably

Scandinavian countries where individuals are being tracked

across the life course using a personal identity number.6

These are, however, exceptions and the census is still the

most widely used source of population information.

Nonetheless, there have been significant advances in

census-taking internationally during the last 20 years and,

since 2010, alternative approaches to the production of

small-area population counts have started to gather pace in

many countries.

At a time when demands of spatial analyses are increas-

ingly sophisticated and greater spatial and temporal preci-

sion is required, conventional data collection mechanisms

are becoming increasingly difficult to implement. This pa-

per provides an overview of the challenges faced by con-

temporary mapping and spatial analysis of population

data, from a public health perspective. Drawing on exam-

ples from the UK and USA, we highlight some of the

approaches that are currently being implemented focusing

on sophisticated spatial statistics and big data solutions to

address the shortcomings and uncertainties of conventional

population enumeration. We focus on three major method-

ological strands of obtaining time-relevant small-area pop-

ulation estimates: (i) the American Community Survey

(ACS), a rolling sample of the US population census, (ii)

the use of spatial analysis techniques to compile temporally

and spatially high-resolution demographic data and (iii)

the use of administrative and big data sources as proxies

for demographic characteristics.

Censuses and small-area geographies

Whereas the enumeration of the population can be traced

back more than two centuries (the first census took place

in 1790 in the USA and 1801 in the UK), the digital proc-

essing of census data and spatial referencing were not gen-

erally undertaken until the 1970 US Census, when the Dual

Independent Map Encoding (DIME) system was intro-

duced.7 This structured geographical small-area reference

system was subsequently developed as the Topologically

Integrated Geographic Encoding and Referencing (TIGER)

Key Messages

• Temporally and spatially high-resolution population counts are essential for observational health studies at the small-

area level to compute rates and risks, and for temporal and spatial health surveillance.

• Approaches to the production of small-area population counts are starting to emerge that go beyond the decennial

census still used in most countries.

• Examples include the American Community Survey, the use of spatial analysis techniques to compile temporally and

spatially high-resolution demographic data, and the use of administrative and big data sources as proxies for demo-

graphic characteristics.

• Such approaches are needed to avoid the increasing inaccuracies in the denominator population seen in traditional

census approaches due to residential mobility during inter-censual years.
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system. Successive census rounds internationally have seen

steady enhancements in the sophistication of geographical

referencing, together with increasing integration with

national spatial data infrastructures. Traditional census

enumeration has evolved from being undertaken with sup-

port from paper mapping to geographic information sys-

tem (GIS) management of the residential address.8 In the

UK, digital boundaries for the smallest spatial units were

produced retrospectively for the 1981 and 1991 census

(enumeration districts) and as part of the census process it-

self from 2001 (census output areas).

Well-conducted contemporary censuses provide an enor-

mously rich data resource, comprising not only carefully

designed, high-quality demographic and socio-economic

data, but also a supporting framework of small-area bound-

aries as well as address, postcode or ZIP code listings. In addi-

tion, they provide mapping tools, specialist datasets including

commuting and migration data and microdata samples.

Although proceeding at different speeds, many developed

countries have now integrated census data infrastructures

with full listings of addresses. These address-based infrastruc-

tures assist with the delivery of census questionnaires

(whether by post or by hand) and provide the highest resolu-

tion means of georeferencing both census returns and any

other address-referenced data to the census geographical

units;9 examples include routinely collected health data such

as births and deaths from the Office for National Statistics in

the UK, or high-resolution modelled exposure data.10

The intervening decades have seen continuous improve-

ment in many aspects of census processing but also brought

new challenges. Within the context of traditional census de-

sign, particular challenges are (i) increasing expectations of

users, particularly for greater timeliness of data, (ii) declin-

ing willingness of population members to participate, per-

haps associated with declining levels of trust in government,

(iii) reflecting the complexities of contemporary society,

such as complex family living arrangements and (iv) the sub-

stantial costs faced by national statistical organisations in an

era of widespread cuts in public expenditure.

Since 2000, and with greater impetus since 2010, censuses

have started to change dramatically as different countries

have adopted a variety of alternative strategies to overcome

these challenges.11,12 Responses include the replacement of

full censuses with a mixed model of rolling surveys and short-

form census (as in the USA), traditional census questionnaires

that are increasingly based on internet data collection (such as

in the UK, Australia, Canada and New Zealand)13 and the re-

placement of a statistical system firmly based on the census

with an increasing diversity of administrative and new forms

of data (notably in countries such as Austria where some form

of population register is present).14 This replacement, or

reduced prominence of, censuses should not be read as a nec-

essarily negative narrative, as many new data sources offer the

potential to provide increased timeliness and perhaps even to

move beyond the census model in terms of finding data frame-

works able to better represent modern societies. Just as many

health data may be seen as direct products of administrative

systems, so new denominator data sources are now being con-

structed by the amalgamation of administrative data series.

American community survey

In 2005, the US Census Bureau introduced the ACS as an

ongoing, monthly, rolling survey of approximately

250 000 US households, conducted alongside decennial cen-

suses. The ACS uses the monthly data to provide annual

population estimates at the national, state and county levels.

Population estimates at the census tract level (a subdivision

of county) are provided as 5-year rolling averages (i.e. an-

nual estimates are based on 5 years of data) for the years

2009–16. The ACS is carefully designed and includes some

oversampling of areas with low population size and/or his-

tory of low response rates. It includes data on variables such

as education, occupation and income. These were histori-

cally collected on the so-called ‘Long Form’ of the US

Census, a 1-in-6 household survey that was discontinued

following the 2000 decennial US Census. ACS-based popu-

lation estimates were first released in 2008 based on data

collected in the years 2005–07. Importantly, the ACS

reports population estimates and associated margins of error

for each reporting unit (e.g. state, county or census tract).

The ACS data provide a new source for population de-

nominator data in small-area health studies, and recent

studies are beginning to explore the spatial structure of the

estimates and of their reported uncertainty (as summarized

in the margin of error terms). Spielman et al.15 note that the

ACS represents ‘a nuanced and sensitive set of compromises’

defining small-area population data for over 200 000 block

groups and 70 000 census tracts across the US. These

smaller geographic areas tend to have smaller sample sizes,

hence greater uncertainty. The margins of error for census

tract data are, on average, 75% higher than tract data from

for the previous 2000 census.15 Challenges of statistical pre-

cision increase when further subdividing census counts into

demographic subgroups, as illustrated by Spielman and

Folch16 who report 72% of census tracts with margins of er-

ror higher than the estimated number of children <5 years

old living in poverty. These uncertainties are characterized

by statistical and geographic patterns in the reported uncer-

tainty (for example, low-income tracts tend to have higher

uncertainty in their population estimates) and high spatial

correlation in these levels of uncertainty.15
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Small-area epidemiologic analyses in the USA are begin-

ning to use ACS population estimates to define populations

at risk. Many analyses, however, ignore the uncertainty

associated with these estimates, potentially leading to non-

differential mis-classification and bias in estimations of

association and prediction of local trends. The nature and

direction of such biases depend or whether one seeks unbi-

ased estimates of the aggregate level (ecological) effect or

whether one seeks unbiased estimates of the individual

level effect. In the former, symmetric measurement error

may diminish significance due to increased variation in

estimates. In the latter, the combination of data aggrega-

tion and measurement error can bias estimates away from

the null.17–19 To address this issue, Finucane et al.20 and

Mercer et al.21 proposed incorporating the reported

design-based uncertainty within Bayesian hierarchical dis-

ease mapping models for small-area health studies. Briefly,

suppose we define Yi as the number of cases of disease ob-

served in region i and ni as the (true, unknown) population

at risk. The typical disease mapping model proposes:

Yijb; h;/ � Poisson Eiexp X
0
bþ hi þ /i

� �� �
;

where

Ei ¼ kni;
hi � N 0; r2

� �
; i ¼ 1; . . . ; I;

/ � N 0; Rð Þ
Ei denotes the expected number of cases in region i,

k denotes the reference population, h denotes spatially un-

structured random effects, / denotes spatially structured

random effects, and R denotes a spatial correlation matrix.

Regrouping the first line, we find

Yijb; h;/ � Poisson
�

exp
�

log kð Þ þX
0
b

þ ðlog nið Þ þ hi þ /iÞÞ
�
;

where ni is no longer assumed to be fixed, but rather an es-

timate with a reported margin of error (hence, a derivable

variance). Potential estimates of ni include those from the

2010 census or from the ACS. Assuming sufficient sample

sizes, we could model the ACS estimates as unbiased nor-

mal random variables with variance defined by the design-

based margin of error, i.e. replace ni with

n̂ACS;i � N ni; r2
ACS; i

� �
:

Furthermore, Spielman et al.’s observation of spatial

correlation among ACS estimates suggests extension to

n̂ACS � N n; RACSð Þ;

where RACS denotes a spatial covariance matrix.14

Such first steps are not quite ready for direct implemen-

tation as we estimate population distribution within the

margins of errors via n̂ACS;i and do not observe the popula-

tion at risk ni: Promising results appear in Finucane et al.20

and Mercer et al.21 and future studies are needed to further

explore the full impact of estimation uncertainty on popu-

lation estimates and consequent disease studies.

As an example, Figure 1 illustrates the estimated 2016

population counts and associated margins of error from

the ACS for counties in the state of Georgia within the

USA. Both choropleth maps are shaded by quintiles of val-

ues and, not surprisingly, areas with the highest counts

also have the highest margins of errors. We note that the

estimates and the estimation error are spatially autocorre-

lated and that high values (and errors) are concentrated in

the urban areas within Georgia.

Spatio-temporal population modelling:
procedures for estimating population at
small areas

The SAHSU population approach

The work of SAHSU strongly depends on spatially and

temporally detailed population estimates, especially for

studies spanning many decades and therefore many census

years.22 This brings with it the inherent complexity of

changing census geographies used for reporting and

dissemination of UK census data from different censuses,

which typically reflect changing land use, housing

developments and socio-economic characteristics in the lo-

cal area.

As in most countries, the UK censuses provide popula-

tion data at a high spatial resolution but with a low tempo-

ral resolution (every 10 years). An alternative source of

information is the annual population estimates produced

by the Office for National Statistics, National Records for

Scotland and the Northern Ireland Statistics and Research

Agency that have been available since 1981 at local author-

ity level (average population �140 000). This is at a much

lower geographical resolution than used by the census.

These mid-year resident population estimates are dissemi-

nated by sex and 5-year age groups. Mid-year population

in the inter-censual years are estimated by rolling forward

the census base taking account of natural changes such as

births and deaths as well as migration. These estimates are

revised after each census to account for cohort changes

between the census years to avoid step changes in the pop-

ulation estimates series.23 Since the 2001 census, these

mid-year population estimates are available at the census

output area level. Comparable data are lacking for the pre-

2001 period, which causes problems for investigations of

historic or long-term exposures.24
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To address these shortcomings, SAHSU developed a

spatio-temporal model to estimate historic population data

for Great Britain by 5-year age groups and sex from 1981

to 2001 at a consistent geographical level, the 2011 census

output areas. This process made use of publicly available

population and geographical data (Table 1) and

harmonized those across census boundary changes. To do

so, we established a reproducible and automated set of

procedures in PostGIS, a spatial database extender for

PostgreSQL.

We combined data from the censuses and Office for

National Statistics mid-year estimates to calculate 5-year

age group and sex-specific annual population for each cen-

sus output area. In a first step, we harmonized the different

census geographies to 2011 census geography using post-

code weighting as described in detail by Briggs et al.24,25

We modelled the census population C to 2011 census out-

put area (COA11) j for census years x (1981, 1991, 2001,

2011) and annual mid-year population estimates MYE to

2011 Local Authority District (LAD11) n for years i

(1981–2017). For the four census years, we then calculated

a COA11/LAD11 ratio Rkjx

Rkjx ¼
Ckjx

MYEknx
;

where Ckjx is the census population for age/sex group k,

census year x and COA11 j, and MYEknx the mid-year

Figure 1. Estimated 2016 population counts in quintiles (left) and associated margins of error (right) from the US American community survey for

counties in the state of Georgia, USA.

Table 1. Routinely available population data sources in the UK over the last three decades used by SAHSU for the estimation of

population at small areas

National census Mid-year estimates

Source UK Data Service Census Support: http://infuse.ukda

taservice.ac.uk/

England and Wales: Office for National Statistics

https://www.ons.gov.uk/peoplepopulationandcom

munity/populationandmigration/

populationestimates

http://casweb.ukdataservice.ac.uk/

Spatial resolution Enumeration districts for 1981 and 1991 census;

average population �400

Local authority district; average population

�140 000

Census output areas for 2001 and 2011 census;

average population �250

Temporal resolution Decennial: 1981, 1991, 2001, 2011 Annual: 1981–2017
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population estimate for age/sex group k, LAD11 n and

census year x.

Between census years x and x�10, we then model a ra-

tio change RCkji as follows:

RCkji ¼ 0:1� Rkxj � Rkx�10j

� �
;

i ¼ 1; . . . :; 10

Finally, to compute the COA11 level annual population

estimates MYEkji, we use linear interpolation for intercen-

sal years by applying RCkij as follows:

MYEkji ¼ MYEkni� Rkjx þ RCkji

� �

MYEkjiþ1 ¼ MYEkniþ1� Rkjx þ RCkjiþ1

� �
. . .

MYEkjiþ10 ¼ MYEkniþ10� Rkjxþ10 þ RCkjiþ10

� �

SAHSU’s 5-year age group and sex-specific population

estimates span almost 40 years (1981–2017), a period that

has seen great changes in the demographic composition

across the UK. Our method improves on previous annual

population estimates in that estimates are at a high spatial

resolution that is consistent across all years. Such data is

important for spatial studies spanning many years/decades

as our data allows easy comparison of demographic pat-

terns over time and space (see Figure 2). Modelled popula-

tion estimates are available upon request from the authors.

The Population247 approach

The advances in census-taking and the use of alternative

data sources potentially provide opportunities for obtaining

higher resolution spatio-temporal population estimates,

whereas methods for consolidating population estimates

onto consistent geographies through time provide stable

units for analysis. In many instances, however, the high lev-

els of spatio-temporal resolution ideally required by envi-

ronmental and health studies are still a long way from being

achieved. A particular challenge is establishing how popula-

tion varies over short timescales, such as time of day, day of

week or season. Data sources that provide signals of popula-

tion activity across different temporal cycles, such as diur-

nal, weekly or seasonal, do exist or are becoming available,

but the real difficulty lies in being able to integrate and cali-

brate these diverse data sources of varying spatial and tem-

poral precision and accuracy in order to provide reliable

population denominator data. The University of

Southampton ‘Population247’ approach (http://pop247nrt.

geodata.soton.ac.uk/) provides a framework, methodology

and software (SurfaceBuilder247) for integrating various

data sources, such as census, administrative and big data, in

order to provide high-resolution spatio-temporal population

estimates.26 The Population247 approach involves compila-

tion of an extensive data library containing information on

locations, demographics, catchment areas, spatial extents

Figure 2. Population estimates (women 25–29 years old) for Census Output Areas 2011 in the London Borough of Tower Hamlets in 1989 (SAHSU esti-

mates) and 2009 (Office for National Statistics mid-year estimates). Tower Hamlets is in the East of London and has seen considerable urban redevel-

opment over the last decades, such as the redevelopment of the Isle of Dogs from an abandoned industrial site to a leading financial centre, as well

as the redevelopment around the 2012 Olympic side in Stratford. Contains National Statistics data VC Crown copyright and database right 2012, 2017.
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and time profiles of the places where people may be located

at different times of day, week, season etc. These data are

then integrated to produce time-specific estimates of popula-

tion at a high spatial resolution (e.g. 100–200 m grid

squares) for any time of day, date and year for which data

are available.

Figure 3 presents illustrative outputs from

SurfaceBuilder247, showing total population present in

200 m grid cells at the time frames (a) 02:00 and (b) 14:00

hours for Bristol, UK (�500 000 people), on a typical

weekday during school and university term-time in 2011.

At 02:00 hours, population is largely concentrated in resi-

dential areas, with few people in the city centre or in transit

on the roads: essentially, this is similar to the 2011 residen-

tial distribution depicted by the 2011 census at small-area

level, but further refined by the use of a 200 m grid. By

contrast, at 14:00 hours, population is much reduced in

these residential areas and there are much greater concen-

trations of population within the city centre, in places of

work and education and on the road network. These 02:00

and 14:00 hours models are just two of many that could be

produced: the key benefit of the Population247 approach

is that it is not constrained to specific pre-determined time

slices or categorizations of time, but is instead inherently

flexible in this respect.

Population247 is therefore a key advancement in the

move away from a traditional residential, night-time, de-

cennial-based static census model to more spacetime spe-

cific dynamic population estimates. As such, it gets much

closer to the spatio-temporal granularity required by

small-area environment and health studies, for example, to

assign hourly exposures based on daily aggregated activity

patterns, capturing home, work and in-transit environ-

ments. The framework is extensible, so that as more de-

tailed information becomes available, these can be

integrated into the model, with subsequent improvements

in the precision and accuracy of estimates at those spaces/

times. Current Population247 research is focused on devel-

oping methods for harvesting, calibrating and integrating

new and emerging forms of data (such as footfall or traffic

sensors and data served up via Application Program

Interfaces), with existing forms of data (such as census and

administrative data), in order to produce enhanced space-

time specific population estimates for improved decision-

Figure 3. Total population in 200 m grid cells at different time frames: (a) 02:00 and (b) 14:00 hours in Bristol, UK, on a typical weekday during school

and university term-time in 2011.
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making and policy formulation in the health, emergency

response and national security sectors.

Alternative data sources as proxies for
demographic characteristics

Administrative data

A third means of addressing the challenges faced by cen-

suses is to seek entirely different sources for the traditional

census variables, or indeed find new approaches. The first

potential source domain, and the one that has been most

widely pursued to date, is the enormous range of adminis-

trative information that is collected by governments for the

operation of systems such as health care, property registra-

tion, and taxation and benefits. These sources provide ex-

tensive coverage of the population, are generally

referenced at the address level and have the potential to be

integrated to provide a complete multivariate population

database. This approach is much more tractable in coun-

tries with a population registration system such as Finland

and The Netherlands, due to the presence of systematic in-

dividual citizen identifiers to facilitate direct matching of

the source datasets. This has led the transition from tradi-

tional census-taking in these countries.27 The UK’s three

national statistical organisations (Office for National

Statistics, National Records of Scotland and Northern

Ireland Statistics and Research Agency) hold separate but

coordinated censuses and all are moving towards a 2021

design that is a combination of conventional census enu-

meration with a significant emphasis on internet data col-

lection, accompanied by parallel construction of an

administrative data census model.28 These two models are

being developed in parallel, allowing the administrative

data to potentially replace or enhance the more conven-

tional census in 2021, while also being developed with the

intention that it should form a replacement data collection

model post-2021. This work is already beginning to yield

experimental data series produced from administrative

sources, with successive extensions and enhancements

scheduled on an annual basis.29 Such data sources appear

to offer the potential both to replace some census ques-

tions, such as the number of households or the number of

rooms in each dwelling (which can be obtained from ad-

ministrative data about property registration), and to in-

clude new topics such as income, which have not

previously been covered by the traditional census question-

naire in the UK.30,31 The continuous nature of the adminis-

trative data sources makes possible the extraction of

regular small-area population count updates, with far

greater frequency than the conduct of traditional decennial

census enumeration. Figure 4 illustrates differences be-

tween 2011 census estimates of total population and a cur-

rent version of experimental statistics29 based on

administrative sources combining the National Health

Service register, school census, higher education, taxation

Figure 4. Difference between admin-based (Statistical Population Database v2.0) and census-based total population estimates for Census Output

Areas, Greater London, 2011. Red hues highlight areas where the admin-based database over-estimates census-based population, blue hues high-

light areas where the admin-based database under-estimates census-based population. Contains National Statistics data VC Crown copyright and

database right 2012, 2017.
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and national insurance systems. The map units are census

output areas (mean population 326) for London. In most

areas, the administrative data provide a close approxima-

tion to the census counts, but there are some large and spa-

tially concentrated differences. A preliminary investigation

suggested that these related primarily to students, armed

forces personnel or residents of communal establishments

who are recorded differently for census and administrative

purposes, but further analyses are needed to better under-

stand the origin of such differences.

Big data

The second source domain is the ever-increasing range of

big data sources, usually not counts of people, but auto-

mated records of events, such as the location of mobile

devices or social media activity, that can potentially be

interpreted as proxies for the presence of human activity

and behaviours.32 Initial examples have particularly fo-

cused on population dynamics, e.g. the use of mobile

phone location data to estimate commuting flows33 and

migration movements,34 the first of which are not readily

identifiable from administrative data sources. The loca-

tional precision varies according to the technologies

employed, with locations estimated from the mobile phone

network having much lower accuracy than those directly

recorded by Global Positioning System trackers in mobile

devices. A key challenge with these data types is their cali-

bration with the population concept that is desired to be

measured. Deville et al.35 found quality levels that offer a

promising means of estimating population counts from

mobile phone data in low-income countries where more

formal sources are not available. Such data is also com-

monly held by private companies such as network pro-

viders and challenges arise in obtaining such data for

research purposes. In addition, social media data is starting

to emerge as a means of estimating demographic character-

istics and migration patterns.36 Issues of incomplete and

biased population coverage, however, mean that such

methods are currently still a long way from the quality lev-

els stipulated by national statistics institutions to permit

full replacement of the census in countries such as the UK.

Conclusion

As these examples show, advanced spatio-temporal high-

resolution approaches to mapping and modelling popula-

tion and demographic information are starting to emerge,

combining new types of data and analytical innovations.

Although these are mostly still at development stages and

methods to apply them in health studies need further re-

finement (see the example above of the ACS in the USA),

such advances will prove crucial for future disease map-

ping and spatial epidemiological studies, particularly those

conducted at small-area level.

Such data are urgently needed for epidemiological stud-

ies to avoid the increasing inaccuracies in the population

denominators derived from traditional census approaches

due to residential mobility in the underlying population

during inter-censual years. Research has been undertaken

to understand the extent and impact of residential mobility

in specific subgroups of the population. Studies suggest

that we can anticipate considerable migration in some sub-

groups of the population (e.g. 7–32% of pregnant women

move during pregnancy).37,38 Although many of these

moves are local and happen within a city, this is still likely

to introduce error into the denominator population in

studies undertaken at the small-area level. Studies in the

USA, reviewed by Bell and Belanger37 have shown that

more than 50% of women who moved during pregnancy

were likely to remain in the same county, but only 6.2%

stayed within the same census tract. Furthermore, there is

likely to be differential migration by age and deprivation.39

Analyses reliant on data that no longer reflect the actual

denominator population will be biased, compromising our

ability to correctly identify risk factors for disease and/or

control for important confounding variables.40

The use of administrative and auxiliary data to supple-

ment or replace the traditional census might overcome

some of the issues associated with the increasingly error-

prone denominator data with increasing time since the cen-

sus. However, marginalized groups, including frequent

movers and those living in temporary accommodation or

communal establishments, are not well captured in these

data. The data also fails to account for refugees and sudden

population movements triggered by conflicts or environ-

mental disasters. Administrative data may also contain du-

plicate entries that can be challenging to resolve. For

example, according to the UK National Health Service

National Strategic Tracing Service records,39 3% of

women who moved during pregnancy were registered with

general practitioners (GP) under different residential

addresses for more than 1 month, the average time of over-

lap being 14 months, with some women remaining regis-

tered at a GP using their previous address for more than

4 years.

The validation of these alternative data sources there-

fore remains an issue and new approaches are needed to

account for uncertainties and under- or over-enumeration

in population estimates. As illustrated by SAHSU’s work

to standardize geographies and data from multiple cen-

suses for long-term epidemiological studies, similar

approaches will need to be developed to account for the in-

clusion of new alternative data sources. In relation to
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uncertainty, methods, such as those introduced for the US

ACS taking account of margins of errors in disease map-

ping, provide a good starting point. It will be, however, im-

portant to understand the extent to which the same

underrepresented populations continue to be underrepre-

sented in new data sources, e.g. through disengagement

from administrative processes or digital exclusion, and to

make appropriate analytical adjustments.

Studies are starting to emerge that move beyond static

population estimates by producing time-varying popula-

tion estimates at a higher than annual temporal resolution.

Such approaches, e.g. the Population247 project described

above, combine new, emerging and existing datasets to

produce enhanced time-specific population data. These

temporally more refined population estimates can be used

to inform decision-making and policy formulation in rela-

tion to emergency responses and have already been applied

in assessing population exposure to natural hazards.41,42

They could also be used to produce enhanced exposure

estimates, e.g. if overlaid with air pollution maps of

hourly-, daily- or weekly-averaged concentrations. This

would pick up short-term peaks of exposures that are lost

if aggregated over larger time intervals and could poten-

tially provide a near individual-level exposure for whole

populations needed to study health effects of low

exposures.

Such advances in estimating spatially and temporally

population estimates will open new avenues for small-area

studies of health and disease in the future. A first step,

however, will need to be the estimation of uncertainty for

all these methods in order to propagate uncertainty in pop-

ulation estimates through to uncertainty in epidemiologic

risk estimates.
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