
Introduction
The past 2 years have been marked by the discovery of 
some 30 new genes associated with type 2 diabetes 
mellitus (T2DM) and 40 associated with type 1 diabetes 
mellitus (T1DM) [1,2]. These have been discovered by 
association studies using very large sample sizes, and the 
susceptibility alleles discovered are associated with 
modest increases in diabetes risk of 10 to 20%. Expression 
of these risk alleles is probably influenced by the presence 
of other diabetes risk factors, such as lifestyle, viral 
exposures and perhaps other genetic variants.

In addition to the susceptibility genes identified 
through conventional association studies, a small number 
of diabetes-associated genes has been discovered whose 
effects are mediated through imprinting. Imprinting is a 
type of genetic effect characterized by parent-to-offspring 
transmission whereby the expression of the phenotype in 
the offspring depends on whether the transmission 
originated from the mother or father. In imprinting, one 
allele of a specific gene is silenced (through epigenetic 

mechanisms such as methylation) when inherited from 
one parent but expressed when inherited from the other. 
Thus, phenotype expression of imprinted genes is a 
consequence not only of sequence variation per se, but 
also of methylation and histone modifications that silence 
one allele, allowing a normal state of monoallelic gene 
expression without altering DNA sequence. The conse-
quence of the imprinting phenomenon for association 
studies is that sequence variation in only the expressed 
allele will influence phenotype, manifesting in a seem-
ingly non-classical transmission or inheritance pattern 
that may obscure any genotype-phenotype association. 
Variants that disrupt normal imprinting may also influ-
ence the nature of observed associations. Thus, account-
ing for the parent of origin of each allele at an imprinted 
locus should enhance the ability to identify susceptibility 
variants.

Imprinted genes are in fact only one mechanism 
through which transmission of disease risk from parent 
to offspring may be influenced by the sex of the parent 
transmitting the susceptibility factor. Other mechanisms 
underlying parent-of-origin effects include mitochondrial 
transmission and maternal effects attributable to the 
intrauterine environment [3]. Mitochondrial transmission, 
for example, is a specific type of parent-of-origin effect 
resulting from the fact that mitochondria, and therefore 
sequence variation therein, are transmitted from the 
mother but not the father to the offspring. Although 
relatively rare, clear examples of maternally inherited 
diabetes attributable to deletions or mutations in the 
mitochondrial genome have been documented [4-6], are 
often accompanied by deafness, and may account for as 
much as 1% of the overall diabetes burden [7]. Mito-
chondrial transmission is different from disease suscep-
tibility genes that are transmitted on autosomes but 
which are expressed in the offspring in a sex-specific 
manner. Examples of autosomally transmitted alleles 
whose expression is modified by sex of the offspring are 
the BRCA1 and BRCA2 risk alleles associated with breast 
(and other forms of ) cancer. Although risk of breast 
cancer is significantly enhanced in both male and female 
offspring who inherit BRCA1 and BRCA2 risk alleles, the 
actual risk will be much higher in female offspring. In 
contrast to imprinting, however, disease risk in this 
example is influenced by the sex of the offspring as 

Abstract
Genomic imprinting refers to a class of transmissible 
genetic effects in which the expression of the 
phenotype in the offspring depends on the parental 
origin of the transmitted allele. The DNA from one 
parent may be epigenetically modified so that only a 
single allele of the imprinted gene is expressed in the 
offspring. Although imprinting has an important role in 
the regulation of growth and development through its 
role in regulating gene expression, its contribution to 
susceptibility to common complex disorders is not well 
understood. We summarize current views on the role of 
imprinting in diabetes and in particular chromosome 
6q24-related transient neonatal diabetes mellitus, the 
best known example of an imprinted genetic disorder 
that leads to diabetes.

© 2010 BioMed Central Ltd

Genomic imprinting in diabetes
Braxton D Mitchell* and Toni I Pollin

R E V I E W

*Correspondence: bmitchel@medicine.umaryland.edu 
Division of Endocrinology, Diabetes and Nutrition, University of Maryland, 
6601 West Redwood Street, Baltimore, MD 21201, USA

Mitchell and Pollin Genome Medicine 2010, 2:55 
http://genomemedicine.com/content/2/8/55

© 2010 BioMed Central Ltd



opposed to the sex of the parent transmitting the risk 
allele. A third class of parent-of-origin effect relates to 
maternal effects attributable to the intrauterine environ-
ment. Fetuses exposed to hyperglycemia (which can be 
influenced by maternal genes) or undernourish ment in 
utero are at increased risk of a large spectrum of growth 
abnormalities, including developing diabetes in the 
future [8]. Although such effects could potentially be 
mediated by methylation and histone modification of the 
maternal or fetal genome, the phenomenon need not 
depend on mother-to-offspring transmission of specific 
disease-associated alleles.

The role of imprinted genes in human disease is 
incompletely understood, in part because disease-
associated imprinted genes are difficult to detect by 
conventional association methods because their effects 
are dependent on which parent transmitted the risk 
allele. Notwithstanding these difficulties, recognition of 
the genetic mechanisms underlying imprinting may have 
direct relevance to the diagnosis and clinical treatment of 
the disease (see below). Several comprehensive reviews 
on imprinting in diseases related to growth and 
development have recently been published [9-11]. Here, 
we provide an overview of imprinting as it applies to 
diabetes.

The biological basis of genetic imprinting
In diploid organisms, such as humans, all somatic cells 
have two copies of the genome, one copy inherited from 
each parent. For the vast majority of autosomal genes, 
both alleles at each locus influence expression of the 
gene. However, a small number of genes are imprinted, 
meaning that gene expression results from only a single 
allele because the allele transmitted from either the 
mother or the father is silenced. It is believed that up to 
1% of human genes may be imprinted, and more than 150 
imprinted human genes have been identified so far, most 
of which are related to growth and development [12,13]. 
Imprinted genes can have a significant role in disease 
because imposition of a functional haploid state at 
imprinted loci allows a single mutation event to be 
unopposed, giving it greater potential to affect gene 
function.

Genomic imprinting is related to the methylation of 
cytosine bases that occurs primarily in CpG clusters. 
Such regions are frequently involved in regulation of 
genes [14]. When DNA is methylated, a hydrogen atom 
of the cytosine base is replaced with a methyl group [15]. 
When the methylated region encompasses a gene, the 
methylated allele is typically not transcribed and thus the 
methylation leads to gene silencing. Although high levels 
of methylation (hypermethylation) are generally asso-
ciated with gene silencing, low levels of DNA methylation 
(hypomethylation) are generally associated with higher 

gene activity [14]. Certain genomic regions are charac ter-
istically maternally methylated and others paternally 
methylated, and these are often in close proximity to one 
another. Typically, if the maternal allele is methylated, 
only the paternal allele is transcribed. The imprint is 
normally reset in the germline such that, for example, a 
female’s paternal allele will take on a maternal methy-
lation pattern when passed on to her offspring. Abnormal 
phenotypes due to incorrect dosage can result if this 
resetting process fails and imprinted alleles retain the 
original methylation profile of the parent from whom the 
allele was transmitted [16]. Although methylation is 
typically regarded as a silencing mechanism, there are 
cases in which methylation can also enhance gene 
expression. For example, methylation of the paternal copy 
of a region on chromosome 11p15 between the imprinted 
genes IGF2 (encoding insulin-like growth factor 2) and 
H19 (an RNA gene) prevents a factor known as an 
‘insulator’ from binding to the region and allows 
enhancers to access and promote expression of IGF2 on 
the paternal chromosome [17]. In addition to methylation 
of DNA, imprinting may also modify gene expression 
through post-translational modification of histones or 
activation of microRNAs [18,19]. In addition, imprinting 
is in some cases tissue-specific and/or developmental-
period-specific [17]. For example, the imprinted gene 
PLAGL1 (Pleomorphic adenoma gene-like 1, also known 
as ZAC), which is involved in transient neonatal diabetes 
(see below), is imprinted in fibroblasts but not lympho-
cytes [20].

The molecular modifications associated with methyla-
tion are termed ‘epigenetic’ because they involve changes 
to DNA structure rather than changes to the DNA 
sequence. The molecular modifications of DNA associated 
with genomic imprinting occur in germline cells and, like 
sequence changes, these modifications can be stably 
transmitted through several generations of cells or 
organisms. However, unlike sequence changes, these 
epigenetic modifications can also be reset, or undone, 
under appropriate conditions such as during primordial 
germ cell development [21]. The capability to reset 
methylation changes is thought to provide flexibility of 
the body to regulate the timing of gene expression during 
critical periods of growth and development, and in this 
light it is not surprising that imprinted genes tend to be 
found in evolutionarily conserved imprinted domains [21].

Besides genomic imprinting, epigenetic modification 
can also occur in response to environmental stimuli 
[22,23], such as parental nutritional status, cigarette 
smoking, toxins, microbes, endocrine disruptors, 
chemicals and stress [24]. Although some of these other 
mechanisms may be transmitted at the organismal level 
and may also have a role in diabetes, less is known about 
them.
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Many of the genomic imprinting disorders identified so 
far in humans affect growth and development [21,25,26]. 
Among the more well known imprinted human disorders 
are: Prader-Willi and Angelman syndromes, involving 
deletions and/or inactivations or uniparental disomy 
(two chromosomal homologs inherited from one parent) 
of chromosome 15q11-q13; Beckwith-Wiedemann syn-
drome, involving methylation of genes in the 11p15.5 
region; Russell-Silver syndrome, involving imprinted 
disturbances of chromosomes 7 or 11; and Albright here-
ditary osteodystrophy, due to mutations in an imprinted 
gene on chromosome 20q13.11. Reviews of these 
disorders have recently been published (for example, 
[9,27]). In recent years, the involvement of imprinting in 
a sizeable proportion of cases of a rare form of diabetes, 
neonatal diabetes, has come to be appreciated.

6q24-related transient neonatal diabetes mellitus
Neonatal diabetes is a rare condition affecting approxi-
mately 1 in 100,000 to 1 in 500,000 newborns, with about 
half being affected permanently and half transiently 
[28-30]. Approximately 70% of transient neonatal diabetes 
mellitus (TNDM) results from abnormalities of a region 
on chromosome 6q24 containing the imprinted genes 
PLAGL1 and HYMAI (the RNA gene ‘Hydatidiform mole 
associated and imprinted’) [31]. 6q24-related TNDM is 
characterized by growth retardation and by diabetes 
developing during the first week of life and lasting, on 
average, 3 months but in some cases as long as 18 months. 
There is an elevated risk of diabetes or hyper glycemic 
episodes occurring later in life. Other features can 
include macroglossia (large tongue) and umbilical hernia.

The role of imprinting in 6q24-related TNDM
Approximately 40% of 6q24-related TNDM cases result 
from paternal uniparental disomy (UPD; inheritance of 
two paternal copies rather than one maternal and one 
paternal copy), usually isodisomy (two identical homo-
logs) of chromosome 6, 40% from (usually submicro-
scopic) duplication of the 6q24 region on the paternally 
inherited chromosome 6 and 20% from hypomethylation 
of the maternal PLAGL1-HYMAI differentially methy-
lated region (DMR). As these two genes are normally 
silenced by methylation on the maternal homolog and 
expressed on the paternal homolog during the fetal 
period, each of these three mechanisms results in twice 
the normal dosage of these two genes. The mechanism 
whereby increased dosage at the 6q24 region leads to 
hyperglycemia is not well understood, but PLAGL1 has 
been shown to be involved in apoptosis [20], regulation 
of insulin secretion [32] and fetal growth [33].

Hypomethylation of the maternal homolog can be 
caused either by an imprinting mutation in the region 
containing the maternal PLAGL1 promoter or as part of a 

generalized ‘hypomethylation at imprinted loci’ (HIL), 
the latter at least some of the time inherited in an 
autosomal recessive manner. More than 50% of cases of 
HIL seem to result from recessive mutations in the 
ZFP57 gene, which encodes a zinc finger protein. The 
ZFP57 gene is also on chromosome 6 but at 6p22, 
essentially unlinked to the PLAGL1-HYMAI region. 
Among the nine individuals in the seven pedigrees in 
which ZFP57 mutations were first described [34], all 
showed, in addition to hypomethylation at the maternal 
6q24 DMR, hypomethylation at PEG3 (paternally 
expressed gene, 19q13) and GRB10 (growth factor 
receptor-bound protein 10, 7p11-12) DMRs. Some 
individuals also had hypomethylation of DMRs at PEG1 
(17q32), KCNQ1OT1 (an antisense transcript overlapping 
the potassium-channel-encoding gene KCNQ1 on 11p15), 
or NESPAS (an antisense transcript to the Novel erythro-
poiesis stimulating protein gene NESP on 20q13) [34]. As 
discussed below, single nucleotide polymorphisms 
(SNPs) at two of these loci (7q32 and 11p15) have been 
implicated in parent-of-origin-specific associations with 
T2DM [35]. Association of SNPs within GRB10 with 
T2DM have also been reported [36,37], although results 
have been conflicting [38], perhaps in part as a result of 
lack of examination of parent-of-origin effects.

Clinical and genetic implications of a diagnosis of 
6q24-related TNDM
A clinical diagnosis of TNDM is suspected in infants 
with severe intrauterine growth retardation, dehydration, 
hyperglycemia, and hypoinsulinemia without ketoacidosis. 
The diabetes associated with overexpression at 6q24 
usually resolves by 1 year of age, but children with this 
genetic subtype are at risk for intermittent hyperglycemic 
episodes and for developing T2DM, especially at puberty. 
Affected women may present with gestational diabetes. 
Children with HIL are at risk for developmental delay.

When 6q24-related TNDM is suspected, a tiered 
genetic testing approach as summarized in Figure 1 has 
been suggested by Temple and Mackay [39], who are 
responsible for much of the research leading to current 
knowledge about 6q24-related TNDM. This approach 
can provide information used to assess risks of TNDM to 
other family members (Table 1).

Evidence for a role of imprinting in polygenic 
diabetes
Because specific imprinted genes have been associated 
with syndromes marked by extreme obesity (for example, 
Prader-Willi) and diabetes (for example, TNDM), it 
seems likely that there are numerous other imprinted 
genes having milder effects on obesity and diabetes. 
Epigenetic regulation and imprinting have been exten-
sively studied in mice [40], although there are substantial 
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differences in both the numbers and identities of 
imprinted genes in mice and humans [41], limiting the 
utility of the mouse model to understand the role of 
genomic imprinting in humans. Alternative approaches 
for identifying new imprinted genes in humans have 

included analysis of large family and population samples 
using both linkage approaches (for example, [42-46]) and 
association approaches (for example, [47-49]) that 
incorporate parent-of-origin effects.

T1DM
In a genome-wide association study of T1DM, the most 
strongly associated SNP (rs941576) was found in a well 
established imprinted region on chromosome 14q32.2 
[49]. Additional analyses incorporating parent-of-origin 
effects were then undertaken that revealed strong 
evidence for reduced paternal transmission of the 
protective G allele at this locus. On the basis of this 
result, the authors [49] suggested that the causal variant 
may alter expression of the paternal inherited copy of a 
nearby gene (possibly DLK1, which encodes Delta-like 1 
homolog).

T2DM
Variants in two imprinted genomic regions (at 11p15 and 
7q32) were identified in a recent study carried out in 
Icelanders of SNPs in imprinted regions known as being 
associated with T2DM [35]. None of the variants were 
impressively associated with T2DM in the standard case-
control analysis, but in analysis incorporating parent-of-
origin effects, there was statistically compelling and 
independently replicated evidence for association with 
the maternal allele but not the paternal allele at two SNPs 
at 11p15 and one SNP at 7q32. In addition, the paternal C 
allele at a fourth SNP, rs2334499 on chromosome 11p15, 
was strongly associated with increased risk for T2DM 
when paternally inherited (OR = 1.41, P = 4 × 10-9) but 
moderately associated with decreased risk for T2DM 
when maternally inherited (OR = 0.87, P = 0.02). In 
addition to the association with diabetes, the authors [35] 

Figure 1. Summary of tiered genetic testing approach for 
6q24-related transient neonatal diabetes mellitus (TNDM) 
as suggested by Temple and Mackay [39]. Adapted from 
and described in further detail in [39]; details of the method 
for determining the ratio of unmethylated to methylated DNA 
at 6q24 are in [34]. DMR, differentially methylated region; HIL, 
hypomethylation at imprinted loci; TNDM, transient neonatal 
diabetes mellitus; UPD, uniparental disomy. Paternal UPD is 
established after genotyping a panel of polymorphic markers on 
chromosome 6q in the parents and offspring and determining that 
the offspring carries only paternal alleles at each locus.
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unmethylated to

methylated
DNA at 6q24 DMR
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Table 1. Risk to other family members for each type of transient neonatal diabetes mellitus

Type of TNDM Risk to other family members

Paternal UPD Unlikely to recur in other family members 

Inherited paternal  The risk to siblings of inheriting the same duplication and being at risk for TNDM and later diabetes is 50%. Offspring of individuals 
duplication with duplications are at 50% risk of inheriting the duplication, but at risk for TNDM or later diabetes if only the allele is inherited  
 from the father

Paternal chromosomal  Risks to family members depend on the particular rearrangement involved. For example, partial trisomy for 6q24 as a result of 
rearrangement unbalanced inheritance of a paternal but not maternal balanced reciprocal translocation would include the TNDM phenotype

De novo duplication on  Some residual risk to siblings owing to the possibility of paternal gonadal or undetected somatic mosaicism for the duplication. 
the paternally inherited  Offspring of individuals with a de novo duplication have a 50% risk of inheriting the duplication, with offspring of males but not
chromosome females at risk for TNDM or later diabetes

Imprinting mutation of  No familial recurrence has been reported. The causes of these mutations are not well understood and Temple and Mackay consider 
the 6q24 DMR  testing siblings of affected children for diabetes to be appropriate. The risk to offspring of females with imprinting center mutations  
 may theoretically be increased but no empirical data are available to support or refute this hypothesis

Generalized HIL Over 50% have homozygosity or compound heterozygosity for ZFP57 mutations as determined by sequencing. There is a 25% 
 recurrence risk in siblings of a child who has inherited two ZFP57 mutations from carrier parents. The penetrance is not known. 
 The recurrence risk for other forms of HIL is not known because the cause(s) are not known

Adapted from and described in further detail in [39]. Abbreviations: HIL, hypomethylation at imprinted loci; TNDM, transient neonatal diabetes mellitus; UPD, 
uniparental disomy.
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also showed that the risk allele at 7q32 was strongly 
correlated with reduced expression of nearby candidate 
gene KLF14 (which encodes the transcription factor 
Krüppel-like factor 14) in adipose tissue (P = 3 × 10-21) 
only when inherited maternally.

Conclusions and clinical implications
In recent years, efforts to identify imprinted genes have 
been enhanced greatly by the development of new 
genome-scale technologies for epigenomic profiling (for 
example, [50]) and by the cataloguing of known im-
printed genes [12,51]. Indeed, epidemiological studies of 
diabetes and many other complex diseases have begun to 
consider the role of genetic imprinting and more 
generally how epigenetic modification can mediate 
environ mental influences on gene expression [52].

As demonstrated by the case of 6q24-related TNDM, 
knowledge of the role of imprinting in disease has 
profound implications for recurrence risks in relatives. 
Using known SNPs to predict risk for polygenic T1DM or 
T2DM has not yet proven useful in a clinical setting. As 
the genetic architecture of these diseases continues to be 
revealed, such prediction may become feasible, and 
knowledge of the imprinting status of the relevant loci is 
likely to be an important component of building accurate 
risk models. Regardless of future clinical usage, paying 
careful attention to imprinting status clearly enhances 
the ability to accurately detect associations that will 
ultimately provide information important for continuing 
to elucidate the etiology of these complex diseases.

Abbreviations
DMR, differentially methylated region; HIL, hypomethylation at imprinted 
loci; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TNDM, 
transient neonatal diabetes mellitus; UPD, uniparental disomy.
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