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In general, large mammal species with highly specialized feeding behavior and solitary
habits are expected to suffer genetic consequences from habitat loss and fragmentation.
To test this hypothesis, we analyzed the genetic diversity distribution of the threatened
giant anteater inhabiting a human-modified landscape. We used 10 microsatellite loci to
assess the genetic diversity and population structure of 107 giant anteaters sampled in
the Brazilian Central-Western region. No genetic population structuring was observed
in this region suggesting no gene flow restriction within the studied area. On the other
hand, the moderate level of genetic diversity (Ho = 0.54), recent bottleneck detected
and inbreeding (Fis, 0.13; p ≤ 0.001) signatures suggest potential impacts on the
genetic variation of this Xenarthra. Additionally, a previous demographic reduction was
suggested. Thus, considering the increased human-promoted impacts across the entire
area of distribution of the giant anteater, our results can illustrate the potential effects
of these disturbances on the genetic variation, allowing us to request the long-term
conservation of this emblematic species.

Keywords: bottleneck, inbreeding, population size reduction, microsatellite markers (SSR), Xenarthra

INTRODUCTION

During the last decades, anthropogenic impacts have promoted habitat loss and fragmentation
by extensive agriculture, urbanization, and highways and thus threaten biodiversity worldwide
(Storfer et al., 2010; Haddad et al., 2015) including populations of wild animals. More and more,
isolated populations are affected by decreasing population size (Reed and Frankham, 2003) and
reduced gene flow (Haag et al., 2010; Oliveira and Hannibal, 2017) and become more sensitive
to genetic drift effects (Reed and Frankham, 2003). Consequently, local genetic variation can be
reduced, and genetic differentiation among populations increases, negatively impacting the long-
term persistence of wild populations (Reed and Frankham, 2003). In this scenario, large mammals
are the most threatened vertebrates affected by habitat loss and fragmentation, resulting in genetic
variation loss (Lino et al., 2019).

Extant in several major biomes across Central and South America, the giant anteater,
Myrmecophaga tridactyla, is a charismatic and large Xenarthra that has been suffering from human
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activities in several regions of its distribution area. Currently
categorized as “Vulnerable” and with decreasing populations in
the International Union for Conservation of Nature (IUCN) Red
List (Miranda et al., 2015) and in the Brazilian Threatened Species
List (Miranda et al., 2018), the giant anteater has disappeared
in several areas of its original range (Bertassoni et al., 2014),
mainly due to habitat reduction and fragmentation caused by
anthropic activities (Bertassoni et al., 2014; Miranda et al.,
2015). Its solitary habits, low fecundity, long gestation time,
and relatively high generation time (Eisenberg and Redford,
1999) added to a specialist diet (McNab, 1984), making this
species more vulnerable and threatened in anthropic scenarios
(Desbiez et al., 2020). Within the distribution area of the
giant anteater, mitochondrial haplogroups have been described,
separating a population in the Amazon Forest from another
group represented by individuals from the Cerrado and Pantanal
biomes (Clozato et al., 2017). Although two studies using local
populations have already been published, little is known about
the consequences on the genetic variation in highly anthropized
regions of these vulnerable animals in Brazil. A previous genetic
study on anteaters in Central-Western Brazil evidenced a low
genetic diversity and high inbreeding in a small local population
inhabiting a protected area submitted to recurrent fire events
(Collevatti et al., 2007). Conversely, another study in Central-
Southern Brazil suggests high levels of genetic diversity in a
regional geographic scale accompanied by spatial population
differentiation (Sartori et al., 2020). Of note, all these previous
studies focused on small local populations inhabiting protected
areas or surrounding protected areas, and there is no genetic
populational analysis evaluating this genetic information in a
large-scale anthropized area.

The Brazilian Central-Western region, located on the
southern edge of the distribution area of the giant anteater,
has been undergoing an intense urbanization process with
remarkable agriculture development (Brazilian Institute of
Geography and Statistics (IBGE), 2020) and an increase in roads
and highway constructions (Grilo et al., 2019). These landscape
modifications are relatively recent and have mostly occurred
during the last five decades (Brazilian Institute of Geography
and Statistics (IBGE), 2020). In this context, we predicted that
the giant anteaters living in this increasingly human-modified
landscape would lose genetic diversity and show fragmented
populations with reduced gene flow. Therefore, we tested the
hypothesis that anteater populations inhabiting a large polygon
in Central-Western Brazil will show reduced genetic diversity
and signals of gene flow reduction among local populations.
In addition, we hypothesized that a reduction in the effective
population size of anteaters, due to the high loss of natural
habitat, will be observed. This represents the first large population
genetic study in giant anteaters.

MATERIALS AND METHODS

Ethics Statements
The biological sampling authorization was obtained through the
SISBIO-ICMBio (Authorization System and Biodiversity

Information, Chico Mendes Institute for Biodiversity
Conservation, Ministry of Environment, Brazil), under the
number 53798-4. The research was approved by the Ethics
Committee on the Animal Experimentation (CEUA/UFSCar)
protocol number 1584280817, and the genetic resource access
was registered under SisGen A9F8717.

Study Area and Sampling
The study was carried out in the Central-Western region of
Brazil, comprising the biome Cerrado (Neotropical savanna) and
transition areas with two other biomes, the Pantanal wetlands
and inland Atlantic forest (Figure 1). In this area, agriculture
has transformed the landscape into a mosaic of monocultures,
mainly soy and sugarcane crops, and pasture with different
degradation levels of natural vegetation (Brazilian Institute of
Geography and Statistics (IBGE), 2020), besides urbanization,
roads, and highways.

We collected a total of 107 tissue samples, comprising 66
samples from roadkill animals in four main roads crossing our
study area and 41 samples obtained from captured wild animals
(Figure 1). All tissue samples were conserved in 95% ethyl
alcohol and stored in a freezer at −20◦C. All samples were
collected by the research project “Anteaters and Highways”1. The
sample collection was conducted from April 2013 to February
2017. This sampling represents the largest range for a giant
anteater population genetically evaluated so far. A detailed
information related to each specimen sample is available in
Supplementary Table 1.

DNA Extraction and Genotyping Genetic
Analysis
Total genomic DNA was extracted using the conventional
phenol-chloroform protocol (Sambrook et al., 1989). The DNA
quality was checked by electrophoresis on 1% agarose gel stained
with Gel RedTM (Biotium, Hayward, CA, United States).

A total of 10 microsatellite loci (Supplementary Table 2) were
used for genotyping all the individuals. Five microsatellites (04,
07, 11, 13, and 20) were described for M. tridactyla (Garcia
et al., 2005), and five heterologous primers (A9, B2, E3, G3, and
H5) were developed for Tamandua tetradactyla (Clozato et al.,
2014). We used a universal M13 primer fluorescent-labeled and
an M13 complementary tail to the 5′ position of each forward
primer (Schuelke, 2000) for genotyping each locus. The PCR
reaction was performed in a final volume of 10 µl containing
1 U GoTaq DNA polymerase (Promega), 1 × buffer, 1.5 mM
MgCl2, 0.20 mM deoxyribonucleotide triphosphates (dNTPs),
0.8 mg/ml bovine serum albumin (BSA), 2 pmol forward, and
8 pmol of reverse primers, 8 pmol M13 primers, and ∼30 ng of
the target DNA. PCRs were conducted in two steps. PCRs were
run with an initial denaturing step of 1 min at 94◦C, followed
by 20 cycles of 1 min at 94◦C, 45 s at locus-specific annealing
temperature (Supplementary Table 2), and 1 min at 72◦C. In a
second step, eight cycles of the 30 s at 94◦C, 45 s at 53◦C, and
45 s at 72◦C were added, and a final extension for 20 min at 72◦C.
PCR products were checked on 2% agarose gel. Fragments were

1www.giantanteater.org
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FIGURE 1 | Geographic location of Myrmecophaga tridactyla individual sampled. Red lines represent the main Mato Grosso do Sul roads, and black dots are each
individual.

genotyped using an ABI3730XL automatic sequencer (Applied
Biosystems, United States). Allele sizes were scored using internal
standard ROX 550 and manually determined using Geneious R7
(Biomatters Ltd, New Zealand) (Kearse et al., 2012). The samples
consistently producing not concordant or negative genotypes at
a locus after three repetitions using different DNA aliquots were
treated as missing data.

Genetic Population Structuring and
Genetic Diversity
The presence of null alleles and scoring errors due to
allelic dropout and stutter peaks were checked using
MICROCHECKER v. 2.2.3 (Van Oosterhout et al., 2004)
and Oosterhout estimator. Genetic population structuring was
investigated using different methods, in which our sampling
was first organized in four 200-km diameter sampling areas,
representing what we considered the main sampling areas,
named hereafter sampling sites 1–4 (Figure 1). We used the
Bayesian assignment analysis implemented in the STRUCTURE
v. 2.3.3 software (Pritchard et al., 2000). The most likely number
of clusters (K) was tested using the admixture model with
sampling location as prior (LOCPRIOR) information, with
1,000,000 Markov chain Monte Carlo (MCMC) iterations, and
each K-value (1–5) was tested with 10 replicates and burn-in
at 1,000. We tested for K ranging from 1 to 5 because, for K
determination based in the highest value of 1K, following

Evanno et al. (2005), it is necessary to use the maximum number
expected for K (K = 4, in our case) plus 1. For 1K estimation, we
used the algorithm implemented in STRUCTURE HARVESTER
(Earl and vonHoldt, 2012). We also verified the best K in
STRUCTURE based on the Ln value according to Pritchard
et al. (2000). We furthermore used the GENELAND package
(Guillot et al., 2005), implemented in R Core Team (2017), to
conduct a Bayesian spatial clustering model. GENELAND uses
spatial location of the samples, which provides more support
to clustering analyses, even when crypt patterns of population
structuring occur (McManus et al., 2015) and can be especially
helpful in the case of sparse sampling (Ball et al., 2010). In this
analysis, we used the correlated frequency model, 1,000,000
MCMC iterations, and thinning and burn-in parameters set
at 1,000 and 200, respectively. The tested group number was
K = 1–4. The choice of K was based on the histogram of
estimated K for each run, and the highest mean posterior density
across replicates was considered the best K.

Population structuring was also evaluated by a multivariate
approach using discriminant analysis of principal components
(DAPC; Jombart et al., 2010) from the Adegenet package
(Jombart, 2008), implemented in the R software (R Core Team,
2017), which do not make any assumption about the underlying
population genetic model (Jombart, 2008).

To test the correlation between the genetic and geographic
distances and check a possible sexual dispersion bias reported
by Collevatti et al. (2007), we evaluated the presence of

Frontiers in Genetics | www.frontiersin.org 3 July 2021 | Volume 12 | Article 669350

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669350 June 28, 2021 Time: 18:10 # 4

Barragán-Ruiz et al. Genetic Diversity of Giant Anteater

isolation by distance (IBD) using the Mantel test (Mantel, 1967).
All individuals had the sex previously assigned by molecular
identification using the protocol of Barragán-Ruiz et al. (2020)
(sex individual information in Supplementary Table 1). The
genetic similarity between pairs of individuals at several distance
classes was assessed by a spatial autocorrelation analysis, using a
20-km distance class and a total of 50-km distance classes. The
significance values were assessed using 9,999 permutations and
95% confidence intervals. A significant positive autocorrelation
means that individuals at a given distance class are genetically
more similar than randomly expected. Both Mantel test and the
spatial autocorrelation analysis were carried out in the GenAlex
v. 6.5.0 software (Smouse and Peakall, 2012).

The population was redefined according to the results
concordantly obtained in all the genetic structuring analyses
(K = 1), and the microsatellite loci were tested for linkage
disequilibrium (LD) and Hardy–Weinberg equilibrium (HWE),
using the exact test of Guol and Thompson (1992) for
heterozygote deficit in GENEPOP v. 1.2 (Raymond and Rousset,
1994). For both LD and HWE tests, we estimated p-values
using the Markov chain methods with 10,000 dememorization
steps, 1,000 batches, and 10,000 iterations per batch. Sequential
Bonferroni corrections were applied to correct for all multiple
simultaneous comparisons (Rice, 1989).

Genetic diversity was estimated by the number of alleles
(Na), effective number of alleles (Ae), observed (Ho), and
expected heterozygosity (He) using GenAlex v. 6.5.0 (Peakall
and Smouse, 2012). Allelic richness (AR, Leberg, 2002) and
inbreeding coefficient (Fis) (Weir and Cockerham, 1984) with
the p-value for heterozygote excess (pL) and deficit (pS) were
calculated for each locus using FSTAT v. 2.9.3.2 (Goudet, 1995).
To verify a kinship effect in Fis values, we calculated different
kinship estimators (r) (Queller and Goodnight, 1989; Ritland,
1996; Lynch and Ritland, 1999) among all individuals and within
each sampling site. The r-values were calculated in the GenAlex
v. 6.5.0 software (Peakall and Smouse, 2012). We calculated the
polymorphic information content (PIC) using the Cervus 3.0.3
software (Slate et al., 2000).

Genetic Diversity in Bottleneck
Scenarios
To assess whether the current effective population size of
giant anteater is sufficient to maintain the observed genetic
variation over the next 100 years, we simulated future genetic
diversity using the program BOTTLESIM v. 2.6 (Kuo and Janzen,
2003) that measured changes in genetic diversity assuming no
selection, migration, and mutation. We verified changes in the
genetic diversity parameters (observed number of alleles, effective
number of alleles, observed and expected heterozygosity)
under different population reduction scenarios, using as initial
population size the effective population size obtained here.
The future genetic diversity parameters were simulated over
100 years when retaining 100, 75, 50, 25, and 10% of the current
effective population size. All simulation parameters were set as
follows: degree of generation overlap = 100 (i.e., all individuals
start with a random age value that is within the longevity

limit), dioecy with random mating reproductive system, expected
longevity = 15 years, age of reproductive maturation = 4 years,
male/female ratio was set to 1:1 (parameters according to Desbiez
et al., 2020), number of years simulated= 100 years, and number
of iterations= 1,000.

Demographic Changes
We measured the contemporary effective population size (Ne)
using the linkage disequilibrium (LD) method (Waples and
Do, 2010) and the jackknife resampling method to determine
the effective population size with 95% confidence intervals. We
calculated this parameter using the NeEstimator 2.0 software
(Do et al., 2013).

To assess recent signatures of population size reduction,
we used both the Wilcoxon test (Luikart and Cornuet, 1998)
and M-ratio (Garza and Williamson, 2001). Wilcoxon test was
done using the infinite alleles (IAM), stepwise mutation (SMM),
and two-phase (TPM) mutation models in BOTTLENECK
v. 1.2.02 (Cornuet and Luikart, 1996; Luikart and Cornuet,
1999). Wilcoxon test provides relatively high power to identity
significative population size reduction signatures and can be
applied to data sets with few polymorphic loci. For the TPM
model, a variance of 30, probability of 90%, and 1,000 interactions
were assumed. Genetic bottlenecks can also leave a signature
in the ratio of the number of alleles and the allele size range
(the M-ratio), where a bottleneck depletes the number of alleles
faster than reducing allele size range of the microsatellite (Garza
and Williamson, 2001). We calculated the M-ratio by M = k/r
formula, where k is the number of alleles and r= Smax − Smin + 1
(Smax is the size of the largest allele, and Smin is the size of the
smallest allele in the sample), using ARLEQUIN v 3.5 (Excoffier
and Lischer, 2010). It was considered that M < 0.68 indicates a
bottleneck, while M > 0.80 indicates no reduction in effective
population size (Garza and Williamson, 2001).

Scenario’s Test of Demographic History
We investigated historical changes in the effective population size
using approximate Bayesian computation (ABC) implemented in
DIYABC (Cornuet et al., 2010). We designed our ABC analysis
in three steps: (1) a preliminary analysis to determine proper
prior intervals, (2) an analysis to evaluate the suitability of
each summary statistic, and (3) a final analysis to quantify the
relative posterior probabilities of the models. We assessed the
population size changes on the giant anteater population through
the time, testing three different scenarios (Figure 3): (1) the
population size has been stable during the time (null hypothesis,
Na = Nr, where Na is the ancestral effective population size, and
Nr is the recent effective population size); (2) the population
experiencing a reduction in the population size at coalescent
time t (bottleneck event, Nr < Na); and (3) there was an
expansion that led to an increase in the effective population size
of the giant anteater (Na > Nr). In ABC, competing population
scenarios are simulated, and statistical tests are then used to
assess which scenario better fits the observed data. We performed
one million simulations per scenario. The prior settings for all
parameters (effective population size, time, and mutation rate)
are shown in Supplementary Table 3. In DIYABC analysis, the
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generation time of a given species is considered the elapsed
time between the birth of an individual and the birth of its first
offspring (Cornuet et al., 2014), which was assumed as 4 years
in the giant anteater, according to Desbiez et al. (2020). The
summary statistics employed were the mean number of alleles,
mean expected and observed heterozygosity, and mean allele size
variance. We analyzed each locus separately for increasing the
total number of summary statistics and improving the simulation
results (Cornuet et al., 2014). Thus, we had 30 summary statistics
once each microsatellite was considered a distinct group to run
the analysis. The reliability of scenarios was visualized through
principal component analysis.

To obtain the best fit scenario, the posterior probability (PP)
for each scenario was estimated by logistic regression on 1%
of the simulated dataset closest to the empirical data. For the
scenario with high PP, we evaluated the confidence in the scenario
choice estimating the posterior predictive global error using 1,000
pseudo-observed dataset for the logistic regression approach. To
assess the precision for each estimated parameter, we calculated
the relative median of the absolute error (RMAE) (Cornuet et al.,
2010). The best model was tested by comparing the summary
statistics (mean allele size variance and mean Garza–Williamson’s
M index) between the observed and simulated datasets.

RESULTS

Population Genetic Structuring and
Genetic Diversity
The PIC values for each locus were higher than 0.5, with a mean
value of 0.53 (Table 1), indicating that our multiloci panel was
highly informative and adequate for population genetic analyses
in M. tridactyla.

All clustering approaches were agreeing to define a single
genetic population for the giant anteater individuals analyzed
(Figure 2). Although K = 2 was obtained according to the
Evanno et al. (2005) criterion [LnP (K) = −2,251.07 and
1K = 2.69; Figure 2A), the graphic of individual assignment
showed similar probability for a given individual to belong to
one or another population (Figure 2B), supporting an absence of
population structuring and indicating that the K definition based
on 1K is not able to define de minimum K (K = 1). In turn,
the best K based on the Ln value revealed K = 1 (Figure 2C).
The absence of population structuring was also inferred by the
spatial analysis in GENELAND (K = 1; Figures 2D,E). Similarly,
the multivariate analysis (DAPC) showed a clear overlap among
the sampling sites tested, reinforcing the findings of a single
population pattern (Figure 2F).

The analyses of genetic spatial autocorrelation showed
no significant autocorrelation between individuals in all
measured distances (p ≤ 0.05), even when females and
males were separately analyzed (Supplementary Figure 1
and Figures 1A, 2A, 3A). The Mantel test showed no
association of genetic variation and geographic distance,
neither considering the total of individuals nor each gender
separately (Supplementary Figure 1 and Figures 1B, 2B, 3B).

The subsequent genetic analyses considering all individuals
belonging to a single large population revealed no significant
linkage disequilibrium, although deviation from HWE (p≤ 0.005
after Bonferroni correction) occurred in five loci, with locus
4, A9, and H5 showing heterozygote deficit. Locus H5 also
showed high amount (37%) of null alleles (Table 1). We analyzed
our dataset with and without this latter locus, and we founded
similar results. Thus, all analyses included the complete set of 10
microsatellites.

A total of 55 alleles were obtained in the 107 samples. The
number of alleles/locus ranged from three (B2 and G3) to eight
(11 and 20) with a mean of 5.5, and the mean number of effective
alleles (Ae) was 3.10 (Table 1). Mean observed heterozygosity
(Ho) was 0.54 (ranging from 0.05 to 0.84), and the mean expected
heterozygosity (He) was 0.61 (ranging from 0.38 to 0.83). The Fis
values ranged from −0.28 to 0.47, with a statistically significant
mean value of 0.13 (p ≤ 0.001). Low relatedness level was found
among the individuals (see r-values in Supplementary Table 4).

Genetic Diversity in Bottleneck
Scenarios
The prediction of future genetic diversity based on BOTTLESIM
simulations projected a genetic diversity decrease in the
next 100 years in all tested scenarios. Overall, the genetic
diversity reduction was directly affected by the bottleneck
intensity tested. The observed allele number and effective allele
number declined at a faster rate than expected and observed
heterozygosity (Figure 4). The predicted future simulation
showed a decline of about 15% in the number of alleles, 6%
in the effective number of alleles, and 3% of expected and
observed heterozygosity in the giant anteater population studied
even at the retention of 100% of individuals during the next
100 years (blue line, Figure 4). The genetic diversity decline in
the next 100 years will be sharper as the bottleneck intensity
is higher.

Effective Population Size Variation
The effective population size (Ne) estimate was 375.5
(CI = 80.2 − ∞; p < 0.05). Signs of population reduction
were significant for the TPM model (p = 0.0048) in the
bottleneck analysis, and the M-ratio also showed a signal of
population reduction (M = 0.39).

The scenario that best explained our data was scenario 2,
indicating that the giant anteater experienced a reduction in the
effective population size in the past. This hypothetical scenario
showed a posterior probability of 0.8339 with a posterior error
rate of 0.304 (Supplementary Table 5). All our RMAE values
were < 2 (Nr = 0.191, Na = 0.316, and t = 0.293), indicating
that all parameters estimated were reliable, suggesting a high
confidence for scenario 2 (Figure 3). At this scenario, the effective
population size Nr and Na had average values of 1,119 (95%
CI= 660–2,040) and 6,370 (95% CI= 2,130–9,830), respectively.
When we applied the model checking (Supplementary Figure 2),
we observed that our best scenario has a good fit because
the observed data set appears under the posterior predictive
distribution (Supplementary Figure 3).
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TABLE 1 | Summary information on the 10 microsatellite loci used in Myrmecophaga tridactyla.

Locus N Na Ae AR Ho He p-values Fis Null alleles PIC M-ratio

4* 107 4 2.06 3.99 0.27 0.51 0.0162 0.47 0.2213 0.42 0.44

7 74 9 6.03 9.00 0.84 0.83 0.4102 0.00 −0.0029 0.81 0.52

13 98 6 3.56 6.00 0.82 0.72 0.9815 −0.13 −0.0734 0.68 0.46

11* 96 8 3.02 7.49 0.64 0.67 0.0087 0.05 0.0145 0.63 0.22

20 97 8 5.56 7.76 0.80 0.82 0.4610 0.02 0.0114 0.80 0.47

A9* 82 5 3.25 4.99 0.56 0.69 0.0052 0.19 0.0844 0.64 0.55

B2 98 3 2.08 3.00 0.61 0.52 0.9745 −0.18 −0.1296 0.46 0.60

E3 99 4 1.61 3.75 0.37 0.38 0.1298 0.01 −0.0180 0.35 0.26

G38 83 3 1.80 3.00 0.46 0.44 0.0001 −0.03 −0.0275 0.37 0.08

H5* 79 5 2.04 5.00 0.05 0.51 0.0000 0.90 0.3715 0.47 0.45

Mean 91 5.5 3.10 5.40 0.54 0.61 – 0.13 – 0.56 –

Loci name, number of individuals (N), number of alleles per locus (Na), effective number of alleles (Ae), allelic richness (AR), observed and expected heterozygosity (Ho
and He, respectively), global estimate of Fis, results for the null allele test, polymorphic information content (PIC), and the Garza–Williamson index, the number of alleles
ratio to range in allele size (M-ratio). Bold values indicate significative Fis values (≤0.001).
*Loci with Hardy–Weinberg equilibrium (HWE) after Bonferroni correction (p ≤ 0.005).

DISCUSSION

Contrary to our expectation, all clustering analyses concordantly
showed no population structuring in the giant anteater across
the large area studied. It is suggested that gene flow restriction
among populations does not occur even considering that our
sampling sites encompass different landscapes with high level
of anthropic modifications. Therefore, this result must be taken
with caution, since the studied area is under human-induced
modification pressure, which can promote changes in the gene
flow in long term.

It is well known the giant anteater demonstrates different
ranges of movement throughout the Pantanal landscape from
1 km/day (Medri and Mourão, 2005) to 8 km/day in the
Cerrado Biome (Bertassoni, 2010). It is likely that the absence
of population structuring observed can be explained by this life
trait and the biology of the species. The giant anteater has been
observed living from highly conserved areas to anthropogenic
areas, such as agricultural fields and wood plantations of
Pinus sp., Acacia sp., and Eucalyptus sp. (Miranda, 2004;
Braga, 2010; Vynne et al., 2011) and is therefore considered a
species associated with several environments. In general, species
associated with non-forested habitats may more easily cross
the matrix and move between fragments, thereby reducing
the negative effects of fragmentation-like genetic differentiation
(Schlaepfer et al., 2018). The absence of spatial correlation
between individuals, even when both sexes were separately
analyzed, suggests that both sexes are similarly moving across
the landscape. However, this capacity for moving across different
landscape elements can make the individuals vulnerable to
important threats for the species, such as human conflict and
roadkill (Ng et al., 2008), which can explain why 60% of
our sampled individuals were road-killed animals, promoting a
significant loss of individuals in long term.

Moderate levels of genetic diversity (Ho = 0.54; He = 0.61)
were observed in this large and single giant anteater population
inhabiting the studied area. Similar values were previously
reported for other local populations studied (Ho = 0.68,

He = 0.72, Sartori et al., 2020; Ho = 0.60, He = 0.63, Garcia
et al., 2005), suggesting that these can represent the mean values
of genetic diversity along the distribution of the giant anteater.
It is well known that genetic diversity has important ecological
consequences in natural populations, including the maintenance
of evolutionary potential and the individual ability to survive
in response to threats as environmental changes and disease
(Hughes et al., 2008). The combination of increased genetic drift,
inbreeding, and restricted gene flow may substantially reduce
the genetic variation of populations (Schlaepfer et al., 2018;
Lino et al., 2019).

Lower genetic diversity has already been described in a small
anteater population inhabiting a protected area (Ho = 0.059,
He = 0.482), and it was associated with intense population
reduction after recurrent fire events, resulting in inbreeding
within the remaining individuals (Collevatti et al., 2007). An
increased degree of homozygosity may cause the expression of
deleterious recessive alleles, which can decrease individual fitness
(Reed and Frankham, 2003). Our results found a significant
inbreeding coefficient value (Fis = 0.13; p < 0.001) within the
studied population, and it seems not biased either by a kinship
effect. Since the r values found were very low, it is an indicative of
a low level of relatedness among the individuals.

Besides the potential inbreeding detected, we also found a
smaller mean number of effective alleles (Ae= 3.10) compared to
the mean allele richness (Na = 5.5), suggesting that fewer alleles
are contributing to maintain the current genetic diversity. These
results can be a consequence of a Ne that is not large enough to
retain all alleles in high frequency, since large Ne is necessary to
retain more genetic diversity (Kimura and Crow, 1964).

The effective population size is an important factor that
contributes to genetic variability maintenance because both
heterozygosity and number of alleles are less impacted in
populations with large effective size (Kimura and Crow, 1964;
Reed and Frankham, 2003). It is known that effective population
size varies with the generation time (Frankham, 1997; Reed
and Frankham, 2003). A long generation time and lifespan
can act as an intrinsic buffer against loss of genetic diversity
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FIGURE 2 | Genetic structure of 107 Myrmecophaga tridactyla specimens assessed by different approaches based on 10 microsatellite loci. (A) Population
structure results (K = 2) based on the 1K statistic (Evanno et al., 2005). (B) Graphical representation of K = 2 from structure results based on 1K statistic (Evanno
et al., 2005). Each vertical bar represents an individual and each color (light gray and dark gray) represents the posterior probability of the individuals belonging to
that cluster. (C) Graphical representation of K = 1 from structure result based on the Ln value (Pritchard et al., 2000). (D) The number of clustering among the chain
from GENELAND. (E) Plot of the number of populations simulated from the posterior distribution with GENELAND, indicating K = 1 as the most frequent result.
(F) Results of the discriminant analysis of principal components (DAPC) showing the scatterplot of the first two principal components and DA% for each axis.

(Hailer et al., 2006), resulting in a delayed detection of genetic
diversity loss. The giant anteater lives from 20 to 30 years in
captivity and has a long generation time (Nowak, 1991) and
generation time (Desbiez et al., 2020); both biological features
can explain a putative slow reduction in the genetic diversity
found here. In species showing 1-year generation time, it is
believed that Ne = 50 is enough to avoid the negative effects
of inbreeding in the short term and Ne = 500 to prevent
loss of variability by genetic drift in long term (Franklin, 1980;
Soulé and Wilcox, 1980).

An effective population size Ne ≥ 1,000 was indicated for
retaining the evolutionary potential for fitness in perpetuity
(Frankham, 2015). Our results found Ne= 375 individuals in the

studied area, a relatively high effective population size potentially
extant in the studied region, highlighting the importance of this
population for the conservation of giant anteaters. However,
our demographic analyses suggested that the current giant
anteater population has already suffered a recent bottleneck.
Furthermore, the demographic history of the giant anteater
population, inferred by a scenario test model and for the
first time addressed here, also found a past reduction of the
population size. Our inference from ABC analysis predicted past
population size reduction.

Overall, our results showed a single and large population of
giant anteaters inhabiting the southern edge of its geographical
distribution, therefore already presenting negative genetic
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FIGURE 3 | Possible demographic history scenarios for the Myrmecophaga tridactyla population. (A) Representation of three demographic scenarios evaluated by
DIYABC. Legend: the areas of the figures represent changes in population size through time. Effective population size (Ne) is represented by Na (ancestral effective
population size) and Nr (recent effective population size). The time, t, in number of generations. Scenario 1 without a change in an ancestral population experiencing
(null hypothesis); scenario 2 with a change in Na at time t, representing a bottleneck event, Nr < Nr; and scenario 3 with a change in Ne at time t, representing an
expansion event, Nr > Na. (B) Posterior probabilities of the three scenarios obtained by logistic regression of 1% of the closest simulated datasets. The most
probable demographic scenario for M. tridactyla population was a historical bottleneck. Posterior probability of each scenario in the y- and x-axes indicates the
number of simulated data closest to observed data. (C) Graphic of principal components analysis (PCA) generated in DIYABC displaying the fit between scenarios
simulated and our dataset.

FIGURE 4 | Predicted genetic diversity in Myrmecophaga tridactyla over next 100 years when retained 100% (blue), 75% (red), 50% (gray), 25% (yellow), and 10%
(green) of the current effective population size using BOTTLESIM program. (A) Number of alleles. (B) Number of effective alleles. (C) Expected heterozygosity.
(D) Observed heterozygosity.

signals, as bottleneck and inbreeding, potentially caused by
impacts of the increased human activities in the region. Of note,
this work represents the study with the largest microsatellite set
used in a Myrmecophagidae species, with a high polymorphic
information content (PIC > 0.5), and the largest population
genetic study thus far carried out in giant anteater, considering
both the sampling area and number of individuals analyzed,
reinforcing the importance of these results.

CONSERVATION IMPLICATIONS

For hundreds of years, the continuous impact of humans has been
noticed in a decrease in the abundance and richness of organisms
(Galetti and Dirzo, 2013). Our results suggest that the genetic
consequences of these actions threaten the long-term population
viability of M. tridactyla in the next 100 years. Despite the wide
distribution of the species and the constant reports of threats
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for this animal, populations of giant anteater have been poorly
studied in Brazil. It is important to highlight that conservation
strategies should be urgently adopted to guarantee the species
persistence. These strategies should be focused on reducing giant
anteater mortality, by reducing the impacts such as road kills,
hunting, and habitat loss (Bertassoni, 2012; Ascensão et al., 2016,
2019). Effective strategies would avoid population size reduction
and ensure the maintenance of genetic diversity and the long-
term viability of its populations that have been suffering mainly
for the habitat loss.
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