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Abstract

Spherical viruses are remarkably well characterized by the Triangulation (T) number devel-
oped by Casper and Klug. The T-number specifies how many viral capsid proteins are
required to cover the virus, as well as how they are further subdivided into pentamer and
hexamer subunits. The T-number however does not constrain the orientations of these pro-
teins within the subunits or dictate where the proteins should place their protruding features.
These protrusions often take the form of loops, spires and helices, and are significant
because they aid in stability of the capsid as well as recognition by the host organism. Until
now there has be no overall understanding of the placement of protrusions for spherical
viruses, other than they have icosahedral symmetry. We constructed a set of gauge points
based upon the work affine extensions of Keef and Twarock, which have fixed relative
angular locations with which to measure the locations of these features. This work adds a
new element to our understanding of the geometric arrangement of spherical viral capsid
proteins; chiefly that the locations of protruding features are not found stochastically distrib-
uted in an icosahedral manner across the viral surface, but instead these features are found
only in specific locations along the 15 icosahedral great circles. We have found that this
result holds true as the T number and viral capsids size increases, suggesting an underlying
geometric constraint on their locations. This is in spite of the fact that the constraints on the
pentamers and hexamer orientations change as a function of T-number, as you need to
accommodate more hexamers in the same solid angle between pentamers. The existence
of this angular constraint of viral capsids suggests that there is a fithess or energetic benefit
to the virus placing its protrusions in this manner. This discovery may have profound
impacts on identifying and eliminating viral pathogens, understanding evolutionary con-
straints as well as bioengineering for capsid drug delivery systems. This result also sug-
gests that in addition to biochemical attachment restrictions, there are additional geometric
constraints that should be adhered to when modifying protein capsids.

Introduction

Viruses are classified as helical, spherical or irregular, depending on the shape of their viral cap-
sid which encapsulates and protects the genetic material of the virus, as well as aids with
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infection of the host. In this paper we focus on spherical viruses which are known to have icosa-
hedral symmetry. These capsids have also been remarkably well classified by their Triangula-
tion (T) number developed by Casper and Klug [1] which states that all capsid proteins have
nearly identical chemical environments, known as quasi-equivalence. The triangulation num-
ber specifies that there are T-proteins within the asymmetric unit and that (60T) copies of
these proteins are required to complete the spherical capsid. In addition, the T-number speci-
fies how the capsid proteins should be further subdivided into the two major subunits, the pen-
tamers and hexamers. There are always at least 12 pentamer and 10(T — 1) hexamer subunits.
The pentamers are arranged around the 5-fold symmetry axes and the hexamers are packed
into the area between the pentamers, see Fig 1. In general as the T-number increases, so does
the radius of the virus, however because the angle between adjacent 5-fold axes is the same for
all icosahedral capsids at 63.4°, the angle between the pentamers must remain fixed as well [1,
2], leading to constraints on the hexamer packing.

Most spherical capsids have prominent protruding features which take the form of loops,
spires, helices and/or bulges. These protrusions, defined to be the most radially distal struc-
tures, can be composed of single or multiple proteins and can serve as potential targets for bio-
engineering surface protein modifications. Many protrusions are known to have biological
functions, such as the immuno-dominant regions which lie at the top of the alpha-helical bun-
dles on the surface of HepB [4, 5] as well as the attachment mediating protrusions of adeno-
associated virus [6].

Additionally these features often play a role in stability of the capsid, as well as recognition
by the host [7, 8] and have been suggested to play an important role in capsid stabilization [9].
Some examples of protruding features include convex protein-protein boundaries (e.g. L-A,
CCMV), single protein bulges (CCMV), single protein loops (MS2, GA), multi protein helical
bundles (HepB), multi-protein spires (PAV), pentamers (SV40) and as portions of the hexam-
ers (HK97 Prohead II).

Until now the the specific locations of spherical capsid protrusions has been poorly under-
stood as their locations area not specified by T-number nor icosahedral symmetry. Addition-
ally, the triangulation number does not impose any spatial or angular constraints on the
locations of the protruding features, nor on the specific arrangement of the proteins within the
pentamers and hexamers. Understanding the locations of these features as well as the con-
straints on their placement could have a profound impact on our understandings of virus evo-
lution and pathogenicity, as well as our ability to modify viral capsids for drug delivery
systems.

In order to understand the spatial distributions of these protruding features, we measured
their locations relative to a set of fixed gauge points, which have a fixed angular location on the
sphere making them a natural coordinate system. These gauge points were derived from the set
of all possible affine extensions of the icosahedral point sets derived by Keef and Twarock [10].
The gauge points lie upon the 15 icosahedral great circles, see Table 1, making them a natural
tool for measuring and characterizing spherical capsids as they can be used to track changes
throughout maturation as well as to quantify individual structural feature differences between
capsids. Recent work by Twarock et al. [11, 12] and Janner [13] demonstrated that many spher-
ical viruses conform to the affine extended icosahedral symmetry point arrays. The vertices of
these point arrays represent material boundaries of the proteins, genetic material as well as
their interfaces. Each point arrays imposes a different set of radial and angular constraints on
the virus. The gauge points are built from the outmost points of these arrays, and are used to
determine their only free parameter, radial scaling.

In this paper we will show that nearly all protruding features of spherical viruses are found
on or near the icosahedral great circles which subtend the icosahedral symmetry axes, leaving
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T1 T3 T4 T7

Fig 1. Triangulation numbers and Constraints. The standard Triangulation number architecture for spherical capsids ranging from T1 to T7 capsids. Each
are composed of 12 pentamers (5-protein units) and a variable number of hexamers (6-protein units). The Asymmetric Unit (AU) for each capsid is shown as
a red kite stretching from the 5-fold (blue pentagon) to each of the 2-folds (red diamonds) to the 3-fold axes (green triangle). The icosahedral great circles also
encompass each of the 5 distinct red lines shown. As the triangulation number increases, the hexamers must rearrange as seen, which changes the
restrictions on their protrusions, shown as dashed lines above. While the capsid proteins are considered to be quasi-equivalent, they are not for the purpose
of protrusions. The dotted lines show where modifications for bioengineering will likely be less favorable, except where they intersect with the boundaries of
the AU (i.e. the great circles). In general it also appears the p23 within the AU is less favorable. The icosahedral capsids were drawn using the Icosahedral
Server [3].

doi:10.1371/journal.pone.0152319.g001

the majority of the viral capsid unused for protrusions. This result is intriguing, as it is not
required by icosahedral symmetry, nor quasi-equivalence; as in principle different viruses
could distribute their protrusions stochastically around the sphere while maintaining icosahe-
dral symmetry, see Figs 2 and 3. Moreover even the angular locations of the protrusions are not
continuously distributed, but instead are clustered near the gauge points of the affine extended
icosahedral symmetry point arrays derived by Keef and Twarock [10]. The determination of
the appropriate gauge points is important to understanding the affine extended symmetry of
viruses, as these points dictate the allowable internal point array structures [10].

Methods

We composed our virus capsid data set of a wide range of viruses from the literature, spanning
T =1to T =7 capsids and we also included several quasi-T number viruses. Icosahedral capsids
may be divided into 60 equivalent, irreducible sections, known as the asymmetric unit (AU),
which when you apply the icosahedral rotations will reconstruct the entire viral capsid, similar
to a unit cell in crystallography, see Figs 1 and 4. Our analysis begins by finding the protruding
features for each viral capsid that are contained in or neighboring the asymmetric unit and
then we compute their angular separation from the set of gauge points, see Table 2.

Gauge Points

We construct our set of gauge points by including all possible outer hulls of the affine exten-
sions of the icosahedral point sets derived by Keef and Twarock [10]. Careful examination of
the gauge points reveal that they all lie upon the 15 icosahedral great circles; which are defined
as the subset of great circles on the sphere which transverse any two adjacent icosahedral sym-
metry axes (2, 3 or 5-fold), see Fig 2. There are 21 unique gauge points within the AU, see Fig
5, and their coordinates are given in Table 1.
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Table 1. Spherical Coordinate Locations of the Gauge Points.

Gauge Points
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21

6

0.0°
8.3°
10.8°
13.3°
15.5°
20.9°
15.5°
14.5°
13.3°
12.2°
10.8°
9.7°
7.3°
5.2°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°

¢
31.7°
20.7°
16.9°
12.9°
9.4°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°
0.0°
8.3°
11.6°
15.5°
17.2°
19.3°
20.9°

Plane

5-fold
P53
P53
P53
P53
3-fold
P32
P32
P32
P32
P32
P32
P32
P32
2-fold
P25
P25
P25
P25
P25
P25

The angular locations of the 21 gauge points within the asymmetric unit are given in spherical coordinates,
see Figs 4 and 5. Our polar angle is ¢ and our azimuthal angle is 6. The +z axis is aligned with a 2-fold

axis, seen here as gauge point 15, and our +x axis is in the plane containing the +z and 5-fold of the
asymmetric unit, which contains gauge points 1 and 15-21, see Figs 2 and 4. All gauge points lie on

icosahedral great circles. Each gauge point is also associated with two or more distinct affine extended

point arrays.

doi:10.1371/journal.pone.0152319.t001

We determine the radially scaling of the gauge points by initially scaling all points such that
they are 5A beyond the outermost atom of the viral capsid. We then lower each gauge points
until they intersect or pass through the viral capsid surface, which is approximated by allowing
each atom to have a van der Waals radius of 2A. Gauge points which do not come into contact
with the viral surface, due to gaps and points that are not at 95% or above, are not considered

admissible points and are disregarded.

Protruding Features

We find the protruding features by selecting the outermost atoms (top 5% by radius) of the
viral capsid, referred to as the peak atoms. We then group each peak atom with all other atoms
within a given angular cutoff, which we refer to as a wedge. Next we compute the average sur-
face radius of each wedge and look at the atoms above a cutoff, given by R.,;s = .5(Rgrf + Rpear)-
We then repeat this algorithm for all of the peak atoms and if distinct features overlap, our
algorithm separates them out, based on their proximity to the center of mass of each wedge.
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Fig 2. Icosahedral Great Circles. A view down the 2-fold axes of the 15 icosahedral great circles
encompassing the 2-fold (red diamond), 3-fold (green triangle), 5-fold (blue pentagon) symmetry axes,
respectively. We found that protruding features cluster on these circles, and are seldom found in the white
regions between them, see Fig 3. The spherical area can be subdivided into 60 identical units, known as the
Asymmetric Unit (AU), shown here as a yellow (shaded) triangle. Each circle passes through the (5-3-2-3-5-
2-5-3-2-3-5-2-5*) fold axes, where 5% indicates the full cycle. The number of intersecting circles determines
the symmetry of the point, 2-folds are diamonds, 3-folds are triangles, and 5-folds are pentagons. Additionally
that all the gauge points lie on the border of the AU and plane bisecting it and thus are found on the great
circles, see Table 1. Note that the full icosahedral group, which includes mirror symmetry, would only required
the right hand side of the kite, and would have 120 fundamental domains, also known as the Coxeter Group
H3.

doi:10.1371/journal.pone.0152319.g002

Finally, we look for any features near the 95% of the peak radii that are not yet included and
created wedges around them as well. The angular cutoff of the wedge is chosen to be the largest
angular separation between the set of gauge points, see Table 1. The algorithm is very robust,
and we have yet to find a virus that is not properly characterized by it.

Once the protruding features have been found, we measure their location on the sphere by
using our set of gauge points. We determine the nearest gauge points by computing the angle
between the center of mass of the protrusion and the position vector of each gauge point.
Finally we check the radial scaling of the nearest gauge points to make sure they are above the
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Fig 3. Gauge Points. A schematic of the 21 gauge points within the asymmetric unit which lie between the 2, 3 or 5 fold axes. Gauge points 2 — 14 appear
twice as they border the AU, however points 2-6 are equivalent up to a rotation about the 5-fold axes and points 6-14 are equivalent up to a rotation about the
2-fold axes. The angular locations of the gauge points are given in Table 1. The associated gauge points of each virus are indicated as per Table 2. We did
not found any viruses with protruding features near gauge points 6-10, 12 and 13.

doi:10.1371/journal.pone.0152319.9003

95% radius level, which is true of all the viruses we’ve studied, see Table 2. Occasionally the
algorithm finds minor protrusions, which are composed of only a few atoms, see Fig 6 and we
did not report those features in our results. Previous measures of external features measured
the linear distance from center of mass of the feature to the gauge points [11], which could vary
by several angstroms based upon your choice of radial cutoff, whereas our angular measure is
fairly insensitive to the cutoff, making it much more robust.

The affine extended point arrays are created by displacing the vertices of the the icosahedral
polyhedra, namely the icosahedron, dodecahedron and icosadodecahedron along the
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Fig 4. Asymmetric Unit. The standard orientation of the icosahedral capsid in the Viper Database [3]. The
2-fold axes are shown as red ovals, the 3-fold axes as green triangles and the 5-folds as blue pentagons. We
will use this orientation to measure out spherical angles in Table 1 with ¢ being measured from +z axis
towards the x — y plane and 6 from the +z axis in the x — z plane. While the asymmetric unit (AU) is not
uniquely defined it always contain the volume created by the intersection of three planes containing adjacent
icosahedral symmetry vectors, referred to as p52, p53 and p32.

doi:10.1371/journal.pone.0152319.g004

icosahedral symmetry vectors by an length . The vertices are displaced until at least two of the
translated vertices intersect with symmetry axes, which recreates the icosahedral symmetry at a
new radius, or they intersect neighboring displaced vertices. After translation, you then apply
the icosahedral group rotations, forming the point array, see Fig 7. The effect of this translation
is to extend a rotation symmetry at a single radius to a rotation symmetry at many radii in a
mathematically consistent way which preserves the group structure at each radial level [10].
We construct our set of gauge points by considering the most radially distal points from all
possible affine displacements of the icosahedral polyhedra.

Results

We have identified 38 protruding features within the asymmetric unit (AU), from from 20 dis-
tinct spherical viruses ranging from T1 to T7 capsids. We have computed the angular separa-
tions between these features and their nearest gauge points, which appear in Tables 2 and 1,
respectively. We have selected these viruses to be representative of a range of T-numbers from
recent papers [11, 12], as well as a few suggested to the authors.
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Table 2. Relative Angular Locations of Protruding Features to their Associated Gauge Points.

Protruding Features

Virus

Adenovirus [21]

LA Virus [22]

PCV [23]

STMV [24]

CCMV [16]

CCMV Swollen [25]

GA [26]

MS2 [15]

PAV [27]

TBSV [28]

Seneca Valley [29]
HASV [30]

HepB [31]

HepB ADYW [32]

NwV [33]

SV40 [34]

BPV-Type 1 [35]

HK97 Prohead Il [36]

HK97 Head Il [37]

7d

7d

7

71

Gauge Point(s)
4
18 & 19
3
17
20
20
3
21
5
11
21
5
11
21
2
4
2
4
14
16
3
15
19
2
17
5
18

Angle
4.2°
2.6°
2.1°
1.8°
0.5°
1.5°
2.1°
2.6°
3.2°
3.3°
4.3°
1.4°
1.4°
5.4°
1.9°
2.2°
2.2°
2.6°
2.8°
0.5°
1.7°
2.3°
2.0°
3.7°
6.2°
0.5°
0.4°
0.6°
0.3°
3.7°
5.9°
3.5°
6.7°
0.0°
5.6°
0.0°
3.1°
0.05°

We see clustering of the external features of many spherical viruses with the planes which contain the fold
symmetries of the icosahedral group. For a sense of scale, the angle between the 5-fold and 2-fold is 31.7°,

the angle between the 2-fold and 3-fold is 20.9° and the angle between 5 and 3 is 37.4°.

doi:10.1371/journal.pone.0152319.t002
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Fig 5. Section of PAV. A section of the full PAV capsid showing two pentamers (light blue) and two
hexameters (pink and green). All 21 gauge points of the AU are displayed as yellow spheres, the 16th gauge
point is shown as purple. The 16th gauge point is also known as the local 3-fold, in reference to the AU.

doi:10.1371/journal.pone.0152319.9005

Protruding features take on various forms e.g. as single protein structures (e.g. loops of
MS2), coordinated multi-protein structures (e.g. helical bundles of HepB and three protein
wrapped tower of PAV, see Fig 8) and as the boundary of two or more proteins. Many viruses
have several distinct protrusions found within the asymmetric unit (AU) and each feature is
reported in Table 1. Additionally, some protruding features are approximately equidistant
from two gauge points, e.g. adeno and HK97, and therefore have two gauge points listed. The
majority of protruding features were found to be within 3.5° of their respective gauge points,
with several being nearly perfectly aligned, e.g. LA, PAV and HepB. These results are intriguing
as the location of protruding features is not dictated by icosahedral symmetry nor the Triangu-
lation number; and in principle could occur anywhere within the asymmetry unit.

Many viruses with distinct protrusion on the 5-3 plane also have a protrusion near the
2-fold, e.g. LA, TBSV, MS2 and GA virus. It also appears that T1 to T4 viruses seldomly have
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A

Fig 6. Seneca Valley—is a pseudo T3 virus, with all of its protrusions shown in red. Some of these
protrusions are very minor, being composed of only a few atoms and their results are not reported here. All of
the gauge points within the AU are shown in cyan and the gauge point identified with its major protrusion is
shown in purple.

doi:10.1371/journal.pone.0152319.g006

protrusions on the 5-fold. However some of these viruses, such as the homologous viruses MS2
and GA also have loops near gauge points 2 and 4 both on the 5-3 plane near the 5-fold. The
most noteworthy and clearly distinguishable protruding features that are in excellent agree-
ment with the gauge points are PAV, GA, MS2 and HepB, see Figs 8, 9 and 10. We have also
found that all multi-protein protrusions, e.g. PAV, HepB, TBSV, have excellent agreement with
the gauge points.

While we have just begun examining the location of spherical protrusions, we have yet to
find any viruses with protrusions on the 3-fold axes, including the T1 capsids, which are
dodecahedrons and one might expect them to have protrusions here. All known T1 capsid
structures can be seen in the T-number Index on the Viperdb website, [3, 14], and none have
3-fold protrusions, although some do have protrusions near gauge point 5 and 7. There also
appears to be a lack of protruding features along the 2-3 plane, with only one prominent excep-
tion, which is TBSV with a 3 protein coordinated tower at the 2-fold. The other two viruses
with features on this plane are CCMV and MS2, however each of these viruses also has features
along the 5-3 and 5-2 planes, see Fig 3. Quasiequivalence says that all hexamer proteins should

PLOS ONE | DOI:10.1371/journal.pone.0152319  April 5,2016 10/22
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Fig 7. Affine Extensions. We construct the affine extensions of the base icosahedral vertex sets by first
translating the polyhedra along one of its symmetry axes, and then applying icosahedral symmetry to the

displaced structure. Here we show the base icosahedron (blue) being translated along the 5-fold axes (T ;) to
form a new icosahedron (green) displaced from the origin. Once icosahedral symmetry about the blue
icosahedron is applied, the displaced vertices create new polyhedra at different radii. The displacement
lengths are chosen such that at least two of the original vertices intersect the original symmetry axes or
intersect neighboring displaced vertices [10]. In this way, we construct a new icosahedral vertex set, adding a
radial component to the original icosahedral symmetry. In this example, we intersect the 3-fold axes (3, ,) and
thus will create a new larger radius dodecahedron. The top vertex of the original icosahedron which now

resides at the tip (green) of 71,, will be the largest radius point, and thus the gauge point of this affine
extension.

doi:10.1371/journal.pone.0152319.g007

be in nearly equivalent chemical environments across the capsid, the presence of protrusions
along the 2-5 plane and lack of protrusions along the 2-3 plane, suggests a loss of quasi-equiva-
lence in terms of protrusion placement, see Fig 1 for more details.

The proximity of protrusions to the gauge points appears to hold as T-numbers increase.
This result is a remarkable result given that the packing density of proteins with respect to
angular extent increases with T-number, while the angle between the pentamers remains fixed.
Stated another way, there are ever more hexamers being packed into the same angular spacing,
which should offer ever more diversity in the locations of protruding features, however this is
not the case. As T-number increases, diversity in the location of protrusions decreases, leaving
the majority of T7 capsids with protrusions only on their pentamers near the 5-fold axes. This
result is expected to become inescapable for very large T-number viruses, as large spherical
viruses seem to always have convex pentamers, requiring that the packing of additional hexam-
ers be recessed from the maximum surface radius, and examination of the T-number Index on
the Viperdb website, [3, 14] confirms this finding.

We will now by discuss the protrusions of T1 to T7 viruses and the patterns that we see
within a particular T-number and across the range of T-numbers. We will then discuss the fea-
tures in order of those found along the great circle connecting the 5-fold to 3-fold (Gauge
points 1-6), then the great circle connecting the 3-fold to 2-fold axes (Gauge points 7-14) and
finally along the 2-fold to 5-fold axis (GP 15-21). The location of each virus’s protrusions can
be found in Table 2.

PLOS ONE | DOI:10.1371/journal.pone.0152319  April 5, 2016 11/22
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Fig 8. Pariacoto Virus. The full PAV (T3) Capsid is made up of 180 identical proteins. It is formed by
applying 60 icosahedral rotations of the asymmetric unit (3 proteins in a triangular shape, blue, red and dark
green). The blue protein when rotated about the 5-fold axis (gauge point 1) forms a pentamer (5 proteins), of
which there are 12 shown in light blue. The red and dark green proteins form pink and green hexamers (6
proteins) when rotated about the 3-fold axes (gauge point 6). The pink and green hexameters meet at a 2-fold
axes (gauge point 15). In total there are 20 hexamers, shown in gray. The 16th gauge point, which lies
between the 5 and 2 fold axes best describes the outermost features of PAV and is shown as a purple
sphere, see Fig 2. showing the alignment of the 16th gauge point (purple sphere) with the outermost features
of PAV, which are towers of 3 twisted proteins.

doi:10.1371/journal.pone.0152319.g008

T1 Capsids

The T1 viruses we examined were Adenovirus, PCV, STMV and L-A virus, a quasi T2. None of
these viruses have protrusions along the 5-fold axes, however several do along the 5-3 plane,
namely L-A and STMV at GP 3 and adeno-associated virus at GP 4. T1 viruses tend to have
features along the 5-3 plane and the 2-5 plane. A few families of T1 capsids have features on or
near the 2, 3 or 5 fold symmetry axes, such as Birnaviridae, Bromoviridae and Hepeveridae as
can be seen in the Family Index on Viperdb [3], however none of the capsid we examined do.
A few T1 capsids have features on the 2-3 plane near the 3-fold, but in general this region is
unused. Two of the T1 viruses have two protrusions, one each along the 5-3 plane and the 5-2
plane. PCV and STMV each only have one protrusion, along the 5-2 plane and 5-3 plane,
respectively. LA virus has two proteins arranged as a dimer within its AU, making it effectively
a T1 capsid. It has two protrusions near GP 3 and 17.

PLOS ONE | DOI:10.1371/journal.pone.0152319  April 5,2016 12/22
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Fig 9. Bacteriophage MS2—is a T3 virus with three surface loops within the AU, however there are 3
additional loops adjacent to the AU on the 5-3 and 2-3 planes. The capsid is colored radially with the
protrusions shown in blue, the nearest gauge points are red spheres with the other gauge points of the AU
are shown for reference as green. GA virus is very similar to MS2, and the bottom two loops of GA are lying
down near the capsid surface and is not considered as a protrusion, a feature easily noticed using gauge
points.

doi:10.1371/journal.pone.0152319.g009

T3 Capsids

We have found that in general, T3 capsids have their protruding features along the 5-3 plane
and near the 2-fold axis along the 5-2 plane. Additionally CCMV and MS2 also have features
along the 2-3 plane, a hexamer protrusion for CCMV and a loop for MS2. In fact, only T-3
viruses have been found to have protruding features along the 2-3 plane. We analyzed CCMV
native and swollen form, MS2, GA, PAV, TBSV and the pseudo T3 Seneca Valley. All of the T3
capsids have excellent agreement with the gauge points, the largest deviation being a hexamer
protrusion in the model fit CCMV swollen form.

GA and MS2 are interesting viruses to consider as they have homologous protein and capsid
structures. Each has 3 surface loops within the AU in nearly identical locations, yet the loop
near gauge point 14 for GA is slightly bent over, making it closer to the surface of the capsid.
This result serves as an example of why using the affine extended point arrays as a set of mea-
suring tools is so powerful, as this difference between the loops of MS2 [15] and GA is easy to
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Fig 10. HepB Virus -a T4 virus with many helical bundles, which are perfectly aligned with the gauge
points shown as red spheres. Both strains of HepB share the same protrusions which are the immuno-
dominant regions. These protrusions are in excellent agreement with the gauge points. As HepB is eventually
enveloped in its lifecycle, the exact spread of the helical bundles are likely important to its lifecycle.

doi:10.1371/journal.pone.0152319.9g010

overlook using other tools, such as RMSD differences or molecular visualization tools, yet this
detail is immediately apparent when using the gauge points to measure their locations.

T4 Capsids

T4 capsids have the best and worst agreement of the spherical capsids. The best agreement
with gauge points being the two strains of HepB, which each have multi-protein helical bundles
situated precisely on the gauge points, with an angular separation of about 0.5°, see Fig 10. The
worst agreement comes from two two related T4 capsids, NwV and HASV which have very
similar protruding morphologies, which leads to a large angular deviation of 5.9° and 6.2°
degrees, respectively. The relatively large protruding bulges do not appear to respect the gauge
points and each has a loop as its most radially distal feature. Close examination shows that
these bulges however span the large solid angle stretching between gauge points 3 and 17, and
appear bounded by them, see Fig 11. It is possible that their bulge protrusion are stretched
between these two gauge points in order to adhere to an underlying fitness mechanism con-
ferred by having protrusions at the gauge points.

T7 Capsids

All of the T7 viruses that we examined (HK97, BPV, SV40) show at least one protrusions along
the 5-fold axes (GP 1), near the center of their respective pentamers. This result would be
expected if the viruses were solid icosahedra, which envelops many larger spherical viruses.
The immature Prohead II structure of HK97, see Fig 12 also has protrusions coming from its
hexamers whereas the mature Head II structure of HK97 does not, see Fig 13. These protru-
sions are in excellent agreement with the gauge points. This result is of interest due to there
being a lack of protruding feature quasi-equivalence in the hexamer, as the six proteins of the
hexamer protrude in such away that the most radially distal portions line up with the gauge
points.

SV40 and BPV are T7d capsids of unusual construction. They are composed entirely of pen-
tamers, instead of a mixture of 12 pentamers and 60 hexamers as would be predicted by their
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Fig 11. NwV—is a T4 virus with protrusions (purple) that appears to have poor agreement with the
gauge point constraints. The center of mass of its protrusions are far from the gauge points, see Table 2,
however the dark blue regions are raised above the average thickness of the capsid and stretch between
several gauge points (red spheres), perhaps attempting to conform to the constraints.

doi:10.1371/journal.pone.0152319.g011

T-number. Also of interest is that these additional pentamers are not situated on 5-fold axis,
and have pentameric protrusions which have a center of mass sitting in the middle of the trian-
gular sections of the asymmetric unit, seemingly in violation of their constraints. However
when we look more carefully, we see that each protein of the pentamer protrudes nearby a
gauge point, see Figs 3 and 14. The pentamers coinciding with the 5-fold axes are a bit more
spread out in angle than the other pentamers of the capsid, resulting in what appears to our
algorithm as five separate protrusions; each appearing very close to the 5-fold axes, if these are
treated as one large protrusion, the agreement is perfectly inline with gauge point 1.

Virus Maturation

The location of protruding features also appear to conform with the gauge points through pH
induced swelling maturation, as seen in CCMV and HK97. When the pH environment around
CCMV is raised from 5.0 to 7.5 a [16, 17], it swells by approximately 10% in radius. While the
swelling is not a uniform expansion, instead relying on modes along the 3-fold axes [17, 18],
nevertheless the angular locations of its protruding features remain relatively fixed; with two
features moving slightly closer to their gauge points and one feature moving slightly away, see
Table 2. Conversely the maturation of HK97 occurs when we decrease the pH from 7.0 to 5.0.
In this case, the Prohead II capsid swells and buckles to form the Head II structure [19, 20], see
Figs 12 and 13. The hexamer protrusions of the Prohead II state are due to four proteins, the
larger protrusions are near both gauge points 16 & 17 and the smaller near gauge point 5. After
maturation, the hexamer protrusions recede relative to the 5-fold protrusion, see Fig 13.
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Fig 12. HK97 Prohead ll—this relatively large T7 virus under goes a maturation to the Head Il state,
see Fig 13. Shown here are two of its hexamers (lower half of image) with their protrusions shaded in blue.
The most radially distal protrusions are all located near the gauge points, shown in red. Quasiequivalence
says the proteins should be nearly identical, however their protrusions are clearly not, as some are recessed
into the capsid, seen as lighter blue. This result supports our suggestion of new restrictions for capsid
modifications of protrusions.

doi:10.1371/journal.pone.0152319.9012

Discussion

It is not yet known why the protruding features of spherical viral capsids are found on or near
the icosahedral great circles. The location of the protrusions strongly suggests that there is an
energetic benefit or biological fitness, or mixture thereof conferred by adhering to these con-
straints, as there are many ways to build icosahedrally symmetry capsids without adhering to
the gauge points constaints.

It is often stated that icosahedral symmetry is the largest discrete symmetry on a sphere,
while this statement is true, it is also incomplete. The full icosahedral group includes mirror
reflections, which due to chirality, is not applicable to viruses. It is worth pointing out however
that these two groups have the same icosahedral great circles, see Fig 2, and while chirality pre-
vents mirror symmetry, the locations of the protruding features being found only on the great
circles may be the viruses attempting to adopt the full icosahedral symmetry of a discretized
sphere.

PLOS ONE | DOI:10.1371/journal.pone.0152319  April 5,2016 16/22



@‘PLOS | ONE

Protruding Features of Viral Capsids

Fig 13. HK97 Head ll—the mature form of HK97 Prohead Il. When the capsid matures, it buckles and the
hexamers recede into the capsid leaving the only external feature remaining on its pentamers. This is an
example of maturation respecting the constraints of the gauge points.

doi:10.1371/journal.pone.0152319.g013

The distribution of protrusions around the gauge points could be the result of maximizing
the angle between features for the best coverage of the spherical capsid with the minimal num-
ber of features used, however this placement is not required by icosahedral symmetry. The
symmetry dictates that you have sixty copies of any feature found within the asymmetric unit
unless the feature is on a symmetry axis; Protrusions at these locations appear 12, 20 or 30
times for the 5, 3 or 2 fold symmetry axes, respectively. If a protrusion appears off the symme-
try axes but on a great circle, e.g. the 3 protein spire of PAV, it will appear 60 times across the
capsid. Whereas if the spire were located in the middle of the AU triangle section, it would still
appear 60 times, as there is no mirror symmetry within the AU, see Fig 2. In fact the location of
the features do not lead to a reduction of occurrences in general, e.¢ MS2 a T3 virus has 3 pro-
truding loops within the AU, and therefore has 180 loops covering the capsid. To reiterate, the
placement of protruding features along great circles is not required by icosahedral symmetry,
and unless they are found on symmetry axes do not result in a reduction of surface features. It
is more likely that their placement is the result of viruses conforming to affine extended icosa-
hedral symmetry [10] and/or mirror symmetry.

Irrespective of why protruding features are arranged this way, the result suggests that when
attempting to modify surface features on capsids for bioengineering applications, that one
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Fig 14. Simian Virus 40—is an unusual T7 virus that is entirely covered by pentamers instead of the
usual hexamers and pentamers. Shown here are 3 of its pentamers, the upper pentamer is placed in the
usual space along the 5-fold axes and is in agreement with the gauge point (red) while the remaining two
pentamers are located where you would expect to find hexamers. The protruding features are shown in
purple, and while collective their centers of mass are located in the center of the kite sections of the AU
region, each protein considered individually (purple) would reduce the angular difference from the gauge
points, and are perhaps each in agreement with the gauge points.

doi:10.1371/journal.pone.0152319.g014

should consider where on the surface the modification will take place with respect to the gauge
points, especially for modifications of the hexamers see Fig 1. As the number of hexamers
increases, their relative orientations with respect to the pentamers shift, which in principle
should allow the protruding features to be found nearly anywhere on the sphere, however we
see that instead they remain on the icosahedral great circles. This suggests there are additional
restrictions on how hexamers tile themselves on the sphere and perhaps new spatial restrictions
in addition to normal the biochemical considerations. We suggest that it should be easier to
modify features away from the 3-fold axes and closer to the 5 and 2-folds. When modifying
hexamers, they should not be considered quasi-equivalent, instead the portions of the hexamer
which are on the 5-3 great circle and 5-2 great circle should be targeted for modification. It has
also not escaped the authors notice that there are likely evolutionary implications due to these
restrictions, as it is likely that viruses evolved in a manner that drove them to conform with the
structures permissible with these gauge points.
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Conclusions

We have shown that protruding features of spherical viruses will typically be found only on or
near icosahedral great circles. This result was demonstrated using a set of gauge points derived
from considering all allowable affine extensions of the icosahedral point groups [10]. By mea-
suring the angular separation of the center off mass of each protrusion from the set of gauge
points, we have shown that the gauge points serve as a natural toolset for characterizing spheri-
cal viruses.

The proximity of protruding features to great circles is significant as it is not required by ico-
sahedral symmetry nor quasi-equivalence. There are many possible icosahedral capsid configu-
rations which do not utilize these gauge point constraints and the majority of the 47 solid angle
of the spherical area is not utilized for placing protruding features. This suggests that there is
some underlying fitness criteria driving viruses to these configurations.

Many viruses (e.g., HepB, L-A, MS2) show excellent agreement with the gauge points and
their protrusions. These protrusions take several forms, e.g., as loops, helicies, spires and peaks
of hexamers. When more than one protein is involved with formation of the protrusion, the
agreement is nearly perfect, e.g., HepB, TBSV and PAV, with about 0.5° deviation from the
gauge points. Even the few viruses with poor agreement e.g., NwV or SV40) have underlying
structure to their protrusions which span multiple gauge points, indicating that they many be
attempting to conform to the constraint as best as possible.

We find that smaller viruses (T < 7) tend to have their protrusions along the 5-2 and 5-3
planes, and rarely (if at all) on the 5-fold axis. We have also not found any viruses with 3-fold
protrusions, including T1 capsids which are dodecahedral structures. As T-number increases,
we expect that all protrusions will occur near the 5-folds due to geometric limitations of pack-
aging more hexamers into the same solid angle and that viruses appear to always be convex on
the 5-fold axes. We also find that pseudo-T number capsids conform to the gauge point con-
straints, even if they do it in an unusual way, such as SV 40 and BPV. We also see that virus
maturation respects the gauge point constraints after the rearrangement of the protein sub-
units, as in the case of CCMV and HK97. All of these results seem to indicate an underlying
stability or fitness criteria conferred by adhering to the constraints of the gauge points and thus
the affine extended icosahedral structures.

Given many viruses have been previously shown to have affine extended icosahedral sym-
metry [10], which our gauge points are derived from, we suspect that most spherical viruses
will also be found to also have this extended icosahedral symmetry which instills a radial com-
ponent to the icosahedral rotational symmetry. This result would have profound implications
on our understanding of virus construction and overall structure of virion, as this extended
symmetry also applies to the genetic material contained within. We also believe that the loca-
tion of protrusions will limit the available packing conformations of the entire virus, which will
be explored in future works.

The biological function of protrusions conforming to the gauge points remains unclear.
Given that a wide range of T-number viruses from many virus families conform to these con-
straints suggests there many an evolutionary constrain on the viruses as well. There are also
implications for bioengineering of viral capsids as possible surface protein modifications
should also take into account the geometric location of the modifications. Specifically the
regions between the 5- and 2-folds as well as the 5- and 3-folds should be most successful,
while the space between the 2- and 3-folds should be avoided as should any region not on the
great circles nor near the 5-fold symmetry axes.
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