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Deep Learning–Based Survival Analysis 
Identified Associations Between 
Molecular Subtype and Optimal Adjuvant 
Treatment of Patients With Gastric Cancer 

INTRODUCTION

Gastric cancer (GC) is one of the most fre-
quently occurring malignancies worldwide and 
the third-leading cause of cancer-related deaths 
worldwide.1 Most patients with GC present with 
metastatic disease at recurrence, and the over-
all prognosis remains poor, with an expected 
survival of < 1 year upon recurrence. Several 
pivotal clinical trials were performed in the pre-
vious decade and aimed at reducing the recur-
rence rate after curative surgery in patients with 
GC. First, the Intergroup 0116 (INT-0116) trial 
published in 2001 demonstrated significant 
improvement in survival when patients with 
completely resected GC received postoperative 

chemoradiotherapy (CRT) with fluorouracil (FU) 
and leucovorin (LV).2 The Adjuvant Chemoradi-
ation Therapy in Stomach Cancer (ARTIST) trial 
was a phase III trial that compared postoperative 
treatment with capecitabine plus cisplatin (XP) 
versus XP plus radiotherapy (RT) in patients 
with extended D2 lymph node dissection.3,4 The 
Capecitabine and Oxaliplatin Adjuvant Study in 
Stomach Cancer trial compared capecitabine 
plus oxaliplatin treatment with observation in 
completely resected GCs and demonstrated an 
additional survival benefit with adjuvant capecit-
abine plus oxaliplatin chemotherapy.5 The Adju-
vant Chemotherapy Trial of Titanium Silicate 
for GC trial compared titanium silicate (TS-1) 
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with observation in patients with D2-resected 
GC and also showed prolonged survival in the 
TS-1 chemotherapy group.6 Hence, there are at 
least three to four postoperative chemotherapy 
regimens available for patients with completely 
resected GC.

To additionally complicate clinical decision mak-
ing, two recent molecular landscape studies 
demonstrated the existence of different molec-
ular GC subtypes.7,8 The Asian Cancer Research 
Group (ACRG) categories were determined on 
the basis of gene expression profiling of tumors 
with microsatellite instability (MSI), tumors with 
an epithelial-to-mesenchymal transition phe-
notype, tumors with a p53 signature (CDKN1A 
and MDM2 expressing), or tumors without the 
p53 signature. Notably, the ACRG study iden-
tified four distinct molecular subtypes highly 
associated with GC recurrence rate and, thus, 
survival after surgery.8 To the best of our knowl-
edge, no model currently exists that is capable of 
integrating ACRG molecular subtypes and clin-
icopathologic information, such as stage, Lau-
ren classification, type of surgery, demographic 
data, and molecular subtypes, to predict survival 
after surgery.

In this study, we developed a deep learning–
based prediction algorithm for survival predic-
tion in patients with GC on the basis of data from 
1,190 patients with GC. The aims of this study 
were to develop a deep learning–based predic-
tion model to predict survival after surgery on 
the basis of sequential prediction of the outcome 
at each time point until 5 years after operation 
and to predict the most optimal postoperative 
regimen after surgery using a recurrent neural 
network (RNN) on the basis of available clinical 
variables.

PATIENTS AND METHODS

Patients

We included the following three cohorts from 
our previous study: the ACRG cohort (n = 296),8 
the postoperative FU/LV/RT cohort (n = 432; 
Gene Expression Omnibus database identifier: 
GSE26253),9 and the ARTIST cohort (n = 458).3 
In total, 1,186 patients were included. We pro-
cured all tissue specimens that were chemother-
apy naïve during the primary resection of GC. 
No patients received neoadjuvant chemotherapy 
or preoperative CRT. The following data were 

available for the three cohorts: pathology, type of 
surgery, lymphatic invasion, perineural invasion, 
histologic Lauren type, depth of invasion, num-
ber of dissected lymph nodes, number of positive 
lymph nodes (pathologically), age at diagnosis, 
sex, Epstein-Barr virus positivity, human epider-
mal growth factor receptor 2 positivity, adjuvant 
treatment modality, first sites of recurrence at the 
time of diagnosis for recurrence, date of recur-
rence, vital status at last follow-up, and molec-
ular subtypes. Detailed information about these 
cohorts has been published previously.8,9 Briefly, 
141 patients in the ACRG cohort received adju-
vant chemotherapy or CRT. The ARTIST trial was  
a prospective adjuvant phase III trial that com-
pared patients who received six cycles of XP  
(n = 228) with patients who received two cycles 
of XP followed by RT with capecitabine and then 
two more cycles of XP (n = 230). In the FU/LV/RT 
cohort, all patients (n = 432) received the INT-
0116 regimen (FU/LV followed by CRT with the 
same agents and then FU/LV again separately) 
as an adjuvant postoperative treatment. All of 
the patients in the FU/LV/RT and ARTIST cohorts 
received adjuvant treatment after D2 resection. 
The overall survival rates after 5 and 10 years 
were 63.9% and 56.9%, respectively. Tumor 
recurrence was observed in approximately 40% 
of the patients for each cohort. The protocol 
was approved by the Samsung Medical Center 
Institutional Review Board (IRB; ACRG: IRB 
No. 2010-12-088), ARTIST (ClinicalTrials.gov 
identifier: NCT0176146), and the DASL (cDNA- 
mediated Annealing, S Selection, extension and 
Ligation) cohort (IRB No. SMC 2010-10-025).

Molecular Subtypes

We used a previously published data set 
(accessed via https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE62254). RNA was extracted 
from 300 tumors according to manufacturer 
protocol (Affymetrix, Santa Clara, CA),8 and we 
used the Affymetrix human genome U133 Plus 
2.0 array (Affymetrix) for gene expression profil-
ing. The ACRG subtypes were the same as those 
published previously.

Data Preprocessing

Primary data were specified according to their 
variable types. Categorical variables, such as 
sex, tumor type and location, and molecular 
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expression, were converted using one hot encod-
ing, which transforms categorical features to a 
binary (0 or 1) format group. Ordinal variables 
and quantitative variables were preprocessed 
with normalization. All variables were then trans-
formed by a standard scaler to standardize the 
intervals of values between the variables. To save 
the numbers down to the third decimal place, all 
values were multiplied by 103 and then trans-
formed into integers (int32). As such, the value 
of each variable was transformed into a standard 
score, which was compatible with embedding. 
Missing data were imputed using the k-nearest 
neighbor algorithm after separating the training 
and test sets. The event cases during the time 
interval were ranked by months, and the rank 
scores were inserted in the censored cases.

Data Separation and Cross-Validation

Patients were randomly sorted into a training set 
(80%) and a test set (20%). The test set was 
separated for the final test. Using the training 
set, bootstrap training (80% of the training set) 
and validation patients (20% of the training set) 
were generated by randomly selecting patients 
and repeating the selection 100 times to find 
an optimal condition of the neural networks. 
The validation error reached to the minimum at 
epoch 7. The optimized model was tested over 
the separated test patients.

Performance Evaluation and Statistics

Receiver operating characteristics (ROC) curves, 
areas under the receiver operating character-
istic curve (AUCs), and concordance index 
(c-index) were compared using a nonparamet-
ric Mann-Whitney U test using the MedCalc 
program (MedCalc Software, Seoul, Korea). All 
neural networks were constructed using the 
Keras with Theano backend in Python (https://
keras.io/). The scikit-learn library (http://scikit-
learn.org/) was used for data management and 
preprocessing. The Mann-Whitney U test was 
performed to compare AUCs between models, 
whereas the Pearson χ2 test was performed to 
identify factors related to a specific subgroup. 
The current study was developed and written 
according to Transparent Reporting of a Multi-
variable Prediction Model for Individual Progno-
sis or Diagnosis model development guidelines.

Basic Concept of Survival Recurrent Network 
Model

A survival recurrent network (SRN) model was 
constructed on the basis of logistic regression 
function σ at discrete time point (t) and long 
short-term memory (LSTM) neural network,10,11 
which can be represented as follows:

   Survival probability at time   (  t )    :    
ft (  X )   = σ  (   Wt ∗ Xt )    =     1 _ 

1 +  e   − ω  t   X  t   
    

 

  HRt(X ) =  e    W  t  ∗ X  t    

 

  HRt(X ) =  e    θ  1  X+ θ  2  t  

 

   where ft (  X )  is the survival probability,   
HRt  (  X )   is the hazard ratio function.  

Once the parameter vector, Wt = θ1X + θ2t, is 
optimized with the patient group (features Xt and 
target Yt) at the first time point (t), LSTM cells 
memorize Wt and the model is retrained with the 
target value (Yt+1) of the next time point yielding 
Wt+1. For example, if a patient (X) died of dis-
ease 2 years after the first visit, the model should 
learn the target value (Y1 = 1) at the first year 
and learn the target value (Y2 = 0) at the second 
year. Because LSTM memorizes and optimizes 
W for each target value, our RNN-based model 
is able to infer a target value at a certain time 
point.

Patient factors (X) were hardly updated at every 
time point because we could not collect all those 
data without any loss. Moreover, the purpose of 
the survival model is to predict long-term survival 
with the information from the first visit. Thus, 
we generated Xt with the following assumption: 
patients’ features should be constant during the 
observation time. Instead, there should be latent 
features that are dependent to the sequential 
time and indicate the patients’ status at a dis-
crete time point. We defined those latent fea-
tures as time-dependent life value:

  Time‐dependent life value =  θ  2   t +  
θ  3   ∂ S 
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  Time‐dependent hazard function    
e   WtXt    =  e    θ  1  X+ θ  2  t+ θ  3  ∂S  

The life value dimensions were embedded in 
the constant patient features (X) to generate 
time-dependent features (Xt). The life value fea-
tures consisted of time (t) and prior life expec-
tancy (St), which is updated using gradient 
descent equation ( ∂ S).

The model is retrained at the following sequen-
tial time with Xt+1 where St+1 is embedded.

  St + 1 = St  +   ∂ S 

 

  St + 1 = St  +  α  (  Yt −   Y ̂  t )     f  t   
“   (  x )    _____  |  ft  (  x )    |     ∗  Y ̂  t 

 

 
   dft(x) ____ dx   = −  W*    e   −wx  ________ 

  (  1  +    e   −wx  )     2 
   ≈  α ∗ ft(x ) (1 − ft  (  x )    )   

where  α is a step size and  Y ̂  t  = ft(x) . Thus, the 
function can be rewritten as follows:

  St + 1 = St  +  α(Yt −   Y ̂  t ) (1 −  Y ̂  t )  Y ̂  t 

RESULTS

Predictive Accuracy of the SRN Model

We simulated the sequential learning process 
of clinicians in the outpatient clinic using RNN 
and time-sequential outcome data (Appendix 
Fig A1A, online only). The SRN was composed 
of the following three learning system parts: 
the first included information on patient status  
(covariates, X), the second included the time- 
dependent life value (  θ  2   t+  θ  3   ∂ S), and the third 
included nonparametric rank scores (R) of event 
that occurred during the interval (0 < R < 1). 
The R was inserted into the target value instead 
of binary values. The Xt were input into the SRN, 
and the SRN was sequentially retrained with the 
updated Xn (Appendix Fig A1B). The network 
architecture of the SRN comprised five hidden 
layers with two RNN layers (LSTM). The input 
layer comprised 49 nodes that represented 47 
input features and two life value features (phase 
[time] feature and prior survival probability fea-
ture). The output layer comprised two nodes 
implementing the Softmax function, which 

represents live or dead probability. Forty-seven 
features were preprocessed before accessing 
the input layer, with each feature preprocessed 
using a standard scaler and each value encoded 
as an integer within 10,000 scores. The clinical 
variables of an individual were embedded in 
a 47 × 32 vector for dimensionality reduction. 
The other two layers comprised fully connected 
nodes implementing the rectified linear-unit 
function. Gaussian dropout was performed to 
prevent overfitting problems. The number of 
nodes was gradually reduced across the hidden 
layers (Appendix Fig A2, online only). The SRN 
was trained every year sequentially with the 47 
clinical features and the previous survival proba-
bility. Through this time-sequential training, the 
probability differences among patients became 
more distinct, and the accuracy improved (Appen-
dix Fig A3, online only).

We randomly sorted 1,186 patients into a train-
ing group (80%; n = 950) and a test group (20%; 
n = 236). In the training group, bootstrap train-
ing (80%; n = 760) and validation populations 
(20%; n = 190) were generated by randomly 
selecting patients and repeating the selection 
100 times. At each time point, the predicted sur-
vival probability of the model was compared with 
the actual survival data.

The mean AUC of the 100 training group patients 
was 0.79 ± 0.052 at the first year, 0.839 ± 0.045 
at the second year, 0.89 ± 0.049 at the third 
year, 0.915 ± 0.05 at the fourth year, and 0.92 ± 
0.049 at the fifth year (Fig 1A). The AUC of each  
time point was compared using the Mann- 
Whitney U test, showing that the AUC improved 
significantly in sequential years. The AUCs at the 
fifth and fourth years were significantly higher 
than those at the first or second years according 
to the SRN model (Fig 1B).

Performance of the Final Model for Predicting 
Survival of Sample Test Group

Using the separated test group, the performance 
of our final model was evaluated. The AUC of 
each time point was 0.858 at the first year, 0.869 
at the second year, 0.879 at the third year, 0.912 
at the fourth year, and 0.923 at the fifth year  
(Fig 2A).

The c-index of the final model was evaluated 
with the test group. The c-index was 0.951.
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The calibration curve from the SRN was evalu-
ated using the sample test group (Fig 2B). In 
this curve, the actual survival proportion was 
compared with the SRN-predicted survival prob-
ability, with the actual survival rate calculated 
using the Kaplan-Meier method. Our results 
showed that the actual survival rate was closely 
correlated with the predicted survival probability 
within 15% margin of error.

The decision curves showed that the SRN model 
will be useful clinically for predicting the survival 
of patients with GC. The SRN model has a pos-
itive net benefit at all five different time points, 
rather than assuming all patients or none of the 
patients will survive at each year (Fig 3).

Cumulative Survival Probability of Individual 
Patients in the Test Group

The cumulative survival probability of each 
patient was visualized as a survival graph. 

After a sequential learning process, two clus-
ters of patients were separated in terms of sur-
vival curves around the postoperative fifth year 
(Appendix Fig A4A, online only). To identify sig-
nificant factors differentiating the two prognostic 
clusters, we performed the Pearson χ2 test. Pos-
itive perineural invasion, the presence of lym-
phovascular invasion, high tumor or node stage, 
pathologic stage, a primary tumor located in the 
antrum or cardia, and recurrence were more 
frequently observed to be statistically significant 
in the poor prognostic group in terms of survival 
(Table 1).

SRN Guidance of the Optimal Adjuvant Treatment 
Regimen

To determine the optimal postoperative regimen 
according to the available data for each patient, 
we generated a new simulation data set, in 
which four different treatment options were 
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applied to all patients. Five subgroups were 
identified according to the survival probability at 
the fifth year (Appendix Fig A4B). The treatment 
options included in the analysis were as follows: 
XP chemotherapy; XP followed by capecitabine 
plus RT followed by XP; the INT-0116 regimen; 
and others, such as oral TS-1 chemotherapy. 
Because oral chemotherapy or other regimens 
composed < 5% of the options, we excluded 

this population from additional analysis. For 
all adjuvant treatments, significant predictors 
for poor responders in terms of survival after  
adjuvant treatment were mesenchymal subtype, 
the presence of perineural invasion, advanced 
stage, location of the primary tumor in the cardia, 
and a greater number of positive lymph nodes 
(Table 2). Notably, we found that patients with 
GCs with MSI (odds ratio, 4.2; P = .042) and 
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with GCs of the papillary type (OR, 5.9; P = .015) 
had significantly better survival outcomes after  
XP chemotherapy alone (Table 3). Subgroup 
categorization according to SRN resulted in the 
following five major groups (Fig A4B): subgroup 
I, good prognosis regardless of the adjuvant 
regimen; subgroup II, better prognosis after 
adjuvant chemotherapy, except for the others 
group; subgroup III, better prognosis after adju-
vant XP plus RT and XP alone; subgroup IV, 
better prognosis after XP alone; and subgroup V, 
poor prognosis regardless of the type of postop-
erative regimen.

DISCUSSION

Studies have recently been performed to formal-
ize risk prediction in cancer care. Kaplan-Meier 
curves represent a nonparametric method for 
estimating survival, with one of the strengths of 
this method being its ability to consider cen-
sored data, particularly right-censoring data 
using the log-rank test. Parametric survival 
models and the Cox proportional hazards model 
might be useful to estimate covariate-adjusted 
survival. The Cox proportional hazards model is 

one of the most popular methods for predicting 
cancer prognoses. A recent Cox model for sur-
vival prediction of patients with GC showed an 
average c-statistic of 0.822.12 The Cox model 
uses the hazard rate of the covariates as model 
coefficients and, therefore, can encompass fac-
tors that change over time. However, the model 
assumes that the hazard function is constant 
through patient life span; therefore, it cannot 
accurately predict the risk of death at a certain 
time point because it does not represent the 
changing weight of covariates during the time 
intervals. A parametric model, such as a linear 
regression model, measures a direct relation-
ship between the covariates and the survival 
time. If the data from the survival distribution 
at each time point are not large enough or if 
there are large numbers of missing values, the 
survival distribution at each time point becomes 
unreliable. This model often produces mislead-
ing outcomes in the event of a violation of the 
proportionality of the hazard assumption. Signifi-
cant risk factors that are not time dependent are 
often ignored in these models, thereby poten-
tially resulting in false inferences. Another cause 
of misleading results is that the residual, the dif-
ference between the real and expected values, 
is not properly reflected in the model.13 Another 
recent model, the least absolute shrinkage and 
selection operator, became a popular regres-
sion method as a result of its enhanced predic-
tive accuracy acquired by shrin king important 
covariates from thousands of variables, espe-
cially when using genetic data.14

Our model simulated the physician learning 
process. Physicians learn about the prognoses 
of their patients through serial observations in 
outpatient clinics. At the first visit, a clinician 
predicts the patient condition at the next visit 
on the basis of their current medical status 
and confirms that prediction during the sub-
sequent visit. We suggest that LSTM, an RNN  
proposed in 1997 by Sepp Hochreiter and  
Jürgen Schmidhuber,10,11 represents the optimal 
choice for a serial learning system. LSTM was 
designed to avoid the long-term dependency 
problem of RNNs and comprises input, out-
put, and forget gates, which determine whether 
a value should be remembered or forgotten. 
Because LSTM can remember a value for a lon-
ger time period (ie, it is iterative), it is useful 
for training using clinical data with various time 
series. However, LSTM exhibits a limited ability 
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Table 1. Poor Prognostic Factors for Survival

Variable Relative Risk for Death P

PNI positive 44.947 —

Lymphovascular invasion 30.367 —

Tumor stage 12.865 —

Node stage 70.416 —

Pathologic stage 23.962 —

Tumor located in cardia 16.567 —

Recurrence 10.735 .001

Abbreviation: PNI, perineural invasion.

Table 2. Predictive Factors for Poor Responders to Adjuvant Treatment

Variable Relative Risk for Death P 

Mesenchymal subtype 10.465 .001

PNI positive 10.639 .001

Signet ring 13.235 —

Location of cardia 14.516 —

Diffuse type by Lauren classification 16.436 —

Tumor stage 35.908 —

No. of positive nodes 54.943 —

Node stage 59.483 —

Pathologic stage 97.700 —

Abbreviation: PNI, perineural invasion.
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to estimate survival involving censored events. 
In our SRN model, the survival distribution at 
the discrete time points was determined by the 
logistic hazard function, in which death events 
were also scored relative to censored data. In 
every sequential time, the model was updated 
by the time-specific Xt, which contains the first 
visit information, phase dimension, and survival 
probability dimension.

On the basis of the use of this algorithm, strong 
predictors for poor responders in terms of 
survival after adjuvant treatment were mesen-
chymal subtype, the presence of perineural 
invasion, advanced stage, location of the pri-
mary tumor in the cardia, and a greater num-
ber of positive lymph nodes. These findings 
supported previous studies that observed that 
mesenchymal subtype produces continuous 
recurrence and, thus, earlier death, after a 
5-year surveillance program after surgery.8 Our 

SRN model was based on data from > 1,000 
patients with GC and demonstrated that GC 
with a mesenchymal subtype located in the  
cardia should elicit a more risk-adapted post-
operative treatment strategy. Interestingly, we 
found that GCs with MSI and GCs of the papil-
lary type have significantly more favorable sur-
vival outcomes after XP chemotherapy alone. 
These factors will be validated in the ARTIST-II 
trial currently recruiting patients to compare 
TS-1 alone versus TS-1 and oxaliplatin versus 
TS-1, oxaliplatin, and RT in patients with D2- 
resected GC.

In this study, the available input data used 
for survival prediction were mainly pathologic 
results, molecular subtypes, adjuvant treat-
ments, and recurrence information. However, 
there are other factors affecting patient sur-
vival that could not be evaluated in our study. 
These included accompanying comorbidities 
or nutritional status; operative factors, such as 
the amount of intraoperative blood loss, trans-
fusion, or postoperative complications; and 
postoperative recovery factors, such as nutri-
tional status, weight loss, or anemia.10,11,15-17 
Therefore, although pathologic and molecular 
data are strong prognostic factors, they are not 
modifiable, but are merely predictive of survival 
and act as reference factors for deciding adju-
vant treatment modality. Notably, some patient 
and operative factors can be modified and 
improved by doctor-patient deliberations. If our 
model can include these modifiable factors for 
each patient, more individualized treatments 
and accurate survival prediction would be pos-
sible. Another possible limitation of this study 
was that our model did not combine imaging 
data, which would be an excellent and natu-
ral extension of the current deep learning SRN 
approach.

In conclusion, our SRN predicted survival at a 
high rate, reaching 92% at postoperative year 5. 
SRN-based clinical trials or risk-adapted adju-
vant trials should be considered for patients with 
GC to investigate more individualized adjuvant 
treatments.
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Table 3. Favorable Factors for Adjuvant XP Over Adjuvant Chemoradiation Therapy

Variables
OR for XP Chemotherapy 

Alone P 

MSI subtype 0.630 .427

p53 active, MSS subtype 0.006 .938

p53 inactive, MSS subtype 5.533 .019

Mesenchymal subtype 3.429 .064

Sex 0.051 .821

Age 3.645 .056

Well differentiated adenocarcinoma 0.436 .509

Moderately differentiated adenocarcinoma 0.024 .876

Poorly differentiated adenocarcinoma 0.388 .533

Signet ring cell carcinoma 0.034 .854

Mucinous adenocarcinoma 0.075 .784

Papillary adenocarcinoma 5.901 .015

Adenosquamous carcinoma 0.700 .403

Hepatoid adenocarcinoma 2.912 .088

Tubular adenocarcinoma 0.037 .848

Intestinal subtype by Lauren classification 3.243 .072

Diffuse subtype by Lauren classification 0.178 .673

Mixed subtype 0.553 .457

Presence of PNI 0.009 .926

Presence of lymphovascular invasion 0.057 .812

Tumor stage 1.409 .235

Node stage 0.081 .776

Pathologic stage 0.758 .384

Abbreviations: MSI, microsatellite instability; MSS, microsatellite stability; PNI, perineural invasion; 
XP, cisplatin.
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Fig A1. Survival recurrent network (SRN) schema. (A) SRN simulated the sequential learning process of clinicians in the outpatient clinic 
using a recursive neural network (RNN) and time-sequential outcome data. The basic learning unit was composed of the RNN system and 
analyzes patient information at the first visit. At each time point, the unit takes this prediction and trains itself according to the actual survival 
data. If patients were censored during the time interval, the ranking scores estimated among the censored patients are used for training 
instead of survival data. The probability of survival is input and learned for the prediction of the survival probability for the following year. This 
sequential loop ends at the 5-year visit to yield the final survival probability. (B) Schematic SRN equation. The life value features consisted 
of time (t) and prior life expectancy (St), which is updated using the gradient descent equation (∂S). The model is retrained at the following 
sequential time with Xt+1 where St is embedded. 
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Fig A2. The architec-
ture of the basic survival 
recurrent network learning 
unit. The network archi-
tecture of the basic unit 
comprised eight hidden 
layers with a single recursive 
neural network layer (long 
short-term memory). The 
input layer comprised 49 
nodes that represented 
47 input features and two 
survival features. The output 
layer comprised two nodes 
implementing the Softmax 
function, which represents 
live or dead probability. The 
individual features were 
embedded in a 49 × 32 
vector. The other four layers 
comprised fully connected 
nodes implementing the 
rectified linear-unit function. 
The number of nodes was 
gradually reduced across 
the hidden layers. 
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Fig A3. The architecture 
of the survival recurrent net-
work (SRN) time-sequential 
learning unit. The SRN was 
trained every year sequen-
tially with the 47 clinical 
features and the previous 
survival probability. Through 
this time-sequential training, 
the probability difference 
among patients became 
more distinct, and the 
accuracy improved. RNN, 
recursive neural network.

http://ascopubs.org/journal/cci


14 ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Cu
m

ul
at

iv
e 

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Personalized Survival Prediction
A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 XP

XP+RT

LF+RT

Others

I II III IV V VI

5-
Ye

ar
 S

ur
vi

va
l P

ro
ba

bi
lit

y

Subgroups
Time (years)

B

Fig A4. (A) Cumulative survival probability of a sample test group. The survival recurrent network (SRN) survival prediction curve was unique for 
each individual according to their unique clinical inputs. Two clusters were distinctly divided until the fifth year (blue lines indicate poor prognostic 
group; red lines indicate good prognostic group). (B) Five-year survival probability graph after simulation of four different adjuvant treatments by the 
trained SRN. The trained SRN was used to predict the survival probability associated with a virtual data set, in which four different adjuvant options 
were applied to all patients. According to the probability, the following distinct subgroups were identified: subgroup I, good prognostic subgroup regard-
less of adjuvant therapy; subgroup II, good responder to three adjuvant options (cisplatin [XP], XP plus radiotherapy [RT], and leucovorin-fluorouracil 
[LF] plus RT); other options, including no treatment, abruptly decreased the survival probability < 50%; subgroup III, good responder to XP and XP 
plus RT, although LF plus RT should not be recommended because the response to LF plus RT was poor in this subgroup; subgroup IV, good responder 
only to XP, with XP without RT highly recommended in this subgroup; and subgroups V and VI, poor prognostic subgroups, where conventional adju-
vant options will not be effective. In subgroups V and VI, trial regimens should be initiated from the beginning.
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