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Abstract: The aim of this study was to quantitate 42 serum-free amino acids, propose the
biochemical explanation of their role in tumor development, and identify new ovarian cancer (OC)
biomarkers for potential use in OC screening. The additional value of this work is the schematic
presentation of the interrelationship between metabolites which were identified as significant
for OC development and progression. The liquid chromatography-tandem mass spectrometry
technique using highly-selective multiple reaction monitoring mode and labeled internal standards
for each analyzed compound was applied. Performed statistical analyses showed that amino
acids are potentially useful as OC biomarkers, especially as variables in multi-marker models.
For the distinguishing metabolites the following metabolic pathways involved in cancer growth and
development were proposed: histidine metabolism; tryptophan metabolism; arginine biosynthesis;
arginine and proline metabolism; and alanine, aspartate and glutamine metabolism. The presented
research identifies histidine and citrulline as potential new OC biomarkers. Furthermore, it provides
evidence that amino acids are involved in metabolic pathways related to tumor growth and play an
important role in cancerogenesis.

Keywords: amino acids; targeted metabolomics; ovarian cancer; biomarkers; screening; metabolic
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1. Introduction

Ovarian cancer (OC) is one of the most lethal cancers among women in Europe, with the incidence
of 13.1 per 100,000 women in 2012 [1,2]. It is related with the death of 42,700 women in Europe
yearly [3]. The main reason of high mortality is lack of proper diagnostic tools to detect the disease
in early stages. As OC usually develops without well-defined clinical symptoms, it is diagnosed
mostly in advanced stages (i.e., stage III-IV according to International Federation of Gynecology and
Obstetrics—FIGO), with poor five-year survival rates of 15–45%. [4]. On the other hand, FIGO I stage
OC is related with 90% or higher survival rate. In order to improve the diagnostic procedures and
identify OC patients in early stages of the disease, the search for its novel specific biomarkers has been
ongoing for decades. Until now, several models were proposed for clinical use, e.g., cancer antigen
125 (CA 125), human epididymis protein 4 (HE 4), a combination of those with clinical features or
ultrasound imaging, but their sensitivity and/or specificity are still unsatisfactory, especially for early
stages of OC [4,5] and no effective screening method has so far been found.
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Nowadays “omics” technologies, such as proteomics, metabolomics, and genomics, have emerged
as promising tools for biomarkers research. Analyzing the genome, transcriptome, proteome,
and metabolome in various biological fluids can reveal changes at different functional levels,
associated with the ongoing disease. Among these modern techniques metabolomics seems to be very
promising for biomarker research due to dynamic character of metabolome that reflects current processes
in the human body and can be used to distinguish between physiological and pathological states.

The identified metabolic disturbances could potentially serve as diagnostic, prognostic, predictive,
or even efficacy markers. Recent studies have shown altered concentrations of various metabolites
from many different classes in OC patients, such as lysophospholipids [5–7], acylcarnitines, and amino
acids [8]. Amino acid profile has also been identified as an effective diagnostic tool in different cancers
before [9–12]. Moreover, a systematic review of the results of untargeted metabolomics studies reveals
that some amino acids can be associated with OC [13–16]. However, the untargeted metabolomic
experiments fail to provide information about the absolute concentration of analyzed compounds,
reporting only the signal intensities, which are difficult to translate into clinical practice.

The aim of this study was to quantitate free amino acid and biogenic amine profile in human
serum and identify potential OC biomarkers with a special emphasis on OC screening. Three groups
of patients were analyzed: OC, benign ovarian tumor (BOT) and a matched healthy control group
(HC), used as a reference group. This is the first study based on targeted metabolomics with such a
broad coverage of quantified proteinogenic and non-proteinogenic amino acids in OC, BOT, and HC
patients. The presented study was performed based on the up-to-date liquid chromatography/tandem
mass spectrometry (LC-MS/MS) technique using highly-selective multiple reaction monitoring (MRM)
mode and labeled internal standards for each analyzed compound. In the available literature there is a
limited number of studies utilizing both MRM mode and labeled internal standards for metabolomics
studies on OC patients’ serum.

Moreover, presented research proposes a possible interrelationship between compounds which
were previously found to have altered concentrations in OC patients’ serum.

2. Results

2.1. Serum-Free Amino Acid Profiles

Amino acid profiles were obtained using validated and robust methodology, enabling quantitating
42 analytes from three groups: proteinogenic amino acids, non-proteinogenic amino acids, and biogenic
amines. In the analyzed samples 33 amino acids were determined. For the remaining nine analytes
concentration level was lower than the limit of quantitation (LOQ) or concentration exceeded LOQ
only for part of the samples—these compounds were excluded from statistical analyses (phosphoserine,
homocitrulline, argininosuccinic acid, γ-amino-n-butyric acid, anserine, carnosine, δ-hydroxylysine,
cystathionine, and homocystine).

2.2. Ovarian Cancer versus the Healthy Control Group

Twelve out of 33 compounds had significantly altered concentrations between OC patients and
HC: 1-methyl-L-histidine, alanine, asparagine, citrulline, cystine, ethanolamine, histidine, lysine,
methionine, ornithine, threonine, and tryptophan (Table S1). Almost all of the amino acids found as
significantly altered were decreased in OC group, with exception of cysteine which level was increased
in the OC group. Figure 1 presents box-plots for five amino acids with the lowest p-value (p < 0.005).
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Figure 1. Serum concentrations of 5 amino acids that obtained the lowest p-value in the comparison 
between ovarian cancer (OC) patients and healthy control (HC) group. The optimal cutoff values 
based on univariate ROC curve analysis are overlaid on the box-plots. 

In the next step the univariate receiver operating characteristic (ROC) curve analyses were 
performed to compare the discriminating capabilities of the 12 selected amino acids. For two of them 
the area under the curve (AUC) was higher than 0.75: histidine (AUC = 0.836, 95% confidence interval 
(CI): 0.738–0.909, sensitivity 0.789, specificity 0.760), and citrulline (AUC = 0.768, 95% CI: 0.663–0.873, 
sensitivity 0.711, specificity 0.720). 

Application of partial least squares-discriminant analysis (PLS-DA) resulted in a satisfactory 
distinction of both groups. This indicated that OC patients had different amino acid profiles 
compared to healthy women. It is worth emphasizing that the highest values of variable importance 
in projection (VIP) scores were obtained for histidine (VIP = 2.469) and citrulline (VIP = 1.830) (Figure 
S1). This is consistent with the results of the univariate ROC curve analyses. 

We have decided to evaluate the panel of the selected compounds using stepwise forward 
discriminant function analysis (DFA). Based on the conducted statistical analyses histidine and 
ornithine were subjected to DFA. The total group membership classification was 78.41% (model 1) 
(Table 1). 

Table 1. Discriminant function analysis parameters for ovarian cancer (OC) versus healthy control 
(HC) group and OC versus combined benign ovarian tumor (BOT) and HC group. 

Type of Comparison 
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OC vs. HC OC vs. (BOT + HC) 

Compounds in the model histidine, ornithine 

histidine,  
citrulline,  
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asparagine,  
ornithine 

Wilks’ Lambda 0.63367 0.57495 
p-value p < 0.0001 p < 0.0001 

Sensitivity (%) 76.32 60.53 
Specificity (%) 80.00 94.64 

Total Group Membership Classification (%) 78.41 86.00 

2.3. Ovarian Cancer versus Combined Benign Ovarian Tumor and Healthy Control Groups 

The OC group was compared with a combined group consisting of women with BOT and HC 
in order to verify whether the changes in serum free amino acid profile are caused only by the 
presence of ovarian malignancy and not by any other pathology and thus better reflected the clinical 
diagnostic reality of a screening test. Twelve amino acids were found to be significantly altered 
between the groups: α-aminoadipic acid, asparagine, citrulline, cystine, glutamine, histidine, 

Figure 1. Serum concentrations of 5 amino acids that obtained the lowest p-value in the comparison
between ovarian cancer (OC) patients and healthy control (HC) group. The optimal cutoff values based
on univariate ROC curve analysis are overlaid on the box-plots.

In the next step the univariate receiver operating characteristic (ROC) curve analyses were
performed to compare the discriminating capabilities of the 12 selected amino acids. For two of them
the area under the curve (AUC) was higher than 0.75: histidine (AUC = 0.836, 95% confidence interval
(CI): 0.738–0.909, sensitivity 0.789, specificity 0.760), and citrulline (AUC = 0.768, 95% CI: 0.663–0.873,
sensitivity 0.711, specificity 0.720).

Application of partial least squares-discriminant analysis (PLS-DA) resulted in a satisfactory
distinction of both groups. This indicated that OC patients had different amino acid profiles compared
to healthy women. It is worth emphasizing that the highest values of variable importance in projection
(VIP) scores were obtained for histidine (VIP = 2.469) and citrulline (VIP = 1.830) (Figure S1). This is
consistent with the results of the univariate ROC curve analyses.

We have decided to evaluate the panel of the selected compounds using stepwise forward
discriminant function analysis (DFA). Based on the conducted statistical analyses histidine and ornithine
were subjected to DFA. The total group membership classification was 78.41% (model 1) (Table 1).

Table 1. Discriminant function analysis parameters for ovarian cancer (OC) versus healthy control
(HC) group and OC versus combined benign ovarian tumor (BOT) and HC group.

Type of Comparison
Model 1 Model 2

OC vs. HC OC vs. (BOT + HC)

Compounds in the model histidine, ornithine histidine, citrulline, alanine,
asparagine, ornithine

Wilks’ Lambda 0.63367 0.57495
p-value p < 0.0001 p < 0.0001

Sensitivity (%) 76.32 60.53
Specificity (%) 80.00 94.64

Total Group Membership Classification (%) 78.41 86.00

2.3. Ovarian Cancer versus Combined Benign Ovarian Tumor and Healthy Control Groups

The OC group was compared with a combined group consisting of women with BOT and HC in
order to verify whether the changes in serum free amino acid profile are caused only by the presence
of ovarian malignancy and not by any other pathology and thus better reflected the clinical diagnostic
reality of a screening test. Twelve amino acids were found to be significantly altered between the
groups: α-aminoadipic acid, asparagine, citrulline, cystine, glutamine, histidine, isoleucine, lysine,
methionine, ornithine, threonine, and tryptophan (Table S1). Figure 2 presents the box-plots for five
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amino acids characterized by the lowest p-value. Nine amino acids were the same as for OC versus
HC comparison, suggesting that the majority of amino acid profile alterations are specific to malignant
(but not benign) ovarian tumors.
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Figure 2. Serum concentrations of 5 amino acids that obtained the lowest p-value in the comparison
between ovarian cancer (OC) patients and combined benign ovarian tumor (BOT) and healthy control
(HC) group. The optimal cutoff values based on univariate ROC curve analysis are overlaid on
the box-plots.

This leads to a conclusion that the changes in the amino acid profile are strongly correlated with
the development of a malignant tumor. The one-way ANOVA test, used to compare the amino acid
profile between the three groups, confirmed our previous observations: significant alterations in the
concentrations of histidine and citrulline were found in both comparisons: OC patient versus BOT
and OC patient versus HC. Partial least squares-discriminant analysis (PLS-DA) analysis applied
for OC versus the combined BOT and HC groups provided sample distinction comparable to OC
versus HC patients (Figures S1 and S2). The highest VIP score was obtained for the same amino acids:
histidine and citrulline, 2.692 and 2.057, respectively (Figure S2).

For OC versus combined BOT and HC groups stepwise forward DFA was also performed.
The following five variables were subjected to the model: histidine, citrulline, alanine, asparagine,
and ornithine. The total group membership classification of 86.00% was obtained (model 2) (Table 1).
It confirms that the model proposed by us based on selected amino acids provides a satisfactory
distinction between the OC patients and the remaining women.

3. Discussion

To the best of our knowledge, this is the first study that demonstrates the alterations in
concentrations of a wide spectrum of free amino acids in serum of patients with OC, BOT, and HC using
a fully-validated, robust quantitative method based on labeled internal standards for each metabolite
and MRM mode. The presented study proved that the HPLC-MS/MS-based metabolomic platform is
a promising methodology to search for OC biomarkers. Targeted metabolomics is a powerful tool in
modern biomarker research due to the possibility of simultaneous analysis of multiple compounds
using very small volumes of biological fluids (microliters per analysis). Moreover, defining the
metabolomic pattern may provide important information on the mechanism of biological changes in
OC, especially in a combination with complementary “omics” sciences.

Recent evidence indicates that cancer development entails metabolism dysregulation and as a
result, leads to changes in the concentrations of various metabolites in biological fluids of cancer
patients. Some studies demonstrated that serum or plasma amino acid profiling may be useful
in early detection of several cancers [9,11,17,18] and to determine the crucial compounds for OC
pathogenesis [5,6,13,19,20] (Table 2).
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Table 2. Review of recent metabolomic studies on OC biomarkers.

Authors Biological Matrix Groups Technique Metabolites/Groups of Metabolites
Identified as Potential Biomarkers

Zhou, M., 2010 [14] Human serum
44 serous papillary

ovarian cancers,
50 controls

DART/TOF-MS Metabolites involved in: amines and
amino acids metabolism, eicosanoids

Zhang, T., 2012 [7] Human plasma
80 epithelial ovarian
cancers, 90 benign

ovarian tumors
UPLC-QTOF-MS Tryptophan, lysoPC(18:3), lysoPC(14:0),

2-piperidinone

Zhang, T., 2013 [19] Human urine

40 preoperative
epithelial ovarian
cancers, 62 benign

ovarian tumors,
54 healthy controls

UPLC-QTOF-MS

22 metabolites involved in: nucleotide
metabolism, histidine metabolism,

tryptophan metabolism,
mucin metabolism

Ke, C., 2014 [15] Human plasma

40 epithelial ovarian
cancers, 158 benign

ovarian tumors,
150 uterine fibroids

UPLC-QTOF-MS

53 metabolites involved in: phospholipid
metabolism, tryptophan catabolism,
fatty acid b-oxidation, metabolism of

piperidine derivatives

Gaul, D.A., 2015 [20] Human serum
46 early-stage (I/II)

ovarian cancers,
49 healthy controls

UPLC-MS/MS
16 metabolites involved in lipids and

fatty acids metabolism (phospholipids,
lysophospholipids, sphingolipids)

Buas, F., 2016 [8] Human plasma 50 serous ovarian
cancers, 50 controls

LC-QTOF-MS;
LC-MS/MS

Global lipidomics: 34 metabolites
(glycerophospholipids, glycerolipids,

sphingolipid, sterol lipid) Targeted
profiling: alanine

Bachmayr-Heyda, A.,
2016 [13]

Preoperative and
follow-up sera, ascites,

and tumor tissues

65 high-grade serous
ovarian cancers,

62 healthy controls
LC-MS/MS 43 glycerophospholipids, 5 amino acids

Fan, L., 2016 [5] Human plasma
21 early stage epithelial

ovarian cancers,
31 healthy controls

UPLC-QTOF-MS
18 metabolites including

lysophospholipids, 2-piperidone,
monoacylglycerol (18:2)

Hilvo, M., 2016 [16] Human serum and
tumor tissue

158 high-grade serous
ovarian cancers,

100 controls with benign
or non-neoplastic lesions

GCxGC-TOF-MS Tryptophan, 3-hydroxybutyric acid,
3,4-dihydroxybutyric acid

Li, J., 2017 [6] Human plasma
39 epithelial ovarian

cancer recurrent patients,
31 non-recurrent patients

UPLC-QTOF-MS

31 lipid metabolites including
phosphatidylcholines,

lysophosphatidylcholines,
phosphatidylinositols

The aim of the presented study was to identify new potential OC biomarkers and investigate the
usefulness of amino acid profiling in OC screening. The novelty of the study involves a wide panel of
analyzed metabolites, statistical analyses performed on absolute concentration values, and a combined
control group comprising BOT and HC. It should be noted that some studies did not involve the
HC group [7,8]. Involvement of the HC group enables comprehensive interpretation of metabolomic
alterations as it takes into account the levels of metabolites observed in the general population and is
essential to assess the usefulness of a biomarker in screening.

Bachmayr-Heyda et al. [13] provided evidence that there is a relationship between amino acids
levels and OC metabolism. Our findings also showed significant differences in concentrations of amino
acids between OC patients and BOT or HC women. In their research 179 metabolites, including 42
amino acids and biogenic amines, were identified in a semi-quantitative manner. They observed
a positive correlation between decreased histidine, lysine, threonine, tryptophan, and citrulline
levels and unfavorable prognosis. Although the cited study was limited to high-grade serous OC,
it remains in line with our findings, where the levels of these five amino acids were significantly
decreased in OC patients compared to HC, as well as compared to combined BOT and HC. Our results
provide strong evidence that amino acids can be useful in OC screening, especially as compounds of
multi-marker models. Six compounds were identified by Zhang et al. as significantly altered between
OC patients and BOT. Among them, a decreased plasma level of the amino acid tryptophan was
observed in OC patients. A correlation between tryptophan degradation by malignant tumor cells and
indoleamine-(2,3)-dioxygenase (IDO) enzyme was found. IDO is potentially related to “omitting” the
human immune system by the tumor cells [7]. Tryptophan degradations by IDO leads to increased
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kynurenine formation (Figure 3), which causes suppression of T lymphocytes and natural killer cell
(NK cell) proliferation [21,22]. It is potentially consistent with our findings where tryptophan was
found to be significantly decreased in OC patients’ serum compared to HC, as well as compared to
combined HC and BOT. However, the performed univariate ROC curve analyses failed to provide
satisfactory AUC values for that amino acid (AUC values ≤ 0.75). The ROC curves are one of the
crucial tests used by clinicians for evaluation of biomarker performance. In medical diagnostics,
very high AUCs are strongly eligible. In our analysis we recognized the AUC ≥ 0.75 as important,
based on widely acceptable rules, that 0.7 ≤ AUC < 0.8 denotes an acceptable discrimination or fair test.
Each higher value means improved discriminatory ability of the proposed model. As concluded by
Carter et al.: “a model would be considered reasonable with a [AUC] value of >0.7, and strong when
≥0.8” [23], but it should be noted that in clinical practice AUC ≥ 0.9 is extremely unusual [24]. Thus,
based on our results, it can be concluded that tryptophan is not sufficiently sensitive to be considered
as a potential OC biomarker, in contrast to histidine and citrulline.
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associated with active nucleic acid metabolism in the tumor cells. Zhang et al. [19] have also observed 
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pyrophosphate (PRPP), which is the crucial substrate of histidine, tryptophan, purine and pyrimidine 
nucleotides biosynthesis. The de novo synthesized nucleotides are necessary to ensure efficient DNA 
replication and increased RNA synthesis in fast-growing tumor cells [25]. These findings strongly 
suggest a potential role of histidine in cancer growth and development. Amino acid glutamine 
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cycle (TCA Cycle) intermediates during nucleotide biosynthesis, e.g., by glutaminolysis process [26]. 

Figure 3. Metabolic pathways proposed to be associated with ovarian cancer (OC) and amino
acids altered in OC patients. Red filled arrows represent the concentration of a particular
metabolite significantly altered in OC patients (p-value < 0.05), red empty arrows indicate the
change in concentration of a particular metabolite in OC patients that was not statistically significant
(p-value > 0.05). The crucial intermediates connecting the proposed amino acids and different metabolic
pathways are presented in grey. Dotted rectangles represent the endpoint products, pathways or
processes. Abbreviations: PRPP—phosphoribosyl pyrophosphate; TCA—tricarboxylic acid.

We observed decreased levels of serum histidine in OC patients compared to both BOT
and HC group. Decreased histidine level have also been previously reported, e.g., for cervical
cancer [11] and for lung cancer [9,17]. It was suggested that this resulted from an increased histidine
turnover associated with active nucleic acid metabolism in the tumor cells. Zhang et al. [19] have
also observed down-regulated urinary histidine in epithelial ovarian cancer patients. Amino acid
histidine is postulated to be related with the pathways of nucleotide biosynthesis through
5-phosphoribosyl-1-pyrophosphate (PRPP), which is the crucial substrate of histidine, tryptophan,
purine and pyrimidine nucleotides biosynthesis. The de novo synthesized nucleotides are necessary
to ensure efficient DNA replication and increased RNA synthesis in fast-growing tumor cells [25].
These findings strongly suggest a potential role of histidine in cancer growth and development.
Amino acid glutamine alongside PRPP is also engaged in nucleotide metabolism, which is upregulated
in tumor cells. It might serve as a nitrogen donor for purine and pyrimidine biosynthesis, as well as to
provide Krebs cycle (TCA Cycle) intermediates during nucleotide biosynthesis, e.g., by glutaminolysis
process [26]. Previous research has also demonstrated a correlation between glutamine metabolism
and tumor suppressors (p53) and oncogenes (c-myc) proving cancer-glutamine dependency [27].
In our study glutamine level was decreased in OC patients’ serum compared to HC (Table S1).
This observation is consistent with the aforementioned studies and might prove increased glutamine
turnover in cancerogenesis. Other potential mechanism which connects glutamine levels and
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cancerogenesis is the link between glutamine and citrulline (Figure 3). Conversion of glutamine
in enterocytes is one of the most important sources of circulating citrulline [28]. The circulating
citrulline is involved in three metabolic pathways: arginine biosynthesis, the arginine-citrulline-nitric
oxide cycle, and the urea cycle (Figure 3). It is worth emphasizing that citrulline is a substrate of
arginine biosynthesis and a product of its metabolism [28]. In turn, arginine and nitric oxide have been
proved to have a well-established role in tumor development by the impact on tumor angiogenesis,
proliferation, and metastasis [29]. Our findings imply that amino acids play a crucial role in the
human body not only as building blocks or nutrients, but also as important intermediates in metabolic
pathways involved in cancerogenesis. Hence, amino acids should be intensively examined as potential
clinical diagnostic biomarkers or efficacy biomarkers for monitoring cancer treatment targeted on
specific metabolic pathway.

An additional advantage of the presented study is the evaluation of utility of various amino acids
in prediction models using stepwise forward discriminant function analysis (DFA) for OC versus
HC, as well as OC versus combined BOT and HC. For the former comparison the highest sensitivity
(76.32%, Table 1) was obtained for a model consisted of two predictors: histidine and ornithine.
Total group membership classification reached 78.41%. For the latter comparison, OC vs. combined
BOT and HC, the highest sensitivity (60.53%) was obtained by the model with five variables (histidine,
citrulline, alanine, asparagine, ornithine) with the total group membership classification of 86.00%.
Results of the performed DFA for both types of comparisons depict that the sensitivity, which shows
the percentage of positives that are properly identified as such, is significantly lower in the case of
OC vs. combined BOT and HC compared with OC vs. HC in spite of the higher number amino acids
used in the model. This clearly shows that including BOT in the analysis makes the selection of OC
more difficult and could lead to a conclusion that the presence of BOT also affects the amino acid
profile. Nevertheless, amino acids could potentially be good clinical biomarkers of OC, especially as
components of multi-marker models with other substances.

There are limitations in the presented study. First of all, we have only focused on OC and did not
examine if other types of cancer may induce similar metabolic alterations. Due to a limited number
of samples in each group, the study should be regarded as a pilot study. In further studies special
attention should be paid to increase the number of patients, possibly to perform a multicenter study
to ensure independent patient cohorts with different types of cancer. Metabolic alterations might be
caused, e.g., by ovarian malignancy only, or malignant transformation processes in general. In order to
verify the genesis of these alterations studies involving different types of cancer should be performed.

4. Materials and Methods

4.1. Patients and Sample Collection

Serum samples were collected in the Department of Gynecologic Oncology, Poznan University
of Medical Sciences, in accordance with the Declaration of Helsinki, after approval of the study
protocol and of the written information for patients by the Local Bioethical Committee of Poznan
University of Medical Sciences, Poland (decision no. 165/16 of 4 February 2016 and 80/17 of 5 January
2017). All participants were familiar with the goals of the study and signed the informed consent
prior the enrollment. After analyzing the exclusion criteria which were: presence of OC other than
epithelial, presence of other cancers, or cancer treatment (radiotherapy, chemotherapy, hormonal
therapy) at the moment of sample collection or before, presence of chronic metabolic diseases (diabetes,
dyslipidemia, metabolic syndrome), relevant concomitant medication (anti-diabetic agents, statins,
hormonal replacement therapy, oral contraception), a total of 150 samples qualified for the study were
divided into three groups: 38 patients with epithelial OC, 62 patients with BOT and 50 HC patients.
The HC group involved women who underwent surgical intervention for reasons other than ovarian
pathology. All three groups were matched in terms of age, BMI and ethnicity (Caucasian). All serum
samples were collected by the same physician on the day of the operation after overnight fasting and
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in the same manner (incubated for 30 min in room temperature for clotting, centrifuged for 15 min
at 4000 rpm at 4 ◦C, aliquoted, and stored at −80 ◦C in identical vials). Detailed characteristics of all
subjects are summarized in Table S2.

4.2. Determination of Free Amino Acid Profiles

For quantitation of analytes the aTRAQ kit for amino acid analysis (SCIEX, Framingham, MA,
USA) was used. In addition to amino acids the applied methodology enabled the quantitation of several
biogenic amines. Prior to the LC-MS/MS assays, sample preparation was performed according to the
protocol provided by the manufacturer. Firstly, 40 µL of serum was mixed with sulfosalicylic acid to
precipitate proteins. Next the supernatant was diluted with labeling buffer (pH = 8.5). The sulfosalicylic
acid and labeling buffer were enriched with non-physiological amino acids norleucine and norvaline,
respectively. These amino acids were added for the purpose of quality control, in particular for
labeling efficiency evaluation. Then, the amino acid labeling with aTRAQ Reagent ∆8 was performed.
Labeling was stopped by addition of hydroxylamine. Next, the internal standard solution was added
to the reaction mixture. In the next step the samples were concentrated in a vacuum concentrator
(miVac Duo, Genevac, Stone Ridge, NY, USA). Concentrated samples were diluted with 20 µL of water
and transferred to autosampler vials with low-volume inserts.

LC-MS/MS assays were performed using a 1260 Infinity HPLC instrument (Agilent Technologies,
Santa Clara, CA, USA) coupled with a 4000 QTRAP mass spectrometer (SCIEX, Framingham, MA,
USA). For amino acids separation Sciex C18 column (4.6 mm × 150 mm, 5 µm) maintained at 50 ◦C,
and binary gradient at the flow rate 800 µL/min were used. The mobile phase was 0.1% formic acid
(FA) and 0.01% heptafluorobutyric acid (HFBA) in water—phase A, and 0.1% FA and 0.01% HFBA in
methanol—phase B.

The 4000 QTRAP mass spectrometer was operating in MRM mode using the scheduled MRM
algorithm to improve quality and reproducibility of the assays. Data acquisition and management were
performed under control of Analyst 1.5.2 software (Sciex, Framingham, MA, USA). Method validation,
detailed sample preparation process and LC-MS/MS parameters were described by us before [30].
All samples were prepared and analyzed in a random order.

4.3. Statistical Analysis

The statistical analysis and data visualization were performed using STATISTICA 12.5 software
(StatSoft, Kraków, Poland) and the MetaboAnalyst web server [31] (www.metaboanalyst.ca).
The Shapiro-Wilk's test for the assessment of normality of variables was applied. For normally-distributed
free amino acid concentrations the Levene’s test was performed to verify the equality of variances.
If variances were equal, the t-test was used for statistical significance assessment. Otherwise,
unequal variances t-test (Welch's t-test) was applied. The Mann-Whitney U test was used in case the
data was not normally distributed. Univariate receiver operating characteristic (ROC) curve analysis was
performed for analytes with the most significant differences (according to the p-value) and the area under
the curve (AUC) was assessed. It enabled the comparison of the predictive value and the determination
of sensitivity and specificity for selected amino acids. Sensitivity (true positive rate) corresponds to the
percentage of positives correctly identified as positive, as opposed to specificity (true negative rate) which
means negatives were properly classified as negative outcomes. The AUC was used to assess the efficiency
of potential biomarkers. The higher the AUC value, the greater the probability of correct prediction of the
outcome by the proposed model, where 1.00 means 100% of sensitivity and 100% of specificity. In our
analysis we recognized the AUC ≥ 0.75 as significant. To analyze the differences between the three groups
of patients the one-way ANOVA with Fisher’s LSD post-hoc analysis was performed.

Multivariate analysis: PLS-DA and DFA were preceded by normalization by sum, logarithm
transformation, and auto scaling, to deal with non-normal data distribution and minimize the
chance of skewed results by differences in concentration ranges between the variables (amino acid
concentrations). Then the VIP score was assessed. This enabled the determination of the most
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important variables from PLS-DA. Forward stepwise DFA with post-hoc classification matrices was
performed to evaluate the sensitivity and specificity of the discriminant models. In all tests a p-value
less than 0.05 was regarded as significant.

To perform pathway analysis several open-source databases were used: Reactome (http://www.reactome.
org/, date of visit: 3 October 2017), KEGG PATHWAY Database (http://www.genome.jp/kegg/pathway.html/,
date of visit: 3 October 2017) and The Small Molecule Pathway Database (http://smpdb.ca/, date of visit:
3 October 2017) [32,33]. For data visualization draw.io—free online diagram software and MetaboAnalyst web
serwer [31] (www.metaboanalyst.ca) were used.

Two types of comparisons were made to assess the diagnostic utility of amino acids in OC
screening: (1) OC vs. HC; and (2) OC vs. BOT combined with HC. In the first analysis we identified
amino acids that were altered in OC patients and that could be possibly considered OC biomarkers.
The second analysis aimed at excluding the amino acids that could be altered by presence of BOT.
It was proposed to reflect the clinical reality of the test used in screening assuming that in the screened
population there are also women with benign ovarian pathologies and that a good test should be able
to detect OC patients among all others.

5. Conclusions

The findings of our study provided new evidence on amino acid profile alterations in OC,
broadening the knowledge about metabolic dysregulation in cancerogenesis and suggesting that
serum-free amino acid profiling could be useful in the diagnosis and screening of OC. The performed
statistical analyses identified histidine and citrulline as the most significantly altered amino acids in
OC compared to BOT and HC. These two amino acids were indicated as promising targets for further
evaluation as potential OC biomarkers.

Supplementary Materials: Supplementary materials can be found at: www.mdpi.com/1422-0067/18/12/2727/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

OC Ovarian cancer
FIGO International Federation of Gynecology and Obstetrics
CA125 Cancer antigen 125
HE4 Human epididymis protein 4
BOT Benign ovarian tumor(s)
HC Healthy control(s)
LC-MS/MS Liquid chromatography/tandem mass spectrometry
MRM Multiple reaction monitoring
LOQ Limit of quantitation
ROC Receiver operating characteristic
AUC Area under the curve
CI Confidence interval
PLS-DA Partial least squares-discriminant analysis
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VIP Variable importance in projection
DFA Discriminant function analysis
HPLC-MS/MS High-performance liquid chromatography/tandem mass spectrometry
DART/TOF-MS Direct analysis in real time mass spectrometry
UPLC-QTOF-MS Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry
UPLC-MS/MS Ultra-performance liquid chromatography-tandem mass spectrometry
LC-QTOF-MS Liquid chromatography-quadrupole time-of-flight mass spectrometry
GCxGC-TOF-MS Two-dimensional gas chromatography with time-of-flight mass spectrometer
IDO Indoleamine-(2,3)-dioxygenase
PRPP 5-Phosphoribosyl-1-pyrophosphate
HFBA Heptafluorobutyric acid
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