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ABSTRACT: For coal and gangue, intelligent sorting processes for separation, the use of coal and gangue mineral components with
different fundamental differences, and the study of different properties of minerals and coal with different scales and density
regarding the gray value change law are presented. The results show that the gray value of single minerals and mixed minerals
gradually decreases with the increase of their thickness and density. The greater the density of minerals, the smaller the gray value at
the same thickness, and the same rule applies to different coal ranks. Via regression analysis methods, the values of the regression
equation parameter a of pure minerals for graphite, quartz, kaolinite, and montmorillonite are 59.25, 65.69, 61.61, and 58.02 in the
high-energy region, respectively. In the low-energy region, they are 174.95, 177.31, 186.95, and 161.81. For the regression equation
parameter of mixed minerals in the form of two mixed minerals (graphite and quartz, kaolinite, or montmorillonite) and three kinds
of mineral mixing (graphite−kaolinite and quartz; graphite−montmorillonite and quartz; graphite−kaolinite and montmorillonite),
the gray values are 151.12, 156.00, 153.13,152.43, 152.98, and 151.98 in the high-energy region, respectively; in the low-energy
region, they are 193.34, 201.34, 192.93, 191.26, 194.68, and 193.08. The phenomenon for the gray range of two kinds of single
minerals locates in the range of mixed minerals that was formed from a single mineral observed after the regression equation of
mixed mineral was verified by a single mineral, which agrees with the X-ray recognition pattern. In the end, as the density of coking
coal, fat coal, and gas coal increases, the gray value decreases, which was in agreement with single- and mixed-mineral analyses.

1. INTRODUCTION
Coal is one of the most important energy sources in China and
occupies a very important position compared to other energy
sources.1,2 As there is a large amount of gangue mixed with raw
coal as an accompaniment in the coal mining process, coal
gangue separation is crucial.3,4

Intelligent photoelectric sorting technology, which has been
rapidly developed in the coal sorting industry in recent years, has
the advantages of high speed, high accuracy, modularity and
integrated scalability,5−9 low operating cost and energy
consumption, easy operation and maintenance, and no water
consumption compared with traditional coal sorting methods.
Singh et al.10 proposed a new separation of ore particles (Mn, Fe,
and Al2O3) based on the visual texture and a radial-based neural
network method, which extracts texture features from a large
number of ore images and trains them with a neural network to

finally achieve ore separation. Li et al.11 extracted the texture
information from coal gangue images by using the method of
grayscale cogeneration matrix, which improved the accuracy of
visible light separation of coal gangue. Alfarzaeai et al.12

established a new coal gangue recognition model (CGR-
CNN) based on a convolutional neural network (CNN),
which used thermal imaging of coal gangue as the separation
feature. The model provides 100% accuracy for coal recognition,
97.5% accuracy for gangue recognition, and 98.75% overall
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prediction accuracy. Eshaq et al.13 used a support vector
machine to train the grayscale information on the infrared image
of coal gangue, and the accuracy of this method for gangue
recognition is 97.83%. Dou et al.14 employed the relief-SVM
method to find optimal features and develop the best classifiers;
moreover, it was validated through the experiments considering
two mining areas, wherein the mean accuracy was 95.5−97.0%
and 94.0−98.0%. Guo et al.15 proposed a recognition method by
considering differences in the dielectric properties of coal
gangue and combined it with a support vector machine (SVM);
the results were accurate, and the method was efficient.
According to the above analysis, it can be determined that the

research on the intelligent sorting of coal gangue focuses on
finding the image features of coal gangue under visible light,
which is mainly reflected in the optimization of the training
model and the diversification of image features.16−20 There is
less research on this fundamental difference between coal and
gangue mineral components. To further develop the photo-
electric separation technology of coal and gangue, the impact of
thickness and density of single and mixed minerals on the gray
value was studied via the regression equation of the gray
value.21−25

2. EXPERIMENTAL PROCEDURE
2.1. Materials. In this study, three different types of test

samples of coal, single minerals, and mixed minerals were
utilized.
First, the coals used in the experiments were coking, gas, and

fat coals from the Huainan mine in China. The moisture content
was 1.26%, 1.63%, and 2.02%, respectively, and the coal samples
were divided into three size classes of 30−50, 50−100, and 30−
100 mm after sieving, and then each size class was divided into
six density classes of 1.3−1.4, 1.4−1.5, 1.5−1.6, 1.6−1.7, 1.7−
1.8, and >1.8 kg/L after float and sink tests.
Second, samples of single minerals were made based on the

mineral composition of coal. A Shimadzu LabX XRD-6000 X-
ray diffractometer was used for XRD analysis of the crushed raw
coal. The measured particle size of each coal type was 30−100
mm, and the test was performed by a step scanningmethod, with
scanning angle range of 10−80°, scanning speed of 5 deg/min,
step length of 0.02°, emitter tube Cu target, tube intensity signal
of 40 kV, and current of 30mA. The X-ray pattern of the raw coal
was qualitatively analyzed by MDI Jade 6.5 software to
determine its main mineral composition. The results are
shown in Figure 1.
The results show that the main clay mineral components in

coal are quartz, kaolinite, and montmorillonite. Next, organic
carbon was replaced by graphite and samples of single minerals
were prepared. The graphite, quartz, kaolinite, and montmor-

Figure 1. XRD analysis of coking coal, gas coal, and fat coal.
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illonite were all obtained from Shanghai Aladdin Biochemical
Technology (China). The purity grade of these samples was
above 99.8%, and the water content was below 0.01%; the details
of each material are shown in Table 1.
Then the four kinds of minerals were pressed into block

samples with thickness of 4.0, 4.5, 5.0, 6.0, 6.5, and 7.0 mm.
Finally, the four pure minerals were mixed in the same

proportion and pressed into block samples of different thickness,
and the amount of graphite in themixedminerals was used as the
variable, as shown in Table 2.
2.2. System. The test device is mainly composed of X-ray

generator, ray receiver, belt, and computer as shown in Figure 2.

First, in the process of testing, the photoelectric effect and
Compton−Debye effect occur when X-rays pass through the
sample. This process does not take into account the electron pair
effect for X-ray intensity did not reach 1.02 MeV.26−28 X-ray
intensity decreases at the same time as photons were absorbed
and reflected via electrons inside atoms of the sample. Next, the
attenuated X-ray was converted into an image signal using a
photoelectric detector. Since the system has a high-energy
region and a low-energy region, two images are obtained for one
sample.29,30

Different kinds of coal samples and pure minerals of the main
mineral components in coal are used for the test samples. The
attenuation pattern of X-rays is determined for coal samples of

different density and particle size. Furthermore, the effect of
mineral composition in coal on the ash value is determined by
the X-ray attenuation law of a single mineral.31,32

3. RESULTS AND DISCUSSION
The graphite, quartz, montmorillonite, and kaolinite specimens
are put on the belt separately. Then the attenuated ray signals
were accepted by the X-ray receiver and converted into digital
signals. Two images of high and low energy were formed for each
sample, as shown in Figure 3, and the images were processed
using MATLAB to count the grayscale peaks.

3.1. Single Mineral. After filtering and noise reduction of
the grayscale map of a single-mineral sample, the grayscale value
of the target region of the image was extracted, and the result is
shown in Figure 4.
From the gray values of single mineral samples, we can

determine that the gray values of single minerals decrease with
increasing thickness and the gray value in the thickness range of
4−5 mm shows faster descent than that of 5−7 mm. The
relationship was more consistent with the empirical formula of
the index. At the same thickness, the main trends of the gray
values of the four single minerals are graphite > kaolinite >

Table 1. Properties of Samples

sample particle size (μm) crystal formula molecular weight (g/mol)

graphite 13 C 12
quartz 65 SiO2 60
montmorillonite 39 (Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O 682
kaolinite 39 Al2O3·2SiO2·2H2O 258

Table 2. Preparation of Mixed Mineralsa

sample project sample parameters

G:K, G:Q and G:M quality ratio 6:1 5:1 4:1 3:1 2:1 1:1
total quality (g) 10.5 10.8 11.2 12 13.5 18
total thickness (mm) 3 3.1 3.2 3.5 4 5.5

G:K:Q, G:M:Q and G:K:M quality ratio 6:1:1 5:1:1 4:1:1 3:1:1 2:1:1 1:1:1
total quality (g) 12 12.6 13.5 15 18 27
total thickness (mm) 3.6 3.8 4 4.2 5.5 9

G:Q:M:K quality ratio 6:1:1:1 5:1:1:1 4:1:1:1 3:1:1:1 2:1:1:1 1:1:1:1
total quality (g) 13 14.4 15.75 18 22.5 36
total thickness (mm) 3.5 3.8 4.5 5.5 7 11.8

aG stands for graphite, K stands for kaolinite, M stands for montmorillonite, and Q stands for quartz

Figure 2. Schematic of the experimental system.

Figure 3. Grayscale image of the sample.
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quartz > montmorillonite, compared with their density perform-
ance in the natural state (graphite < kaolinite < quartz <
montmorillonite); therefore, the greater the density of different
minerals, the smaller the gray value.
With the mineral thickness as the independent variable x and

the grayscale value as the dependent variable y, an empirical

equation y = a·ebx (a and b are regression coefficients) was used
to fit the thickness−grayscale peak numerical model for a single
mineral, as shown in Table 3.
The lowest absolute value of the correlation coefficient of the

numerical model in the table is 0.8627, indicating that there is a
good correlation between the thickness of graphite, quartz,

Figure 4. Relationship between mineral composition, thickness, and gray peak value.

Table 3. Regression Equation of Gray Value of Single Mineral

regression equation correlation factor

sample low energy high energy low energy high energy

graphite y = 174.95e−0.0168x y = 59.25e−0.0279x −0.9614 −0.9595
quartz y = 177.31e−0.0580x y = 65.69e−0.0552x −0.9606 −0.9660
kaolinite y = 186.95e−0.0422x y = 61.61e−0.0342x −0.9529 −0.8627
montmorillonite y = 161.80e−0.0426x y = 58.02e−0.0373x −0.8799 −0.8745

Figure 5. Gray value of mixed minerals.
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kaolinite, and montmorillonite and the gray value, and this

relationship is not affected by mineral type.
3.2. Mixed Mineral. The grayscale values of the mixed

mineral samples are shown in Figure 5.

According to the gray values of mixed-mineral samples, the
gray value of the same mixed minerals decreases with the
increase of thickness. At the same thickness, the mixed-mineral
gray value of graphite and montmorillonite is the smallest, while
the mixed-mineral gray value of graphite and kaolinite is the

Table 4. Regression Equation of Gray Value of Mixed Minerals

regression equation correlation factor

sample low energy high energy low energy high energy

G:Q y′ = 193.34e−0.0441x′ y′ = 151.12e−0.0256x′ −0.994 9 −0.988 8
G:K y′y′ = 201.34e−0.0534x′ y′ = 156.00e−0.0331x′ −0.996 8 −0.993 9
G:M y′ = 192.93e−0.0412x′ y′ = 153.13e−0.0275x′ −0.995 7 −0.994 5
G:M:Q y′ = 191.26e−0.0405x′ y′ = 152.43e−0.0266x′ −0.996 7 −0.995 9
G:K:Q y′ = 194.68e−0.0438x′ y′ = 152.98e−0.0274x′ −0.992 9 −0.992 6
G:M:K y′ = 193.08e−0.0432x′ y′ = 151.98e−0.0263x′ −0.996 9 −0.995 1

Figure 6. (a−f) Relationship between density and gray value of different coal types.
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largest. At the same density, the mineral content gradually
becomes larger with the increase of thickness, and when less
attenuated rays are received by the detector after X-ray
transmission through the minerals, the lower the gray value of
the pictures converted by the computer and calculated by
MATLAB. In the test, montmorillonite has the highest density,
and the mixed mineral of graphite and montmorillonite has the
highest density at the same thickness, resulting in the smallest
gray value, which is consistent with the conclusion of the single
pure mineral gray value test.
By analyzing the pure minerals, it was found that the gray peak

value was in the form of exponential variation with thickness, so
the mixed minerals can be fitted according to the empirical
formula, and the results are shown in Table 4.
The independent variable x′ in the table is the sample

thickness, and the dependent variable y′ was the peak gray value.
The graphite and quartz were selected as pure and mixed
minerals of 5.5 mm, and the gray values were 159.51 for graphite
and 128.88 for quartz when x = 5.5 was brought into the
regression equation of the low-energy region of pure minerals,
and the value was 151.70 for graphite and quartz in the
regression equation of the low-energy region of mixed minerals.
This is consistent with the basic law of X-ray identification,
which was verified for other samples. This indicates that the
thickness of mixed minerals shows a good correlation with the
gray value, and the correlation trend was the same for different
mineral species.
3.3. Coal Samples.The coal samples of each density level of

coking, gas, and fat coals were put into the feeding system
separately, and the ash peaks of coal samples were obtained
according to the pure mineral extraction ash peak method after
processing the pictures by computer and plotted into ash peak
curves as shown in Figure 6.
According to the ash value of coal samples, we can see that the

ash value of different coals decreases gradually with the increase
of density, and the ash value decreases gradually with the
increase of thickness at the same density, which was consistent
with the law of ash value of single minerals and mixed minerals.
Upon further analysis, the model y = a·ebx can be established for
the ash value of different coal types at different densities versus
coal particle size, and the regression models can be obtained for
each of the above three coal samples. Among them, the decay
model law of ash value of fat coal is shown in Figure 7.

From Figure 7, it can be seen that the ash values of fat coal
samples show a correlation with the scale at the same density.
The coking coal and gas coal also have the same pattern.

4. SUMMARY AND CONCLUSIONS
In this study, the test samples of single minerals, mixed minerals,
and different coal ranks were prepared to study the variation law
of the gray values of different mineral components at different
thicknesses and densities, and the regression equations of the
gray values of different minerals were fitted. The following
conclusions were obtained:

(a) Four single-mineral and mixed-mineral test samples were
imaged under X-ray irradiation, and the grayscale peak of
each sample picture was extracted using MATLAB. The
pattern between sample or thickness and grayscale was
analyzed by regression analysis, and the pattern satisfied
the empirical equation y = a·ebx.

(b) Bringing the independent variable thickness of 5.5 mm
into the regression equation for mixed minerals and single
minerals resulted in calculated coefficients of 159.51 and
128.88 for graphite and quartz, respectively, and 151.70
for graphite and quartz; this result corresponds to the
density interval, and all other minerals conform to this
rule, indicating that the gray variation is influenced by
thickness and density.

(c) Three coal samples (coking, fat, and gas coals) of different
thicknesses were selected by float and sink tests at each
thickness with different densities. Their ash peaks were
counted, and their thicknesses and densities showed
significant patterns with respect to the ash values and
tended to be consistent with the variation patterns of
single minerals and mixed minerals.
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