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State-of-the-art proteomics technologies have recently helped to elucidate the unantic-
ipated complexity of red blood cell metabolism. One recent example is citrate metabo-
lism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present 
and active in mature erythrocytes and was determined using quantitative metabolic flux 
analysis. In previous studies, we reported significant increases in glycolytic fluxes in red 
blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion 
medicine owing to the potential benefits associated with hypoxic storage of packed 
red blood cells. Here, using a combination of steady state and quantitative tracing 
metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C 15

5 N2-glutamine, and 
13C1-aspartate via ultra-high performance liquid chromatography coupled on line with 
mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption 
of citrate and other carboxylates. These metabolic reactions are theoretically explained 
by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 
(abundantly represented in the red blood cell proteome), though moonlighting functions 
of additional enzymes cannot be ruled out. These observations enhance understanding 
of red blood cell metabolic responses to hypoxia, which could be relevant to understand 
systemic physiological and pathological responses to high altitude, ischemia, hemor-
rhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study 
will also inform the design and testing of novel additive solutions that optimize red blood 
cell storage under oxygen-controlled conditions.

Keywords: hypoxia, metabolomics, mass spectrometry, tracing experiments, flux analysis

inTrODUcTiOn

Approximately 31,000 packed red blood cell (RBC) units are transfused every day in the US alone 
(1), thus illustrating the importance of RBC transfusion as a life-saving procedure for millions of 
people around the world. One hundred years of advancements in the field of transfusion medicine [as 
reviewed here (2, 3)] have tackled many of the issues associated with making ~110 million units/year 
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available for transfusion all over the world. Though logistically 
inevitable, refrigerated storage of packed RBCs in the blood bank 
results in the progressive accumulation of a series of biochemical 
and morphological alterations, collectively termed the “storage 
lesion” (4–6). Hallmarks of the storage lesion include the early 
onset of an impaired energy and redox metabolism (7), which in 
turn affects redox homeostasis of proteins (8–10), lipids (11–13), 
and various small molecule metabolites (13–15). Reassuringly, 
evidence from randomized clinical trials [RCTs—extensively 
reviewed by Belpulsi and colleagues (16)] suggests that the 
general standard of care would not be improved by exclusively 
issuing fresh RBCs, at least for the clinical indications addressed 
by, and within the statistical power of, the completed RCTs. 
One tentative explanation reconciling the lack of correlation 
between the well-established storage lesion and the RCT results 
could involve the underappreciated role that donor and recipient 
biology plays in mediating transfusion safety and efficacy (17). 
In the last 7  years, such large-scale studies as the Recipient 
Epidemiology and Donor Evaluation Study-III have addressed 
the issue of biological variability and found that biological 
variability across donors (i.e., donor ethnicity, gender, and age) 
affects RBC storability and stress hemolysis (18). Such observa-
tions have been supported by smaller scale laboratory studies in 
humans (19, 20) that demonstrated heritability of the metabolic 
storage lesion (21–23), as well as studies performed in mice  
(24, 25) showing that post-transfusion recoveries are greatly 
variable across donors (26). Of note, Yoshida and colleagues have 
recently provided preliminary evidence suggesting that hemo-
globin oxygen saturation (SO2) at 8 h from donation and routine 
processing varies significantly across donors (27), potentially 
contributing to the donor-dependent development of the storage 
lesion. This is relevant in light of accumulating evidence suggest-
ing that SO2 significantly impacts RBC metabolism, as is the case 
in exposure to high-altitude hypoxia or hemorrhagic hypoxia 
(28, 29), as well as hypoxic storage in the blood bank (30–32). 
Hypoxic storage boosts energy metabolism and limits oxidative 
challenge to stored RBC proteins (10, 33), a phenomenon in 
part explained by the intracellular alkalinization accompanying 
the simultaneous removal of oxygen and carbon dioxide from 
the unit (34), as well as by the oxygen-dependent metabolic 
modulation of glycolytic enzyme activity (10, 35–37). Some of 
the benefits of anaerobic storage can indeed be phenocopied 
by alkaline additives (38, 39), which have been shown to boost 
glycolysis, Rapoport-Luebering shunt and pentose phosphate 
pathway activation (40) through a positive pH-dependent 
regulation of phosphofructokinase, bisphosphoglycerate mutase, 
and glucose 6-phosphate dehydrogenase (2). Because beneficial 
effects of metabolic interventions to attenuate the storage lesion 
have been demonstrated by washing and/or rejuvenating end-
of-storage erythrocytes (41), boosting RBC metabolism through 
a combination of SO2 control and novel additive solutions may 
represent a viable strategy to tackle the storability issue and fur-
ther improve RBC storage quality in the future. Understanding 
how erythrocyte metabolism is affected by normoxia and 
hypoxia in vivo and ex vivo under refrigerated conditions is key 
to the development of novel additive solutions tailored to packed 
RBCs stored under oxygen-controlled conditions. In this view, 

it is worth considering how recent advancements in proteomics 
have expanded our understanding of the RBC proteome com-
plexity, which was thought to include ~750 proteins just a decade 
ago (42) and is now known to enlist ~2,800 (43) and counting 
(44). While identification of trace levels of an enzyme in RBCs 
does not necessarily imply that the enzyme is functionally active, 
it has been recently demonstrated through flux experiments 
using stable isotope tracers that cytosolic isoforms of Krebs 
cycle enzymes are present and active in mitochondria-devoid 
human erythrocytes (44), an observation that is relevant for the 
RBC metabolism of citrate when stored in the most common 
additives in Europe [SAGM (45, 46)] and in the US [e.g., AS-3 
(13)]. In these studies, it was shown that citrate metabolism can 
contribute to a varying percentage of lactate generation during 
storage progression (13, 45, 46). Since hypoxia promotes glyco-
lysis and lactate generation in a SO2-dependent fashion (10), we 
hypothesized that carboxylic acid metabolism (including citrate 
metabolism) in mature RBCs may be affected by hypoxia in vivo 
and ex vivo during short term (24 h) and prolonged refrigerated 
storage (up to 42 days) under SO2-controlled conditions. To test 
this hypothesis, we re-analyzed RBCs from individuals exposed 
to high-altitude hypoxia to specifically look for carboxylates, 
as an expansion of the AltitudeOmics study (28). Moreover, 
we performed integrated metabolic tracing experiments in the 
presence of different stable isotope-labeled substrates (citrate, 
glucose, aspartate, and glutamine) in order to determine how 
hypoxia affected RBC metabolism of these substrates under 
normoxic and hypoxic conditions.

MaTerials anD MeThODs

Blood samples were collected from healthy donor volunteers 
upon receiving written informed consent and in conformity with 
the Declarations of Helsinki under protocol approved by the 
University of Texas Houston and University of Colorado Denver 
institutional review boards (no. AWC-14-0127 and 11-1581, 
respectively). Commercial reagents were purchased from Sigma-
Aldrich (Saint Louis, MO, USA) unless otherwise noted.

human rBcs, stored under normoxic  
or hypoxic conditions
Blood was collected from healthy donors at the Bonfils Blood 
Center (Denver, CO, USA) according to the Declaration of 
Helsinki. Filter leukocyte-reduced (>99.95% WBC depleted—
Pall Medical, Braintree, MA, USA) packed RBCs were stored in 
CP2D-AS-3 (n = 4; Haemonetics Corp., Braintree, MA, USA). 
Units were sterilely sampled (0.1 mL per time point) on a weekly 
basis until storage day 42, and cells and supernatants were sepa-
rated by centrifugation at 2,000 × g for 10 min at 4°C.

high-altitude studies
Whole blood was collected from 12 male and 9 female healthy 
human volunteers at sea level or after 3 h (ALT1 am), >8 h (ALT1 
pm), or 7  days (ALT7) of exposure to high-altitude hypoxia 
(5,260  m) in Mt. Chacaltaya, Bolivia, within the framework of 
the AltitudeOmics study (28). RBCs were separated from whole 
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blood through gentle centrifugation (~99% WBC depleted), as 
described (28).

labeling experiments
13C1,2,3-Glucose and RBC Storage under Controlled 
Oxygen Saturation Conditions
Filter leukocyte-reduced (>99.95% WBC depleted—Pall Medical, 
Braintree, MA, USA) packed red blood cells (n =  4) were col-
lected, processed, and stored in CP2D-AS-3, as described above, 
supplemented with additional 11 mM 13C1,2,3-glucose (no. CLM-
4673-PK—Cambridge Isotope Laboratories Inc.—Tewksbury, 
MA, USA) prior to storage at six different oxygen saturation 
conditions, monitored throughout storage duration—includ-
ing controls (untreated—averaging SO2  =  47  ±  20), hyperoxic 
(SO2 >  95%), and hypoxic (SO2 =  20%, 10%, 5%, or <3%), as 
previously described (10, 27).

Tracing Experiments from Heavy Citrate,  
Glutamine Aspartate, and Glucose in Hypoxia  
and Normoxia for 24 h
Filter leukocyte-reduced (>99.95% WBC depleted—Pall Medi-
cal, Braintree, MA, USA) RBCs (n  =  3) were stored for up to 
24  h under normoxia (PO2 =  21%) or hypoxia (PO2 =  8%) in 
CP2D-AS-3 prepared in house (four independent experiments) 
in the presence of U-13C-glucose (55  mM—Sigma-Aldrich 
Catalog no. 389374), 13C6-citric acid (Sigma-Aldrich Catalog no. 
606081—2.2  mM), 13C1-aspartate (Sigma-Aldrich Catalog no. 
489972—1 mM), or 13C5

15N2-glutamine (Sigma-Aldrich Catalog 
no. 607983—4 mM).

sample Processing
Packed RBCs and supernatants were extracted in ice cold extrac-
tion solution (Optima LC-MS grade methanol:acetonitrile:water 
5:3:2 v/v) at 1:10 or 1:25 dilutions, prior to vortexing for 30 min 
at 4°C. Insoluble proteins were pelleted by centrifugation at 4°C 
for 10 min at 10,000 × g and supernatants were collected and 
stored at −80°C until subsequent analysis.

UhPlc-Ms Metabolomics analysis
Sample extracts were analyzed by UHPLC-MS, as previously 
reported (47). Briefly, analyses were performed on a Vanquish 
UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA) 
coupled online to a Q Exactive mass spectrometer (Thermo 
Fisher Scientific, Bremen, Germany). Samples were resolved over 
a Kinetex C18 column, 2.1 mm × 150 mm, 1.7 µm particle size 
(Phenomenex, Torrance, CA, USA) at 25°C using an isocratic 
runs with 5% B for 3 min at 250 μl/min or a 9 min method from 
5 to 95% B flowed at 450 µl/min and 30°C, where mobile phase 
A consisted of water + 0.1% formic acid (for positive mode) or 
5 mM ammonium acetate (for negative mode) and mobile phase 
B consisted of acetonitrile water + 0.1% formic acid (for positive 
mode) or 5 mM ammonium acetate (for negative mode). The mass 
spectrometer was operated independently in positive or negative 
ion mode scanning in Full MS mode (2 μscans) at 70,000 resolu-
tion from 60 to 900 m/z, with electrospray ionization operating 
at 4 kV spray voltage, 15 shealth gas, 5 auxiliary gas. Calibration 

was performed prior to analysis using the Pierce™ Positive and 
Negative Ion Calibration Solutions (Thermo Fisher Scientific). 
Acquired data was converted from .raw to .mzXML file format 
using Mass Matrix (Cleveland, OH, USA). Metabolite assign-
ments, isotopologue distributions and correction for expected 
natural abundance of 13C and 15N isotopes were performed 
using MAVEN (Princeton, NJ, USA) (48).

Graphs were plotted and statistical analyses (either T-test or 
repeated measures ANOVA) performed with GraphPad Prism 
5.0 (GraphPad Software, Inc., La Jolla, CA, USA). Significance 
was assessed through repeated measure ANOVA (time course), 
two way-ANOVA (SO2 conditions), and T-test (% isotopologue 
enrichment)—threshold being p < 0.05.

resUlTs

high-altitude hypoxia affects  
steady-state levels of carboxylates 
in human rBcs
Red blood cells were collected from 21 healthy volunteers (12 
male and 9 female) at sea level (SL—Oregon) or within <3 h 
(ALT1 noon), 8–12  h (ALT1 pm), 7, or 16  days (ALT7 and 
ALT16, respectively) of exposure to high-altitude hypoxia in 
Bolivia (Mt. Chacaltaya, >5,260  m) (Figure  1A), within the 
framework of the AltitudeOmics study (28, 29). Even though 
previous metabolomics analyses of these RBCs did not cover 
carboxylic acids (28), new analyses were performed in light 
of the recent appreciation of carboxylic acid metabolism in 
mitochondria-deficient mature erythrocytes (13, 45, 46). 
Exposure to high-altitude hypoxia resulted in a progressive 
decrease in the RBC levels of carboxylic acids citrate, alpha-
ketoglutarate, and 2-hydroxyglutarate from baseline levels at 
SL, and proportionally to the duration of stay at high altitude 
(Figure  1B). Transient decreases within hours after exposure 
to high altitude and progressive increases after 8–12 h during 
altitude acclimatization were observed for RBC fumarate and 
malate (Figure  1B). In parallel, elevated ratios of pyruvate/
lactate [a proxy for NADH/NAD  +  ratios according to the 
mass action law (49)] and reduced/oxidized glutathione (GSH/
GSSG) (Figure 1B) were observed, representing markers of a 
progressively increased reducing environment in the cytosol of 
RBCs from individuals acclimatizing to high-altitude hypoxia.

Ex Vivo Preservation of Packed rBcs 
under controlled sO2 conditions 
Promotes citrate consumption  
and accumulation of Fumarate,  
Malate, and alpha-Ketoglutarate
To determine whether the observations in RBCs from individuals 
exposed to high-altitude hypoxia would be translatable to RBCs 
stored under oxygen-controlled conditions, we stored RBCs 
under normoxia (untreated—SO2  =  47%  ±  21, mean  ±  SD), 
hyperoxia (SO2 > 95%), or four hypoxic conditions (SO2 = 20, 
10, 5, or <3%—Figure 2). Citrate consumption proportional to 
the degree of hypoxia was observed in supernatants and, most 
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FigUre 2 | Packed red blood cell (RBC) storage under controlled hemoglobin oxygen saturation conditions recapitulates high-altitude hypoxia-induced decreases 
in citrate and accumulation of fumarate/malate. RBCs were stored under normoxic conditions (untreated–SO2 = 47 ± 21, mean ± SD—solid blue line), hyperoxia 
(SO2 > 95%—solid purple line), or four hypoxic conditions (SO2 = 20, 10, 5, or <3%—solid purple, green, orange, and red lines, respectively). Supernatant citrate 
was significantly lower than controls (p < 0.05) in SO2 < 3% hypoxic RBCs at all tested time points. Fumarate was significantly higher than controls (p < 0.05) at 
storage day 7 and 14, while malate at day 14 onward in all hypoxic RBCs when compared to controls and hyperoxic counterparts. Dotted lines indicate ranges 
(same color-code—lighter tone). All data points on x axis were tested (n = 4).

FigUre 1 | Acclimatization to high-altitude hypoxia decreases steady-state levels of carboxylic acids in human red blood cells. Twenty-one healthy volunteers 
(12 male and 9 female) were flown from sea level (Oregon) to Bolivia (>5,260 m) for up to 16 days (a), within the framework of the AltitudeOmics study (28, 29). 
While all of them successfully acclimatized to high-altitude hypoxia (28, 29), red blood cell (RBC) levels (B) of citrate, alpha-ketoglutarate, hydroxyglutarate, and 
succinate decrease from sea level to high altitude, proportionally to the duration of stay at over 5,000 m. Transient decrease and progressive increases in fumarate 
and malate were observed, paralleled by increases in the pyruvate/lactate ratios and reduced/oxidized glutathione (GSH/GSSG) ratios, suggestive of a progressively 
more reducing environment in the cytosol of RBCs from individuals acclimatizing to high-altitude hypoxia. *p < 0.05; **p < 0.01; ***p < 0.001 (repeated measures 
ANOVA). All data points on x axis were tested [n for each data point is reported in panel (c)].
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FigUre 3 | Glucose tracing experiments indicate hypoxia-induced increases in carboxylic acids deriving from glucose. Cytosolic isoforms of Krebs cycle enzymes 
are present in mature red blood cells (RBCs) and can theoretically catalyze the reactions graphed here, reactions that could contribute to RBC reducing equivalent 
homeostasis. Heavy fumarate and malate accumulation in hypoxic RBCs was significantly higher (p < 0.05) than controls at all tested storage days after day 7. 
Hyperoxic RBCs had significantly (p < 0.05) lower heavy fumarate than control RBCs only at storage day 42. All data points on x axis were tested (n = 4).
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notably, in cells during storage in AS-3, therefore suggesting 
increased consumption of citrate in hypoxic RBCs (Figure  2). 
In parallel, hypoxic RBCs generated more fumarate for the first 
3 weeks of storage, and malate through the whole storage period 
(Figure 2). Recent proteomics (43, 44), metabolomics (13, 45), 
and computational evidence (46) has suggested that carboxylate 
metabolism in mature RBCs can be regulated by enzymatic 
reactions that are downstream to glucose-derived pyruvate by 
cytosolic isoforms of Krebs cycle enzymes such as acteyl-coA 
ligase, phosphoenolpyruvate carboxylase—PEPCK [or PEPCK-
like activity of hemoglobin (50)], fumarate hydratase, isocitrate 
dehydrogenase 1, and malate dehydrogenase 1. To determine 
whether such reactions were affected by the degree of hypoxia, 
we incubated RBCs with 13C1,2,3-glucose under varying SO2 con-
ditions (from <3% to >95%) and monitored 13C distribution in 
downstream metabolites according to the reactions summarized 
in Figure  3. While generation of 13C-fumarate from 13C1,2,3-
glucose was not observed, accumulation of 13C3-malate and 13C3- 
alpha-ketoglutarate isotopologues was observed during storage 
and followed a trend that was inversely proportional to SO2  
(i.e., higher generation of these compounds from heavy glucose 
was observed with hypoxia—Figure 3).

Determination of isotopologue 
Distributions upon rBc exposure  
to hypoxia Ex Vivo in Presence  
of stable isotope-labeled citrate, 
glutamine, and aspartate
Our previous results showed encouraging evidence suggesting 
that the generation of malate and alpha-ketoglutarate from 

glucose could indeed occur in mature erythrocytes proportional 
to hypoxia. However, the amount of isotope-contribution was 
not sufficient to explain the observed increases in steady-state 
levels of these compounds during hypoxic refrigerated storage 
(<10% of which were derived from glucose oxidation in both 
cases of malate and alpha-ketoglutarate). Therefore, we hypoth-
esized that hypoxia-induced catabolism of substrates other than 
glucose could more completely explain the observed increase in 
malate and altered metabolism of RBC carboxylic acids. To test 
this hypothesis, we incubated RBCs for 24 h under normoxic and 
hypoxic conditions using an in-house generated AS-3 supple-
mented with U-13C-glucose or 13C6-citratic acid (thereby replacing 
the unlabeled components in the formulation), 13C1-aspartate, or 
13C5

15N2-glutamine in four independent experiments (n = 3 for 
each). Heavy isotopologues derived from the catabolism of these 
substrates were quantified as a percentage of the total levels of 
the compound of interest, and included carboxylic acids (citrate, 
malate, and alpha-ketoglutarate), amino acids derived from 
transmination/oxidation of alpha-ketoglutarate (glutamate, 
5-oxoproline), and lactate (Figure  4). In Figures  4 and 5, we 
provide a bar graph representation of the percent contribution 
to the generation of the aforementioned compounds from each 
of the heavy tracers in normoxia and hypoxia. Of note, >60% of 
RBC citrate was labeled independently from hypoxia, suggesting 
that the majority of this metabolite is uptaken from the media 
(Figures  4 and 5). Notably, citrate catabolism to malate was 
significant under normoxic conditions (~40% of the total) and 
reduced by hypoxia (<15%), which in turn promoted oxidative 
citrate metabolism to glutamate and 5-oxoproline (Figure  4). 
Minimal contribution of citrate catabolism to lactate generation 
(Figures 4 and 5) was observed under either normoxic or hypoxic 
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FigUre 4 | Isotopologue distribution of heavy carbon atoms from heavy citrate, glutamine, glucose, and aspartate indicate a complex rewiring of red blood cell 
carboxylic acid metabolism in response to hypoxia, as summarized in the panels to the right. Bars indicate median (± SD)% accumulation of heavy isotopologues  
vs the total levels of the compound, as measured in three independent experiments per each condition (normoxia vs 24 h hypoxia—blue and red bars, respectively). 
Arrows in the panels to the right indicate metabolic rewiring in normoxia and hypoxia and color-code are consistent with the colors used to identify stable isotope 
tracers indicated in the four panels to the left. *p < 0.05; **p < 0.01; ***p < 0.001 (T-test to normoxic control).
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FigUre 5 | Relative contribution of metabolic substrates (citrate, glutamine, glucoose, aspartate, other) to the generation of citrate, malate, lactate, glutamate, 
alpha-ketoglutarate, and 5-oxoproline under normoxic or hypoxic conditions (24 h). Mean ± SD are shown from three independent experiments per condition.  
Other here indicates either endogenous levels of the metabolite or derivation from other sources than the stable isotope tracers used here. Significant increases in 
glucose-derived lactate and glutamine-derived glutamate, but not ketoglutarate were observed under hypoxic conditions. Citrate and glucose-derived 5-oxoproline 
increased significantly (p < 0.05) under hypoxic conditions.
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conditions for 24 h (<2.5%), suggesting that previous observa-
tions in AS-3 (13) may be explained by a metabolic switch only 
occurring later on during storage. Glutaminolysis mostly fueled 
the generation of alpha-ketoglutarate and its transamination 
byproducts glutamate and 5-oxoproline, a phenomenon that 
was exacerbated by exposure to hypoxia for 24  h (Figure  4). 
Metabolism of heavy glutamine contributed in part (<10%) to 
lactate generation under normoxia, and increased under hypoxia 
(up to 15%) where the contribution of glutamine to citrate reser-
voirs increased to ~13% of the total (Figures 4 and 5). Glucose 
catabolism mostly fueled lactate generation (55 to >70% of 
total lactate after 24  h in normoxia and hypoxia, respectively) 
and ~18% generation of 5-oxoproline under hypoxic conditions 
(Figures 4 and 5). Limited glucose incorporation into malate is 
consistent with tracing experiments with glucose during stor-
age (Figure  3), though hypoxia-triggered increases in glucose 
metabolism to malate only became apparent after 1  week of 
storage rather than 24  h (Figures  3 and 4). This is important 
because we have previously shown that hypoxic RBCs may use 
glucose-derived carbons to synthesize amino acid moieties 
necessary for the synthesis of the tripeptide glutathione during 
hypoxic storage (27). Finally, aspartate catabolism was identified 
to influence malate generation (<40% under normoxia and up 
to 60% under hypoxia—Figure 4), making it the main source of 
hypoxic malate in human RBCs in this study (Figure 5).

DiscUssiOn

Red blood cells are by far the most abundant host cell in the human 
body, accounting for nearly 80% of the 30 trillion host cells that 
make up the body of a 175  cm tall 70  kg man (44). Although 
loaded with hemoglobin (98% of the cytosolic proteome) and 
devoid of nuclei and organelles, RBCs are far more complex than 
previously believed (until the last decade or so). Appreciation 
through proteomics of the presence of cytosolic isoforms of 
Krebs cycle enzymes in mature erythrocytes has prompted the 
field to reconsider whether these enzymes are actually active and, 
if so, whether they actually influence RBC metabolism during 
routine storage in the blood bank. Indeed, tracing experiments 
in packed RBCs have suggested that citrate can be metabolized 
into lactate when stored in SAGM (45) and AS-3 (13); the latter 
being more directly relevant due to its elevated concentration 
of citrate (>20  mM) that compensates for the removal of the 
osmolite mannitol from its formulation. In light of these tracing 
experiments, it has been suggested that reactions catalyzed by 
cytosolic isoforms of Krebs cycle enzymes may contribute to the 
homeostasis of RBC reducing equivalents NADH and NADPH 
through reactions alternative to glycolysis, pentose phosphate 
pathway, and methemoglobin reductase, thereby expanding 
well-established understanding of RBC metabolic networks 
(51). Refinement of such networks is indeed important for the 
development of new storage additives, as in silico elaboration of 
quantitative metabolic information of metabolic markers of the 
storage lesion (52) would help in predicting the metabolic state 
of RBCs exposed to novel additives (53). In this study, we provide 
additional information to refine such models by determining 
the metabolic effect of RBC SO2 modulation on carboxylate 

metabolism. Decreased RBC levels of 2-hydroxyglutarate and 
succinate in response to high-altitude acclimatization are relevant 
in that these metabolites are well-established markers of tissue 
hypoxia [e.g., ischemic (54) and hemorrhagic hypoxia (55)]. In 
nucleated cells, succinate accumulation is interesting given that 
it promotes the stabilization of hypoxia inducible factor 1α by 
inhibiting prolyl hydroxylase, therefore promoting acclimatiza-
tion responses to hypoxia (56). Since all the subjects enrolled in 
the AltitudeOmics study effectively acclimatized to high-altitude 
hypoxia (57), it is interesting to note that declining levels of RBC 
succinate may be a marker of decreased tissue hypoxia as the 
subjects acclimatized.

For the first time, we provide evidence that exposure to 
hypoxia in vivo or ex vivo affects RBC capacity to metabolize 
(consume or generate) carboxylic acids. Through a combination 
of metabolic flux experiments using different stable isotope trac-
ers, we confirm that RBCs can uptake carboxylic acids such as 
citrate and metabolize them into di-carboxylates (e.g., malate) 
or transamination intermediates (e.g., alpha-ketoglutarate, 
glutamate, 5-oxoproline) in an SO2-dependent fashion. Most 
notably, we show that malate accumulation during storage 
and the exacerbation of this phenomenon under hypoxia are 
potentially explained by varying metabolic mechanisms, in 
that aspartate catabolism predominantly contributes to malate 
generation under hypoxia, rather than glucose or citrate 
catabolism. In this view, it is interesting to speculate that purine 
catabolism [deamination of purines to hypoxanthine and xan-
thine, a well-documented phenomenon in stored erythrocytes 
(7, 14, 15, 25, 52, 58)] may be influenced by hypoxia. Indeed, 
aspartate consumption via purine salvage reactions would 
explain increased fumarate accumulation, which in turn would 
become a substrate for fumarate hydratase [present and active in 
mature RBCs (46)] for the generation of malate. Future studies 
will investigate this interesting corollary to the observations 
reported here. Alternatively, aspartate may represent an eligible 
substrate (amino group donor) for transamination reactions. 
This hypothesis is consistent with the observed decrease 
in the level of alpha-ketoglutarate and increased glutamate 
isotopologues (both M + 5 and M + 5 + 1). Such observation 
can only be explained by combined glutamine metabolism 
to alpha-ketoglutarate (carbon backbone  +  5), which is turn 
transaminated back to glutamate via glutamate oxaloacetate 
transaminases, previously identified in mature RBC proteomics 
datasets (43, 44).

Finally, though merely observational, the present study pro-
vides interesting hypothesis-generating evidence to investigate 
why carboxylic acid metabolism may be affected by hypoxia in 
an enucleated cell incapable of de novo protein synthesis, as is 
the case with RBCs. It is fascinating to speculate that, in similar 
fashion to the oxygen-dependent metabolic modulation model 
(28, 29, 35–37), post-translational modifications such as phos-
phorylation mediated by adenosine/AMPK-dependent signaling 
(59)—recently identified to contribute to hypoxic adaptations in 
eukaryotes as simple as S. cervisiae (60)—may influence enzyme 
sub-cellular compartmentalization, formation of multi-protein 
complexes, and activity. RBC multi-enzyme protein complexes 
have been preliminarily described in mature RBCs and reported 
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