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� A new formulation (NF) of subcutaneous (sc) interferon (IFN) β-1a was developed in an attempt
to improve injection tolerability and immunogenicity. We compared antiviral and IFNβ-stimulated
gene (ISG) activities of IFNβ-1a sc NF with IFNβ-1a sc original formulation and IFNβ-1b sc. When
equivalent unit amounts were compared, the IFNβ formulations demonstrated similar antiviral
activity and induced similar levels of ISG mRNA. However, on a weight basis (ng/mL), significantly
more IFNβ-1b sc was needed to equal the antiviral activity of either IFNβ-1a sc formulation, and
both IFNβ-1a sc formulations induced significantly higher levels of ISG mRNA than IFNβ-1b sc.
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INTRODUCTION

Interferon beta (IFNβ) is an antiviral and immunomodulatory agent
with demonstrated efficacy and safety in the treatment of relapsing mul-
tiple sclerosis (MS).[1−5] In randomized, double-blind, placebo-controlled
clinical trials, IFNβ therapy has been shown to reduce relapse rate and
brain lesion development in patients with relapsing forms of MS.[2,4]

Indeed, a subcutaneous (sc) formulation of IFNβ-1a (Rebif®; Merck Serono
S.A., Geneva, Switzerland) administered three times weekly (tiw) and an
intramuscular (im) formulation of IFNβ-1a (Avonex®; Biogen Idec/Elan,
Cambridge, MA, USA) administered once weekly have also been shown to
delay the progression of physical disability in patients with relapsing forms
of MS.[6−8]
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Three formulations of IFNβ are currently approved in the USA for
treatment of patients with relapsing forms of MS: IFNβ-1a 22 μg or 44 μg
sc tiw (Rebif; original formulation, which is referred to in this article as
IFNβ-1a sc), IFNβ-1a 30 μg administered im once weekly (Avonex), and
IFNβ-1b 250 μg sc administered every other day (Betaseron®/Betaferon®;
Bayer HealthCare Pharmaceuticals, Wayne, NJ, USA; Extavia®, Novartis
Pharmaceuticals Corporation, East Hanover, NJ, USA). The response to
IFNβ therapy can vary with the type of preparation, and may be impacted by
drug formulation, dosing regimen, and route of administration.[1,9,10] For
example, head-to-head comparisons of different IFNβ formulations demon-
strated that higher and more frequent doses of IFNβ had greater efficacy
compared with lower, less frequent dosing regimens (of a different IFNβ

formulation) for the treatment of relapsing MS.[2,11−13]

Treatment with IFNβ in patients with relapsing MS has been associated
with the development of neutralizing antibodies (NAbs).[14−17] Although
the full clinical impact of these anti-IFN antibodies is not completely known,
the presence of high titers of NAbs to IFNβ can reduce the therapeu-
tic effects of treatment.[18–20] A new sc formulation of IFNβ-1a (Rebif
New Formulation [NF]; Merck, Bari, Italy) that is produced without fetal
bovine serum and without human serum albumin as an excipient, with the
goals of improving injection tolerability and reducing immunogenicity, was
developed.[21,22] In vivo administration of IFNβ-1a sc NF in a mouse model
has suggested a slower and weaker development of NAbs compared with
IFNβ-1a sc.[23]

Biologic activity assessed from in vitro assays can supplement in vivo
data, thereby helping to fully characterize a particular therapeutic agent.
Evidence from previous studies indicates that the antiviral and biologic activ-
ity of IFNβ may vary among different formulations.[1,10] Specific measures
of IFNβ biologic activity include the inhibition of viral replication and the
enhanced expression of mRNAs that are induced by IFNβ. The objective of
the current in vitro study was to compare the antiviral and IFNβ-stimulated
gene (ISG) expression activity of IFNβ-1a sc NF with that of the original
IFNβ-1a sc formulation; IFNβ-1b sc was used as an additional comparator.

EXPERIMENTAL

IFNβ Formulations

Antiviral activity and induction of ISG expression were evaluated for
three formulations of IFNβ: IFNβ-1a sc, 44 μg (Rebif, original formula-
tion, lot number Y09B7770V, Industria Farmaceutica Serono, Rome, Italy);
IFNβ-1a sc NF, 44 μg (Rebif, serum-free formulation, lot number Y09B0227,
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Industria Farmaceutica Serono); and IFNβ-1b sc, 250 μg (Betaferon, lot
number 1560, Bayer Schering, Berlin, Germany).

Assessment of Antiviral Activity

Antiviral activity was assessed using the A549/vesicular stomatitis virus
(VSV) cytopathic effect (CPE) assay, which measured cell viability following
infection of A549 human lung carcinoma cells with the lytic VSV (Indiana
strain[24]). A549 cells (Zooprophylactic Institute, Brescia, Italy) were main-
tained in Dulbecco’s modified Eagle medium (D-MEM), supplemented with
10% fetal calf serum (FCS; Sial, Rome, Italy), 2 mM L-glutamine (Sial), 50
μg/mL of gentamycin (Sial), and 25 mM of Hepes buffer solution (Sial).
Cells were seeded at 3 × 104 cells per well in 96-well plates (FalconTM, Becton
Dickinson Labware, Lincoln Park, NJ, USA), and after 24 hr, triplicate cell
cultures were incubated with serial dilutions of each of the IFNβ formula-
tions for 18–20 hr. In each test, 12 wells were filled with 0.1 mL of medium to
serve as both virus and cell control. A549 cell monolayers were then washed
with D-MEM, and both IFN-treated and control viruses were inoculated with
VSV at a multiplicity of infection of 0.1 TCID50 (50% tissue culture infectious
dose)/cell. After adsorption at 37◦C for 1 hr, the excess virus inoculum was
removed, the cell monolayers were washed with phosphate-buffered saline,
and wells were filled with complete medium to a total volume of 0.1 mL/well.

Infection with VSV was allowed to progress for 24 hr according to the
time required for the specific cytopathic effects to become clearly visible by
optical microscopy. Culture supernatants were then collected, and titration
of VSV was carried out in L929 mouse fibroblast cells (Zooprophylactic
Institute). L929 cells were maintained in minimal essential medium with
10% FCS (Sial), 2 mM L-glutamine (Sial), and 50 μg/mL of gentamycin
(Sial). Titration of VSV was performed by determination of the TCID50/mL,
according to the method of Reed and Muench.[25] A series of three-fold
dilutions of the VSV inocula were added to L929 cell monolayers, and were
incubated for 24 hr in order to detect VSV-induced CPE. The cell monolay-
ers were then stained with crystal violet in 20% ethanol. The dye taken up
by the cells was eluted with 33% acetic acid, and its absorbance measured
at 540 nm with an enzyme-linked immunosorbent assay microplate reader
(Varioskan® Flash Spectral Scanning Multimode Reader, Thermo Fischer,
Pittsburgh, PA, USA).

The antiviral activity of IFNβ was calculated from a dose-response curve
where the viral yields obtained in IFN-treated cells were expressed in terms
of percentage of viral inhibition with respect to yield from virus-infected con-
trol cells. Results of these analyses were expressed in terms of 50% inhibitory
concentrations (IC50) calculated in International Units (IU)/mL and in
ng/mL when the specific activities of the different IFNβ formulations were
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considered. The specific activities used were 32 MIU/mg for IFNβ-1b sc and
270 MIU/mg for IFNβ-1a sc. These specific activity values were provided by
the manufacturers, and were obtained by comparing the antiviral activity of
the IFNβ formulations to the World Health Organization (WHO) reference
standard of recombinant human IFNβ.[26] Furthermore, the antiviral activ-
ities of each IFNβ formulation were also compared by measuring the VSV
yield reductions in A549 cells treated with 10 and 100 times the IC50 of each
IFNβ formulation obtained after performing the experiments described
above; these reductions in VSV yield in IFNβ-treated cells were measured
relative to the VSV yields in control A549 cells that were not treated with
IFNβ.

Assessment of ISG Expression

Induction of ISG expression was assessed using quantitative real-time
reverse transcription polymerase chain reaction (RT-PCR) for myxovirus
resistance protein A (MxA), ADAR1 (adenosine deaminase, RNA-specific),
and ISG56 mRNAs. A549 cells were incubated with various concentrations
of IFNβ formulations for 24 hr. At the end of the incubation, total cellu-
lar RNA was extracted from the cells using Trizol® (Gibco BRL, New York,
NY, USA) according to the manufacturer’s instructions. RNA was dissolved
in 50 μL of RNase-free water, and the quantitation of ISG mRNA was per-
formed by a real time 5’ exonuclease RT-PCR Taqman assay using an ABI
7000 sequence detector (Applied Biosystems, Foster City, CA, USA) after
generation of cDNA as previously described.[27]

The following primer pair and probe – MxA (MxA F: 5’-CTGCCTGG
CAGAAAACTTACC-3’; MxA R: 5’TCTGTTATTCTCTGGTGAGTCTCCTT-
3’; MxA P: 6-carboxifluorescein (FAM)-5’CATCACACATATCTGTAAATCTC
TGCCCCTGTTAGA3’-6carboxy-tetramethylrhodamin (TAMRA)[28]); ADA
R1 (ADAR F: 5’-CCGGCAGGATGACACAGAC-3’; ADAR R: 5’-GCTTGGC
AATATTCCAAGGC-3’; ADAR P: 5’ FAM-CACTTCCCAGGGAGCACGG
GCA-3’ TAMRA); ISG56 P56 F: 5’-TGAAGAAGCTCTAGCCAACATG
TC-3’; P56 R: 5’-GAGCTTTATCCACAGAGCCTTTTC-3’; P56 P: 5’ FAM
TATGTCTTTCGATATGCAGCCAAGTTTTACCG-3’ TAMRA[29]) – were
added to the universal PCR master mix (Applied Biosystems, Foster City,
CA, USA) at 300 nM and 100 nM, respectively, in a final volume of 50 μL.
Coamplification of the beta-glucuronidase gene (GUS; Assay-On-Demand,
Hs99999908_m1; Applied Biosystems) was used to normalize the amount of
total RNA present using the threshold cycle relative quantification accord-
ing to the supplier’s guidelines (2∧-��Ct method). The threshold cycle (Ct)
value is the PCR cycle in which the amplification plot crosses the threshold
line. The Ct values of each amplification reaction performed in A549 cells
before and after in vitro IFNβ treatment were used to calculate the difference
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(�Ct values) between the ISGs and the housekeeping gene GUS (�Ct =
CtISG – CtGUS). The fold-change in IFNβ-induced expression of ISGs (MxA,
ADAR1, or ISG56) compared with untreated A549 cells was estimated using
the formula, 2−(��Ct), where ��Ct = [Ct ISG (+IFN) − Ct GUS (+IFN)]
− [Ct ISG (–IFN) − Ct GUS (–IFN)]. All experiments were performed in
triplicate.

Statistical Analysis

Two aspects of biologic activity were investigated: antiviral activity and
induction of ISG expression. The three IFNβ formulations were compared
both on the basis of units (IU/mL) and weight (ng/mL). Three replicates
in each of two experiments were run to measure antiviral activity in terms
of IC50, providing six observations of each formulation on a unit basis and
six observations on a weight basis. The mean and standard deviation were
calculated for each formulation and displayed in a bar chart. After the IC50
of each IFNβ formulation had been measured, six replicates for each IFNβ

formulation were run from independent observations to measure VSV yield
reductions in A549 cells treated with 10 and 100 times the IC50 of each IFNβ

formulation. The antiviral activities of IFNβ formulations were compared
using Student’s t-test. Analysis was performed using SPSS version 13.0 for
Windows (SPSS, Inc., Chicago, IL, USA).

For each of four different concentrations of each IFNβ formulation, MxA
gene expression activity was measured in three replicates, and ADAR1 and
ISG56 expression were measured in six replicates. Since the concentrations
differ by factors of 10, a logarithmic scale was used to present the results
so that they could be displayed meaningfully on the same graph. Student’s
t-test was used to compare relative gene expression of MxA, ADAR1, and
ISG56 among the three IFNβ formulations at the same amount of dilution.

RESULTS

Antiviral Activity

The three IFNβ formulations demonstrated similar antiviral activity
against A549 cells infected with VSV when equivalent unit amounts of the
IFNβ formulations were compared. There were no differences in mean
IC50 (IU/mL) values ± standard deviation among the IFNβ-1a sc (2.13 ±
0.46 IU/mL), IFNβ-1a NF sc (2.20 ± 0.46 IU/mL), and IFNβ-1b sc (2.31
± 0.51 IU/mL) formulations (Figure 1A). Importantly, antiviral activity was
similar for both IFNβ-1a sc and IFNβ-1a sc NF. When the formulations were
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FIGURE 1 Evaluation of antiviral activity of IFNβ formulations using the A549 human lung carcinoma
cells/VSV CPE reduction assay. (A) All three IFNβ formulations demonstrated the same activity against
A549 cells infected with VSV when equivalent unit amounts were compared. (B) When the formulations
were compared on a weight basis (ng/mL), significantly more IFNβ-1b sc was needed to equal the antiviral
activity of IFNβ-1a sc or IFNβ-1a sc NF. ∗P < 0.05 for both comparisons using Student’s t-test. CPE, cyto-
pathic effect; IC50, 50% inhibitory concentrations; IFNβ, interferon beta; IU, International Units; NF,
new formulation; sc, subcutaneous; VSV, vesicular stomatitis virus.

compared on a weight basis (ng/mL), substantially more IFNβ-1b sc was
needed to equal the antiviral activity of either IFNβ-1a sc or IFNβ-1a sc NF.
Specifically, mean IC50 (ng/mL) values ± standard deviation were: IFNβ-1a
sc (0.030 ± 0.0077 ng/mL); IFNβ-1a NF sc (0.032 ± 0.0082 ng/mL); and
IFNβ-1b sc (0.098 ± 0.028 ng/mL) (Figure 1B). There was no significant
difference between IFNβ-1a sc and IFNβ-1a sc NF in antiviral activity when
the formulations were compared on a weight basis. We also measured VSV
yield reductions in A549 cells treated with 10 and 100 times the IC50 of each

TABLE 1 VSV yield reductions in A549 cells treated with 10 and 100 times the IC50 of IFNβ preparations

VSV yield reduction, mean ± SDa

10 × IC50
b

IU/mL
10 × IC50

c

ng/mL
100 × IC50

b

IU/mL
100 × IC50

c

ng/mL

IFNβ-1b sc 1.47 ± 0.10 1.66 ± 0.31d 2.48 ± 0.36 3.56 ± 0.33
IFNβ-1a sc 1.50 ± 0.09 2.25 ± 0.24 2.49 ± 0.29 3.69 ± 0.36
IFNβ-1a sc NF 1.50 ± 0.13 2.29 ± 0.24 2.44 ± 0.32 3.78 ± 0.17

IC50, 50% inhibitory concentration; IFNβ, interferon beta; IU, International Units; NF, new
formulation; sc, subcutaneously; SD, standard deviation; TCID50, 50% tissue culture infectious dose;
VSV, vesicular stomatitis virus.

aVSV yield reduction was calculated as [VSV titer in untreated cells (log TCID50/mL) − VSV titer in
cells treated with IFNβ (log TCID50/mL)].

bIC50 values measured in A549 cells infected with VSV are expressed as IU/mL (2.31 ± 0.51 IU/mL
for IFNβ-1b sc, 2.13 ± 0.46 IU/mL for IFNβ-1a sc, and 2.20 ± 0.46 IU/mL for IFNβ-1a sc NF).

cIC50 values measured in A549 cells infected with VSV are expressed as ng/mL (0.098 ± 0.028 ng/mL
for IFNβ-1b sc, 0.030 ± 0.0077 ng/mL for IFNβ-1a sc, and 0.032 ± 0.0082 ng/mL for IFNβ-1a sc NF).

dP < 0.05 for both IFNβ-1b sc vs. IFNβ-1a sc and IFNβ-1b sc vs. IFNβ-1a sc NF, using Student’s t-test.
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IFNβ formulation. At both 10 and 100 times the IC50, VSV yield reductions
did not significantly differ between IFNβ-1a sc and IFNβ-1a sc NF (Table 1).
VSV yield reductions also did not significantly differ between IFNβ-1b sc and
either IFNβ-1a sc formulation when concentrations corresponding to 10 or
100 times the IC50 of each IFNβ formulation were compared on the basis of
IFN unit amount (IU/mL). However, when concentrations corresponding
to 10 times the IC50 of each IFNβ formulation were compared on a weight
basis (ng/mL), the VSV yield reduction was higher with both IFNβ-1a sc and
IFNβ-1a sc NF than with IFNβ-1b sc. When concentrations corresponding to
100 times the IC50 of each IFNβ formulation were compared on a weight
basis (ng/mL), VSV yield reductions did not significantly differ between
IFNβ-1b sc and either IFNβ-1a sc formulation.

ISG Expression

Differences in ISG expression, as determined by the induction of MxA,
ADAR1, and ISG56 mRNAs, were consistent with those observed for antiviral
activity of the IFNβ formulations. When equivalent unit amounts of the three
IFNβ formulations were compared, they all induced similar transcript levels
of MxA, ADAR1, and ISG56. At both 10 IU/mL and 100 IU/mL, there were
no significant differences between the mean fold-changes in ISG mRNA
expression for IFNβ-1a sc, IFNβ-1a sc NF, and IFNβ-1b sc (Figures 2A, 2C,
and 2E). ISG transcript levels were similar for both the original IFNβ-1a sc
formulation and the IFNβ-1a sc NF. When the formulations were compared
by weight, at 0.5 ng/mL or 0.05 ng/mL, both IFNβ-1a sc and IFNβ-1a sc NF
induced higher transcript levels of MxA, ADAR1, and ISG56 compared with
IFNβ-1b sc (Figures 2B, 2D, and 2F), with no significant difference in ISG
expression between IFNβ-1a sc and IFNβ-1a sc NF.

DISCUSSION

The objective of this current article was to compare the biologic activity
of IFNβ-1a sc NF with that of IFNβ-1a sc; IFNβ-1b sc was used as an additional
comparator. The antiviral and biologic activities of these formulations were
compared by measuring: (1) the reduction of CPE by IFNβ on A549 human
lung carcinoma cells following infection with VSV and (2) the levels of IFNβ-
induced MxA, ADAR1, and ISG56 mRNAs, which encode antiviral proteins
and are commonly assayed in cell cultures exposed to Type I IFN as an in
vitro measure of IFN biologic activity.[30–33] When equivalent unit amounts
of the formulations were compared, IFNβ-1a sc, IFNβ-1a sc NF, and IFNβ-1b
sc demonstrated similar levels of antiviral activity in terms of IC50. However,
when the formulations were compared on a weight basis (ng/mL), signifi-
cantly more IFNβ-1b sc was required to equal the antiviral activity of either
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FIGURE 2 Evaluation of MxA, ADAR1, and ISG56 mRNA induction by IFNβ formulations in
A549 human lung carcinoma cells. All three IFNβ formulations induced similar mRNA levels of (A)
MxA, (C) ADAR1, and (E) ISG56, when equivalent unit amounts were compared (100 or 10 IU/mL).
When the formulations were compared on a weight basis, at 0.5 ng/mL and 0.05 ng/mL, IFNβ-1a sc and
IFNβ-1a sc NF induced significantly higher mRNA levels of (B) MxA, (D) ADAR1, and (F) ISG56 com-
pared with IFNβ-1b sc. ∗P < 0.05 for both comparisons using Student’s t-test. †Calculated according to
the specific activities of IFNβ-1b sc (32 MIU/mg) and IFNβ-1a sc (270 MIU/mg). ADAR1, adenosine
deaminase, RNA-specific; IFNβ, interferon beta; ISG56, interferon stimulated gene 56; IU, International
Units; MxA, myxovirus resistance protein A; NF, new formulation; sc, subcutaneous.



296 C. Scagnolari et al.

formulation of IFNβ-1a sc in terms of IC50. Similarly, when concentrations
corresponding to 10 times the IC50 of each IFNβ formulation were compared
on a weight basis, a smaller reduction in VSV yield was observed with IFNβ-1b
sc than with either IFNβ-1a sc formulation. However, when concentrations
corresponding to 100 times the IC50 of each IFNβ formulation were com-
pared on a weight basis, VSV yield reductions were similar with each of the
three IFNβ formulations, probably because at this concentration the plateau
phase of the dose–response curve has been reached, and so differences in
antiviral activity between IFNβ formulations are no longer observed.

Importantly, differences in the IFNβ-1a sc and IFNβ-1b sc formulations
on a weight basis were demonstrated by measuring the expression of well-
established ISGs. In particular, IFNβ-1a sc and IFNβ-1a sc NF induced similar
levels of ISG expression, and both induced significantly higher mRNA lev-
els of ISGs compared with IFNβ-1b sc. These findings suggest that, on a
weight basis, biologic activity is equivalent for both formulations of IFNβ-1a
sc and greater than that of IFNβ-1b sc. Thus, a greater weight of IFNβ-
1b sc may be needed to achieve the same biologic response as IFNβ-1a
sc, despite the fact that IFNβ-1b sc has a molecular weight (approximately
18,500 daltons[34]) that is approximately 82% of that of IFNβ-1a sc (approx-
imately 22,500 daltons[35]). Antonetti and colleagues examined the antiviral
activity of IFNβ-1a for sc use and IFNβ-1b for sc use using the same CPE assay
system[1] and showed that IFNβ-1a has an antiviral activity approximately
14 times greater than that of IFNβ-1b (0.236 ng/mL versus 3.333 ng/mL,
respectively).[1] Similar differences in biologic activity between IFNβ-1a and
IFNβ-1b formulations have been reported previously.[9,10]

The findings of this pilot study emphasize the potential importance of
determining the relative biologic activity of different IFNβ formulations, and
suggest the amount of protein required to achieve a biologic response might
be higher for IFNβ-1b than IFNβ-1a formulations. A notable limitation of this
study was that IFNβ-1a im (Avonex) was not included for comparison with
the other available IFNβ formulations. To date, there are no published stud-
ies that have compared within the same assay system the biologic activity of
all three IFNβ formulations currently approved for treatment of relapsing
MS. A second potential limitation of the present study is that only a single
virus and cell model system (VSV/A549) was used to study the biologic activ-
ity of the IFNβ formulations. Therefore, additional studies are required that
compare the biologic activity of all approved IFNβ formulations; such stud-
ies should employ not only the VSV/A549 model system, but also other assay
systems with different IFN-sensitive viruses, as well as types of IFN-sensitive
cells.
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CONCLUSIONS

In conclusion, the biologic activity of IFNβ has been found to vary among
different IFNβ formulations. The results of this article indicate that, with
respect to the specific assays used, IFNβ-1a sc and IFNβ-1a sc NF exhibit
equivalent biologic activity. Furthermore, on a weight basis, the biologic
activity of both IFNβ-1a sc formulations is greater than that of IFNβ-1b sc
(as measured by these methods), suggesting that a greater amount of IFNβ-
1b sc may be needed to achieve the same in vitro response as IFNβ-1a sc.
The relevance of these in vitro findings to the clinical effects of the IFNβ

formulations in relapsing MS is unknown; however, examination of in vitro
biologic responses demonstrates distinct properties of these compounds, the
relevance of which needs further investigation.
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