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Abstract

Environmental and genetic stress have well-known detrimental effects on ejacu-

late quality, but their concomitant effect on male fitness remains poorly under-

stood. We used competitive fertilization assays to expose the effects of stress on

offensive sperm competitive ability in the beetle Callosobruchus maculatus, a

species where ejaculates make up more than 5% of male body mass. To exam-

ine the effects of environmental and genetic stress, males derived from outcross-

es or sib matings were heat shocked at 50°C for 50 min during the pupal stage,

while their siblings were maintained at a standard rearing temperature of 28°C.
Heat-shocked males achieved only half the offensive paternity success of their

siblings. While this population exhibited inbreeding depression in body size,

sperm competitiveness was unaffected by inbreeding, nor did the effect of heat

shock stress on sperm competitiveness depend on inbreeding status. In contrast,

pupal emergence success was increased by 34% among heat-stressed individuals,

regardless of their inbreeding status. Heat-shocked males’ ejaculate size was

19% reduced, but they exhibited 25% increased mating duration in single mat-

ing trials. Our results highlight both the importance of stress in postcopulatory

sexual selection, and the variability among stressors in affecting male fitness.

Introduction

As the vehicle for male gametes, the ejaculate plays a central

role in determining male reproductive fitness. The impor-

tance of both the sperm and nonsperm components (semi-

nal fluid proteins) of the ejaculate in postcopulatory natural

and sexual selection are now well recognized (Simmons and

Fitzpatrick 2012). For example, sperm numbers, motility,

and morphology all have effects on male fitness (Froman

et al. 2002; Gage and Morrow 2003). As do the quantities of

seminal fluid and accessory gland products that can have

profound effects on sperm competition by modifying female

reproductive behavior (Chapman 2001; Simmons 2001; Gil-

lott 2003). Although many components of ejaculates have

well-established genetic bases (Hales et al. 1989; Ducrocq

and Humblot 1995; Swanson et al. 2001; Birkhead et al.

2005; Dowling et al. 2007; Dobler and Hosken 2009), esti-

mates for heritability and additive genetic variance in

sperm-competitive performance are generally modest

(reviewed in: Simmons and Moore 2009). The influence of

environmental effects on sperm competitive success is

increasingly recognized (e.g., oviposition site availability:

Eady et al. 2004; larval density, nutrition: Amitin and Pit-

nick 2007; adult density: Crean and Marshall 2008; sperm

competition risk: DelBarco-Trillo 2011; immune insult:

McNamara et al. 2013).

Through its well-established effects on ejaculate quality,

stress is often presumed to be an important environmental

source of variance in male fitness (Campbell et al. 1992;

P�erez-Crespo et al. 2008; Hansen 2009). While the cause

of stress can vary considerably (e.g., heat, excess reactive

oxygen species, or physical handling), cellular responses to

stress-related damage in affected tissues are remarkably

consistent. Stress induces the expression of heat shock

proteins (Hsp), molecular chaperones that repair cellular

damage associated with stress (reviewed in Sørensen et al.

2003). Partly due to their resource requirements and

demands on the transcriptional machinery, the expression

of these gene products imposes its own costs (Feder et al.

1992; Krebs and Feder 1998), and the survival benefits of

expression typically trade-off against other fitness compo-

nents (Hoffmann 1995). While the adverse effects of heat
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stress on sperm production and function are well studied

(Hansen 2009), knowledge about its consequences on

other seminal components remains limited.

Hsp expression also appears to mitigate the conse-

quences of genetic stress. A recent study in Caenorhabditis

elegans showed that induced Hsp expression reduced the

penetrance of a late-onset detrimental mutation (Casanu-

eva et al. 2012). In a similar fashion, Hsp expression

might be expected to counter the effects of the expression

of detrimental alleles in homozygotes after inbreeding.

Kristensen et al. (2002) found raised levels of Hsp70, a

widely expressed and inducible chaperone, in unstressed

inbred Drosophila larvae. While environmental stress usu-

ally worsens inbreeding depression (Armbruster and Reed

2005), inbred genotypes in Drosophila buzzatii show less

of a decline in hatching success following heat shock than

do outbred genotypes (Dahlgaard and Loeschcke 1997).

However, attenuating effects of exposure to one stressor

on susceptibility to another are not always supported. For

example, in Drosophila melanogaster, the degree of

inbreeding has no significant effect on heat stress survival

(Dahlgaard et al. 1995). Although Hsp genes are highly

conserved, their expression exhibits genetic variation in

many species (Sørensen et al. 2003), and may thus show

inbreeding depression. How interactions between intrinsic

(genetic) and extrinsic stress affect trade-offs with other

fitness components remains poorly understood.

In this study, we used the seed beetle Callosobruchus

maculatus as a model to study how interactions between

acute thermal and genetic stressors affect male fitness.

Males transfer costly ejaculates that comprise 5–8% of

their body mass (Savalli and Fox 1999). For females, these

ejaculates are a source of water and accessory secretions

that have complex effects on female fitness (Eady et al.

2007; Edvardsson 2007). As a pest of stored legumes,

inbreeding is likely to occur “naturally” after colonization

of new food sources. Inbreeding affects the number of

sperm transferred per ejaculate (Fox et al. 2012). In den-

sely infested legumes, metabolic processes may strongly

elevate temperatures (Utida 1972), which larvae, develop-

ing within the beans, cannot escape. Although adult heat

shock exposure is generally thought to induce temporary

increases in Hsp expression, in zebrafish thermal stress

during development produced a permanent increase in

thermal tolerance at the expense of body size (Schaefer

and Ryan 2006). Because males in C. maculatus typically

attain high last-male sperm precedence (see Material and

Methods), we examined the effects of thermal and genetic

stress on this offensive sperm competitive performance.

We manipulated stress by heat shocking one of two male

siblings that were derived from inbred or outbred crosses,

during the pupal stage. This developmental stage is the

most resistant to heat stress (Johnson et al. 2010), and

represents a period of major spermatogenesis and prolif-

eration of secretory epithelia (Dumser 1980; Happ 1992).

We also examined whether any reductions in sperm com-

petitive ability result from changes in ejaculate size.

Material and Methods

Stock culture

Experimental animals were sourced from a large outbred

population that originated from a stock culture held by

the Stored Grain Research Laboratory of CSIRO (Canber-

ra, Australia). Beetles were maintained at 28°C in an incu-

bator (Binder KB 240, Germany) on black-eyed beans

(Vigna unguiculata). In this population, a single generation

of inbreeding causes genetic stress. This is shown by the

observation that the offspring from brother–sister matings

are significantly lighter at eclosion than outbred offspring

(inbred males 2.6% lighter, F1,1604 = 9.8, P < 0.002 and

inbred females 5.6% lighter, F1,1777 = 48.2, P < 0.001).

Protocol

We used a split-family design to examine the effects of

genetic stress (inbreeding) and environmental stress (heat

shock during pupation) on sperm competitiveness of

related males (Fig. 1). Parental virgins were derived from

the population by haphazardly isolating infested beans in

microtubes. Sixty pairs of virgins on the second day after

emergence were formed and mated in microtubes.

Females were then moved to 55 mL plastic vials (Techno

Plas, Australia) with 40 black-eyed beans and allowed to

oviposit until death. Infested beans were once again

isolated in microtubes to assure virginity among F1

P (stock)

F1

F2

Figure 1. One of 15 replicate blocks within our experimental design.

Stock virgins were single mated to produce four F1 families. Within

each of these, two F1 siblings were mated to generate inbred F2

offspring, and two siblings were mated to beetles from other families to

produce outcrossed F2 offspring. Shortly before emergence (day 26), F2

families were split: part of the pupae received a heat shock treatment

(50 min on 50°C) while the remaining pupae were maintained at

standard culturing conditions. Resulting F2 males were mated to

females previously mated to irradiated males (not shown) to assess the

effects of heat shock and inbreeding treatments on sperm-competitive

ability. Dashed line indicates mating between nonadjacently depicted

families. ○: females; □males; ■ heat-shocked males.
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animals. Within each F1 family, a “brother–sister” cross was
conducted and an outbred cross was set up using a donor

female from the next family within the block (Fig. 1). In

outbred populations, inbreeding coefficients increase most

strongly in the first generation of inbreeding, which gen-

erally predicts the degree of inbreeding depression (Roff

1997). Animals used for these crosses were between 2 and

4 days old. Following mating in microtubes, females were

allowed to oviposit until death on 40 black-eyed beans,

which were then isolated to capture virgin F2 animals.

On the 26th day after the mating, clutches of inbred

and outbred unemerged F2 individuals were randomly

split between control and heat shock treatments. Prelimin-

ary trials indicated that this day precedes a 5-day period

in which two thirds of emergences occur. This timing thus

ensures that the majority of animals received heat shock

treatment late in the pupal stage. Spermiogenesis in insects

generally takes place during the final larval stages (i.e.,

pupal stage) (Dumser 1980), and spermatophore produc-

tion in C. maculatus may be incomplete before 24 h post-

emergence (Eady and Brown 2000). Heat-shock events

during this phase therefore are likely to affect sperm pro-

duction and subsequent ejaculate competitiveness. We

exposed pupae inside their beans, inside microtubes, to

50°C for 50 min in the aforementioned incubators. This

treatment minimizes any water loss and is expected to

induce strong cell-physiological responses, but exert mini-

mal selection through mortality (Johnson et al. 2010). The

effect of this stress was assessed by recording F2 eclosion

success per randomly selected five beans for all experimen-

tal crosses within five blocks (20 families).

From each F1 family, four outbred non heat-shocked

female F2 virgin offspring were collected for sperm competi-

tion trials. Females were always mated first to an irradiated

virgin male (see below) and remated to an experimental

male the next day. Female C. maculatus are generally poly-

androus, but exhibit a refractory period after mating (Eady

1995). Females were given the opportunity to remate with

the same male for 3 days in 15-min mating trials and were

discarded if unsuccessful. Due to practical constraints, the

ages at second mating of females, irradiated males, and

experimental males were variable (median [iqr]: 5 [4–6]; 3.5
[3–5]; 5 [4–6] days, respectively), but controlled statistically.

Following successful remating, females were placed in

55 mL plastic vials with 40 black-eyed beans and allowed to

oviposit until death. For each female, the number of eggs

and F3 emergences were counted.

Irradiation

Irradiated males were produced by isolating infested

beans from the stock population. Emerged males were

kept in groups of 20 in ventilated vials

(d 9 h = 24 9 64 mm) for 2 days before exposure to

60 Gy gamma radiation from a cobalt-60 source, over a

period of 14 min and under nitrogen anesthesia

(5 L min�1). Irradiated males’ sperm remain functionally

competent, but have DNA mutations that result in early

embryonic mortality, so F3 could be attributed to experi-

mental males (Parker 1970). Supplementary trials were

conducted to confirm the efficacy of irradiation treatment

on reducing fertilization ability. Fifty-eight 2-day-old

females were successfully mated to either 2-day-old irradi-

ated (27) or nonirradiated virgin males (31) and allowed

to oviposit on 40 beans in 55 mL vials. Fecundity (egg

number) and emergences were counted. Irradiation of

males induced significant embryonic mortality in the off-

spring they sired (proportion emergence, median [iqr],

control: 0.76 [0.61–0.82]; irradiated: 0.06 [0.03–0.11];
Wilcoxon rank sum test, W = 85.5, P < 0.001).

Statistics

The consequences of stress on F2 eclosion success were

examined by modeling the effects of experimental treat-

ments (inbreeding, heat shock, and their interaction) with

family as a random factor. To assess the effect of our treat-

ments on the sperm competitiveness of F2 males, we ana-

lyzed F3 emergence data using generalized mixed-effects

modeling with F2 fecundity as binomial totals. To address

overdispersion, an observation-level random factor was

included in the model. Graphical inspection of the data

indicated between-family variation in the effect of heat

shock treatment on F3 emergence. The fit of the full model

was improved by including a random term that allowed the

effects of heat shock treatment to vary by family (likelihood

test, v23 = 12.33, P = 0.006). The full model was weighted

by fecundity and included fixed effects for heat shock treat-

ment and inbreeding status, and five covariates to control

for any effects of factors not fixed in the experimental

design (female age at mating, duration of refractory period

after the female’s first mating, female body mass at emer-

gence, and the ages of the first and second males at mating).

Nonsignificant covariates were eliminated from the model

by stepwise backward deletion. The full model also included

interactions between heat shock treatment and inbreeding

status, and between the ages of the first and second male at

mating, but these were dropped due to nonsignificance. All

analyses were conducted using R version 2.14.1 (R Develop-

ment Core Team 2012), with the package “lme4” for mixed

modeling (Bates et al. 2011).

Results

Heat-shock treatment induced significant viability bene-

fits: stressed pupae showed a 34% increase in eclosion
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success compared to controls (7.1 vs. 5.3 emergences per

five beans; type III ANOVA (analysis of variance)

v21 = 22.05, P < 0.001; Fig. 2); neither inbreeding nor its

interaction with heat shock affected eclosion (both

v21 < 1.72, P > 0.19).

Forty-nine of 240 planned double mating trials were

excluded due to failures to mate (n = 22), deaths before

remating (n = 1), and other issues that prevented success-

ful crosses. This reduction was not associated with any of

the experimental treatments (v2 test, v21 = 0.17, P = 0.68).

The reduced model revealed that only male heat shock

treatment and female age at the first mating affected focal

male paternity (P2) (Table 1). Heat-shocked males sired

only half the proportion of offspring that non heat-

shocked males gained (0.37 vs. 0.76, resp.; Fig. 3).

Whether focal males were derived from in- or outbred

crosses did not affect their sperm competitive ability

(Fig. 3).

To examine the mechanism behind the decline in

sperm competitive ability after heat shock, we determined

ejaculate sizes of 23 heat-shocked and 23 control males

between 1 and 3 days after eclosion. Prior to and after a

timed mating with a 1-day-old virgin stock female, the

male and female were weighed to the nearest 1 lg, and
mass changes averaged. Heat-shocked males exhibited a

19% decrease in ejaculate mass (1.361 vs. 1.678 mg)

despite 25% longer matings (592 vs. 474 sec) compared

to control males (Table 2).

Discussion

Thermal stress has well-known detrimental effects on

male fertility. Our results indicate that the observed

decline in offensive sperm competitiveness in stressed

males was associated with reduced ejaculate size. Ejaculate

size may affect sperm competitive success in several ways.

The benefits of larger ejaculates in non heat-shocked

males might simply derive from greater sperm numbers.

Indeed, the pattern of sperm precedence in C. maculatus

is consistent with sperm displacement from the sperma-

theca (Eady 1994). Sperm displacement might also be

affected via seminal fluid components of the ejaculate, as

in Drosophila (Wolfner 1997). However, the effect of

quantitative changes in ejaculate components appears to

be limited. Among virgin males, variation in ejaculate size
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Figure 2. Effects of genetic (inbred vs. outcrossed) and

environmental stress (heat shock vs. control) on F2 pupal eclosion

success (number of emergences per five beans).

Table 1. Analysis of deviance table for a generalized linear mixed-

effects model of the proportion paternity of the second male to mate

(P2).

b � SE v21 P

Male heat shock �2.77 � 0.38 54.22 0.000

Male inbreeding �0.01 � 0.28 0.00 0.974

Female age at first mating 0.20 � 0.09 5.58 0.018

Random terms are not shown.

0.0
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Treatment
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Figure 3. Effects of genetic (inbred vs. outcrossed) and

environmental stress (heat shock vs. control) on the paternity over F3
offspring by experimental males (P2).

Table 2. Type II ANCOVA (analysis of covariance) results for the

effects of heat shock treatment on transferred ejaculate mass and the

duration of mating between virgin beetles.

Term

Ejaculate mass Mating duration

b F1,42 P b F1,42 P

Heat shock �495.34 11.40 0.002 135.51 8.30 0.006

Male body mass 0.06 12.15 0.001 �0.01 2.06 0.159

Female body

mass

�0.01 2.74 0.105 �0.01 5.32 0.026
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has no effect on sperm precedence or female fecundity

(Edvardsson and Tregenza 2005). Although mating causes

significant ejaculate depletion, with roughly equivalent

effects on ejaculate size and sperm numbers, the reduc-

tion in last-male sperm precedence due to depletion is far

smaller than the reduction observed in this study (Eady

1995; Savalli and Fox 1999). Spermatozoa, spermatocytes,

and spermatids do exhibit increased sensitivity to heat

stress (P�erez-Crespo et al. 2008). We suggest therefore,

that heat stress may have detrimental effects on gamete

performance.

We further show that heat-stressed pupae exhibit a

marked increase in eclosion success, indicative of up-reg-

ulated Hsp expression. Mild heat stress is often found to

produce somatic benefits, including delayed senescence

and increased longevity (Sørensen et al. 2003). Con-

versely, previous work indicates that reproductive effort

reduces resistance to oxidative stress (Alonso-Alvarez

et al. 2004), which is partly mediated by Hsps (Hartwig

et al. 2009). The underperformance of control-treated

individuals points to a common source of developmental

mortality that is mitigated by increased Hsp expression.

The pupal stage in holometabolous insects is accompa-

nied by profound changes in transcriptional activity

(Arbeitman et al. 2002). Mortality among larvae and un-

emerged adults in C. maculatus is substantial and herita-

ble (Tran and Credland 1995). The pupal viability

benefits associated with heat stress in this study are likely

attributable to the roles Hsps play in stabilizing develop-

mental processes (Takahashi et al. 2010) or counteracting

the products of detrimental genes (Casanueva et al.

2012).

The evidence for increased investment in Hsps may

provide a potential mechanism for the decrease in sperm

competitive performance. While gametogenic and secre-

tory tissues, and gametes may suffer direct stress-induced

damage, sperm competitive performance may also be

affected indirectly by a systemic or tissue-specific develop-

mental trade-off between investment in reproduction and

stress resistance. The costs of Hsp up-regulation on cellu-

lar functions are often more severe in reproductive cell

types. In mice, Hsp expression is triggered at lower tem-

peratures in spermatocytes than somatic reproductive cell

types (Sarge 1995). Both germline and somatic reproduc-

tive tissues can further have Hsp expression profiles not

found in nonreproductive tissues. In Drosophila, Hsp23

and Hsp27 are expressed in the secretory cells of the semi-

nal vesicle and accessory glands, mainly during the pupal

stage (Michaud et al. 1997). Expression of Hsp23 is heat-

stress inducible and associated with increased stress sur-

vival (Arrigo 1987). Up-regulation of similar Hsps might

underlie the observed reduction in ejaculate size we

observed in heat-shocked C. maculatus.

While body size is susceptible to genetic stress in our

population, inbreeding had no direct effect on sperm

competitive performance. Single generations of full-sib

mating often reduce sperm competitive success (e.g.,

Simmons 2011), which is sometimes attributed to the

relative complexity of spermatogenesis. Inbreeding depres-

sion in sperm competition traits has been found in other

populations of C. maculatus, although these studies did

not directly test offensive performance (Bilde et al. 2009;

Fox et al. 2012). Fox et al. (2012) found that inbred

males’ ejaculates were similarly sized, but contain 17–33%
fewer sperm. Given the relatively limited effects of severe

sperm depletion on last-male sperm precedence (Eady

1995), any inbreeding depression in sperm numbers

appears to have had no detectable effect on offensive

sperm competitive success in our population.

Despite the absence of inbreeding depression in sperm

competitive success, the effects of environmental stress on

competitiveness could still depend on inbreeding status.

First, Hsp genes, and the genes involved in their expres-

sion, may themselves be subject to inbreeding. Homozy-

gosity at Hsp loci has been linked to reduced sperm

numbers (Huang et al. 2002). Furthermore, synergistic

effects of stressors are thought to result from competition

between different sources of damaged proteins over Hsps

(Rutherford 2003). Inbreeding chronically raises Hsp

expression (Kristensen et al. 2002). We hence expected

the genome-wide stress of inbreeding to interact with the

effects of heat shock, but found no such interactions. This

result cannot be due to an overall lack of genetic varia-

tion in our population, because it exhibits inbreeding

depression in other traits (this study; Tomkins et al.

2010). However, previous contradictory findings within

populations of C. maculatus show that the effects of envi-

ronmental stress on inbreeding depression in life-history

traits strongly depend on the exact environmental condi-

tions (Fox and Reed 2011; Fox et al. 2011). Despite the

generality of the cellular heat shock response, different

environmental stressors may exhibit varying interactions

with genetic stress. Dahlgaard and Hoffmann (2000)

found that inbreeding in D. melanogaster reduced resis-

tance to several stressors, but not to heat knockdown.

There are also indications that constitutively raised levels

of Hsp due to inbreeding can reduce the costs of environ-

mental stress (Dahlgaard and Loeschcke 1997), potentially

masking the effects of other stressors such as heat shock.

In conclusion, we offer, to our knowledge, the first

report of viability benefits concomitant with reductions in

offensive sperm competitive performance induced by heat

stress. This result appears consistent only with develop-

mental up-regulation of Hsps. In C. maculatus, a key

invertebrate model system for sexual selection and con-

flict, ejaculate components have important consequences
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for female fecundity, longevity, and remating

propensity (Edvardsson 2007), highlighting the impor-

tance of environmental effects on variance in male post-

copulatory success.
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