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Abstract 

Background:  Recent scientific research has enabled the identification of macrophages related-genes (MaRG), which 
play a key role in the control of the immune microenvironment in many human cancers. However, the functional role 
of MaRGs in human tumors is ill-defined. Herein, we aimed at bioinformatically exploring the molecular signatures of 
MaRGs in colorectal cancer.

Methods:  A list of MaRGs was generated and their differential expression was analyzed across multiple datasets 
downloaded from the publicly available functional genomics database Gene Expression Omnibus. The weighted 
gene co-expression network analysis (WGCNA) was also applied to identify the partner genes of these MaRGs in 
colorectal cancer.

Results:  After integration of the results from analyses of different datasets, we found that 29 differentially expressed 
MaRGs (DE-MaRGs) could be considered as CRC-related genes as obtained from the WGCNA analysis. These genes 
were functionally involved in positive regulation of DNA biosynthetic process and glutathione metabolism. Protein–
protein interaction network analysis indicated that PDIA6, PSMA1, PRC1, RRM2, HSP90AB1, CDK4, MCM7, RFC4, and 
CCT5 were the hub MaRGs. The LASSO approach was used for validating the 29 MaRGs in TCGA-COAD and TCGA-
READ data and the results showed that ten among the 29 genes could be considered as MaRGs significantly involved 
in CRC. The maftools analysis showed that MaRGs were mutated at varying degrees. The nomogram analysis indicated 
the correlation of these MaRGs with diverse clinical features of CRC patients.

Conclusions:  Conclusively, the present disclosed a signature of MaRGs as potential key regulators involved in CRC 
pathogenesis and progression. These findings contribute not only to the understanding of the molecular mechanism 
of CRC pathogenesis but also to the development of adequate immunotherapies for CRC patients.
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Background
Colorectal cancer is one of the deadliest tumors in the 
world [1]. The diagnosis of this tumor is often late due 
to the lack of appropriate screening methods. Also, the 
lack of global knowledge on the pathogenesis of colo-
rectal cancer limits its effective management, which 
complicates the treatment options, leaving only surgi-
cal intervention, chemotherapy and radiotherapy as 
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essential choices, all of which present a certain degree 
of side effects [2]. In addition, given the difference in 
the response of each patient to treatments and the dif-
ferences in clinical presentation specific to each, a com-
prehensive study of the mechanisms involved in the 
pathogenesis and pathophysiology of colorectal cancer 
is strongly encouraged [3]. This is possible by elucidat-
ing the cellular and molecular machinery involved in 
the pathological process [4]. The immune response of 
patients plays a major role in the initiation and progres-
sion of human cancers [5]. Previous studies and numer-
ous reviews have shown that weakened immune system 
is often accompanied by exacerbation of tumor progres-
sion [6–8]. In fact, immune cells have the ability to inhibit 
tumor growth and progression through a multitude of 
mechanisms combining the recognition and rejection of 
cancer cells. Other studies have shown that immune cells 
infiltrating tumors are of critical relevance in the tumor 
microenvironment (TME) [9–11]. Specifically, scientific 
research results suggest that cancer cells secrete inflam-
matory molecules such as cytokines and chemokines, the 
attraction of which promotes the infiltration of immune 
cells [12]. Based on this aspect, the researchers embarked 
on the development of drugs with immunotherapeutic 
properties. A recent example of such immunotherapies is 
the development of blockers of the interaction between 
PD-1 and PD-L1 [13]. However, it should be noted 
that cancer cells are capable of developing an ability to 
escape immune system by modulating the metabolism 
of immune cells such as T cells, macrophages and neu-
trophils [14]. The escape takes place through the regula-
tion of a number of genes and proteins associated with 
these immune cells. Therefore, elucidating the molecular 
mechanisms involved in immune processes is fundamen-
tal not only for understanding cancer progression, but 
also for facilitating drug development and the implemen-
tation of appropriate therapeutic strategies.

Macrophages are immune cells that play an important 
role in antigenic degradation and the presentation of 
antigens [15]. Macrophages constitute an important class 
of immune cells in the cancerous microenvironment 
and their frequency is often associated with unfavorable 
patient survival [16]. Macrophages are involved in malig-
nant processes such as cell invasion, angiogenesis and 
metastasis [17]. In colorectal cancer, macrophages play a 
primary role in liver metastasis [18]. Macrophages asso-
ciated with tumors represent a regulatory bridge between 
cancer and the immune system of patients. Studies have 
shown that macrophages and genes that stimulate mac-
rophages worsen the prognosis and condition of patients 
[19, 20]. Other studies suggest that macrophages are 
involved in the killing of immune cells and influence the 

effectiveness of different treatment strategies for cancers 
[21, 22]. Some studies, on the other hand, indicated that 
macrophages have the ability to kill cancer cells [23, 24]; 
therefore, it is evident that macrophages have both a pro- 
and anti-cancer properties. Previous studies have shown 
that CD68+-type macrophages associated with tumors 
have the potential to become a prognostic indicator for 
colorectal cancer [25, 26]. The multifunctional nature of 
macrophages in cancer pathogenesis and development 
could be attributed to the diverse regulatory roles of mac-
rophage-related genes (MaRGs). Representative MaRGs 
include IL-6 (Interleukin 6), IL-8 (Interleukin 8), CD80 
(Cluster of differentiation 80), and PIM1 (Pim-1 Proto-
Oncogene, Serine/Threonine Kinase) [27]. IL-6 was pre-
viously proposed as a preoperative serum marker for 
predicting colon cancer prognosis [28]; it is also involved 
in promoting the stemness of colon cancer by provoking 
inflammation [29]. IL-8 was found significantly associ-
ated with the tumor size, stage and liver metastasis of 
colon cancer [30], which might be ascribed to its anti-
genic property that promotes colon cancer metastasis 
and supports tumor growth [31]. CD80 is recognized as 
an important co-stimulatory molecule responsible for 
eradication of tumor cells; in colon cancer, CD80 coor-
dinates the immune surveillance for precancerous lesions 
[32]. PMI1 is a well-established oncogene whose overex-
pression in colon cancer could counteract the depriva-
tion of glucose by triggering a compensatory Warburg 
effect, conferring colon cancer with survival advantages 
under metabolic stress [33]. The above findings suggest a 
sophisticated interplay between MaRGs and colon cancer 
that determine the progression and prognostic outcomes 
of colon cancer; however, there are still considerable 
MaRGs and the corresponding mechanisms still remain 
to be uncovered in the context of colon cancer. In addi-
tion, research on the interactions between macrophages 
and cancer cells that would allow the discovery of new 
genetic signatures of macrophages as prognostic and 
therapeutic markers is lacking with regard to CRC. In 
this regard, further investigation on multifarious facets of 
MaRGs is required.

Bioinformatics is a discipline involving the use of 
computational tools for the in-silico analysis of bio-
logical data. The advances in genomics and transcrip-
tomics have accelerated the development of this field 
which has allowed the extraction of valuable biological 
information from experimentally-derived data or pub-
licly available data. This technique has been applied for 
retrieving significant data for various diseases includ-
ing diabetes, neurodegenerative diseases, cardiovascu-
lar diseases and cancers [34]. However, bioinformatical 
analysis of the implications of MaRGs in colorectal can-
cer has not been reported so far.
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Thus, in the present study, we set out to analyze the 
importance of MaRGs in colorectal cancer using bioin-
formatics tools based on publicly available data.

Methods
Datasets collection
GeneCard (https://​www.​genec​ards.​org/) is a comprehen-
sive human gene database that contains all annotated and 
predicted human genetic information. We downloaded 
119,923 macrophage-related genes (MaRGs) based on the 
keyword "macrophage" from GeneCard. The correspond-
ing information of MaRGs is available in Additional file 6: 
Table S1. We screened all microarray datasets related to 
CRC in the Gene Expression Omnibus database (GEO, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The keywords “colo-
rectal cancer” and “gene expression profiling” were used 
to query the datasets from the GEO database. The data-
sets conform to the following criteria were reserved: (I) 
the organism was “Homo sapiens”; (II) the experiment 
types were “Expression profiling by array”; (III) the data-
set contained both tumor and control samples; (IV) the 
annotation of the gene probes were completed; (V) the 
number of normal or control samples was larger than 
5. Finally, we selected five microarray datasets includ-
ing 135 normal samples and 167 tumor samples, and the 
detailed information can be accessed in Table 1.

In addition, according to the keywords "TCGA-COAD" 
and "TCGA-READ", we downloaded two datasets from 
The Cancer Genome Atlas Program (TCGA, https://​
www.​cancer.​gov/​about-​nci/​organ​izati​on/​ccg/​resea​rch/​
struc​tural-​genom​ics/​tcga). The TCGA-COAD dataset 
contains 20 normal samples and 436 tumor samples and 
TCGA-READ dataset contains 6 normal samples and 161 
tumor samples, which were used to validate the efficacy 
of genes.

Identification of differentially expressed MaRGs 
(DE‑MaRGs)
When a gene symbol was mapped to multiple probes, the 
average expression of this gene was preserved whereas 
genes containing missing values (or zero values) were 
removed. The R “limma” package [35] was used for 

data preprocessing and differential expression analysis. 
Quantile method for data normalization and logarith-
mic transformation for data scaling was performed in R. 
We screened out differentially expressed genes (DEGs) 
from each dataset with a threshold of |logFC|> 0.263 
and P-value < 0.05, and obtained common DEGs that 
were up-regulated and down-regulated in the 5 datasets 
through merging. Then weighted gene co-expression net-
work analysis (WGCNA) was performed to analyze the 
relationship between gene co-expression modules and 
clinical traits in each dataset. The correlation between 
CRC and modules was calculated by the Pearson Corre-
lation Coefficient (PCC) between eigengenes per module 
and CRC status. The two modules with the highest corre-
lation (positive correlation and negative correlation) with 
CRC status of each dataset were retained. CRC-related 
genes (CrRGs) were obtained by the intersection of the 
genes of modules most significantly associated with CRC 
after WGCNA analysis of the five datasets. Finally, we 
combined the MaRGs, DEGs, and CrRGs, and obtained 
DE-MaRGs that may be potential biomarkers in CRC. 
The R “WGCNA” package [36] was used to perform 
WGCNA in this study.

Functional enrichment analysis of DE‑MaRGs
To reveal the biological functions of the DE-MaRGs, we 
performed the Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis via the R “clusterProfiler” package [37]. The 
terms with adjusted P-value 0.05 were considered signifi-
cant and the top 20 terms were visualized via R “ggplot2” 
package [38].

Protein–protein interaction (PPI) network construction 
and identification of hub DE‑MaRGs
The Search Tool for The Retrieval of Interacting Genes/
Proteins (STRING, https://​string-​db.​org/​cgi/) is a data-
base of known and predicted protein–protein interac-
tions. Herein, we uploaded DE-MaRGs to the STRING 
database and selected the organism "Homo sapiens". 
TSV file was downloaded from the STRING database 
and used as network input for visualization of the PPI 

Table 1  Information of five datasets form GEO database

Country Organization Series Platform Normal Tumor

Italy University of Torino GSE23194 GPL570 12 5

Japan Juntendo University GSE32323 GPL570 17 17

USA Roche Innovation Center New York GSE103512 GPL13158 12 57

China Sun Yat-sen University GSE156355 GPL21185 6 6

Italy Fondazione IRCCS Istituto Nazionale dei Tumori GSE37182 GPL6947 88 82

https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://string-db.org/cgi/
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network in the Cytoscape software 3.7.2. We identi-
fied the hub DE-MaRGs in the PPI network via the 
Cytoscape plugin MCODE with parameters as degree 
cut-off ≥ 2, node score cut-off ≥ 0.2, k-core ≥ 2, and max 
depth = 100. Then, we analyzed the types of mutations 
and the mutation rate that may exist in the key DE-
MaRGs using the R Maftools package based on TCGA- 
COAD and TCGA- READ mutation data information. 
In this study, COAD and READ mutation information 
was downloaded from the TCGA database with the key 
word “TCGA-COAD” or “TCGA- READ”, “Somatic 
Variant Aggregation and Masking”, and “Simple nucleo-
tide variation”.

Identification of the key DE‑MaRGs
Based on the TCGA-COAD and TCGA-READ data-
sets, we used the least absolute shrinkage and selection 
operator (LASSO) to obtain the key DE-MaRGs. The R 
“glmnet” package [39] was used to implement LASSO 
analysis. Since the normal samples were too small com-
pared to tumor samples, it may not be statistically valid 
to use two full TCGA datasets for validation. Herein, 
we performed LASSO analysis repeatedly on a random 
subset of tumor samples and all of the normal samples 
(with tumor-normal ratio of 3:1) and then the overlapped 
results were used as valid results. The time of LASSO 
analyses was set as 1000. DE-MaRGs were counted every 
time they were identified by LASSO analysis, and the 
eight DE-MaRGs with the highest cumulative number 
were selected as candidate genes. The key DE-MaRGs 
were obtained by the intersection of the candidate genes 
identified from the TCGA-COAD and TCGA-READ 
dataset.

To investigate the prognosis effects of the key DE-
MaRGs, we performed survival analysis. The normal 
samples in the TCGA-COAD and TCGA-READ data-
sets were excluded, and the relationship between the 
key prognosis DE-MaRGs and the survival time of CRC 
patients was analyzed using the R "survival" package 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​survi​val/​index.​
html). Kaplan–Meier Curve analysis was used to obtain 
overall survival (OS) and disease-free survival (RFS) of 
CRC patients. Based on the different tumor stages of 
CRC, we obtained the relationship between the expres-
sion of the key DE-MaRGs and the tumor stage. In order 
to verify the mutation information of key DE-MaRGs, 
we constructed a CRC mutation prediction model. The 
mutation data were downloaded as described above and 
using the R "Maftools" package (https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​mapto​ols/​index.​html), we analyzed 
the types of mutations and the mutation rate of the key 
DE-MaRGs based on the mutation data.

Evaluation of clinical independence and construction 
of the nomogram
We deleted CRC samples with missing clinical informa-
tion, including survival status, time, tumor stage, age, 
sex, and weight, from the TCGA-COAD and TCGA-
READ datasets. R "rms" package was used to construct 
univariate and multivariate Logistic Regression analy-
ses for CRC clinical information. Then we constructed 
the Cox risk model using the R "survival" package and 
R "rms" package (https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​rms/​index.​html). Finally, we used the R "rms" pack-
age to integrate clinical information for nomogram con-
struction. Ten key DE-MaRGs model was constructed 
based on TCGA-COAD and TCGA-READ datasets 
according to gene expression profiles. Moreover, ROC 
curves were used to estimate the prediction capabili-
ties of the key DE-MaRGs and were implemented by R 
“ROCR” package.

Results
Identification and functional enrichment of the DE‑MaRGs 
in five CRC datasets
To identify the DE-MaRGs, we performed differential 
expression analysis based on five CRC-related datasets 
from the GEO database. The volcano plot for DEGs in 
the five datasets and heatmap of the top 10 up-regulated 
DEGs and down-regulated DEGs in the five datasets 
were shown in Fig.  1 and Additional file  1: Figure S1, 
respectively. After integrating the five CRC datasets, we 
obtained a total of 29 up-regulated CRC DEGs and two 
down-regulated CRC DEGs. Since the GSE156355 data-
set did not conform to a scale-free distribution, we only 
analyzed the remaining four datasets separately with the 
WGCNA approach (Additional files 2, 3, 4, 5: Figs. S2–
S5). The module-traits relationship heatmap of the four 
datasets was shown in Fig.  2a–d. A total of 8 modules 
related to CRC were screened, and 25,470 of CRC-related 
genes (CrRGs) were obtained after merging these mod-
ules (Fig.  2e). According to the keyword "macrophage", 
we downloaded a list of 119,923 MaRGs in GeneCard. 
After the intersection of MaRGs, DEGs, and CrRGs, 29 
DE-MaRGs were obtained (Fig. 3a), and the heatmap of 
the DE-MaRGs in the five datasets based on log2FC was 
shown in Fig. 3b.

GO and KEGG analyses were used to reveal the bio-
logical functions of the 29 DE-MaRGs. We found that the 
29 DE-MaRGs were mainly enriched in positive regula-
tion of DNA biosynthetic process, telomere mainte-
nance, cellular modified amino acid metabolic process, 
chaperone complex, chaperon-containing T-complex, 
methylome. Moreover, glutathione metabolism and DNA 
replication were considered as the significant pathway of 

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/maptools/index.html
https://cran.r-project.org/web/packages/maptools/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
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Fig. 1  The volcano plots of DEGs between CRC and normal group. a Volcano plot of DEGs identified in GSE23194. b Volcano plot of DEGs identified 
in GSE32323. c Volcano plot of DEGs identified in GSE37182. d Volcano plot of DEGs identified in GSE103512. e Volcano plot of DEGs identified in 
GSE156355
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29 DE-MaRGs via KEGG pathway analysis. The bubble 
charts of GO and KEGG are shown in Fig. 3c–f.

The PPI network of 29 DE‑MaRGs and hub gene mutation 
analysis
Through the STRING website, we constructed a PPI 
network composed of 29 DE-MaRGs-encoded pro-
teins. After removing the proteins that were not 

connected to the network, the final PPI network con-
tained 27 nodes and 130 edges (Fig. 4a). The top 18 hub 
proteins with the highest degrees were RFC4, PRC1, 
SNRPB, ACLY, ATIC, CCT7, CCT5, SMS, HSP90AB1, 
PSMA1, RRM2, MCM7, WDR77, CDK4, NUP155, 
NONO, HMGB3, and CDC25B. More detailed infor-
mation can be found in the Additional file 7: Table S2. 
The mutation analysis results (Fig.  4b) showed that 

Fig. 2  Identification of CrRGs. a Module-trait relationships between CRC and modules in GSE23194. b Module-trait relationships between CRC 
and modules in GSE32323. c Module-trait relationships between CRC and modules in GSE37182. d Module-trait relationships between CRC and 
modules in GSE103512. e Venn plot of genes in modules associated with CRC in four datasets
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Fig. 3  Identification and function enrichment of DE-MaRGs. a Venn plot of MaRGs, DEGs, and CrRGs. b The heatmap of DE-MaRGs in five datasets 
with log2FC in the colored box. c–f GO analysis and KEGG pathway analysis of DEG-MaRGs. The size of the circle represents the number of enriched 
genes, and the color is related to the P-value
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ACLY, ATIC, MCM7, and CDC25B were the genes 
with the highest mutation frequency in TCGA-COAD 
mutation data. Moreover, NUP155 RFC4 presented 
multiple mutations in one sample. Similarly, we also 

found that the mutation frequency of PRC1 was high-
est in the TCGA-READ mutation data. However, 
there was no tendency for ACLY, CCT5, SMS, RRM2, 
WDR77, and CDC25B to mutate in the TCGA-READ 
mutation data (Fig. 4c).

Fig. 4  Protein–protein network of the hub DE-MaRGs and maftools analysis. a The interaction network of the DE-MaRGs. b The gene mutation 
overview of 18 hub genes in TCGA CRC patients based on TCGA-COAD mutation data. c The gene mutation overview of 18 hub genes in TCGA CRC 
patients based on TCGA-READ mutation data
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Identification of the key DE‑MaRGs
LASSO analysis was used to screen out the key DE-
MaRGs from the 29 DE-MaRGs using R "glmnet" pack-
age (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​glmnet/​
index.​html). With a 1000-times resampling and train-
ing set: testing set ratio of 3:1, the LASSO validation 
selected 8 candidate genes (SUPT16H, ENC1, PSMA1, 
HSP90AB1, PRC1, WDR77, AATF, and NUP155) from 
the TCGA-COAD dataset, and another 8 candidate 
genes (SUPT16H, ENC1, PSMA1, ATIC, PRC1, WDR77, 
NUP155, and NIT2) from TCGA-READ dataset. After 
deduplication of the two sets of candidate genes, ten key 
DE-MaRGs (SUPT16H, ENC1, PSMA1, ATIC, PRC1, 
WDR77, NUP155, NIT2, HSP90AB1, and AATF) were 
finally obtained. The information of the total count of 
each key DE-MaRG (number of times it had a non-zero 
coefficient) in 1000-times LASSO selection was provided 
in Additional file 8: Table S3.

The mutation information of ten key DE-MaRGs 
was predicted by the CRC simple nucleotide variation 
data downloaded from the TCGA database. Figure  5a 
showed that ENC1, SUPT16H, and ATIC were the top 
mutant genes in the TCGA-COAD mutation dataset. 
The mutation types of these genes were mainly missense 
mutations. In the TCGA-READ mutation dataset, the 
mutation types of DE-MaRGs were more diverse. Fig-
ure  5b showed that the mutation type of PSMA1 was 
splice site, and SUPT16H, PRC1, and NUP155 were the 
top-ranked mutant genes. In addition, SUPT16H was 
considered to have multiple mutations in the same sam-
ple, and its mutation frequency reached 2%. Except for 
NIT2 (P-value < 0.05) and ATIC (P-value < 0.05) (Fig. 5c, 
d), no difference was found between the results from the 
survival status, survival time, and KM curve analysis of 
the high expression status subgroup and low expression 
status group in key DEG-MaRGs. ROC curve analysis 
(Fig.  5e, f ) revealed that the area under the ROC curve 
(AUC) of the ten key DE-MaRGs models were close to 
0.5.

Nomogram building and validation
According to the patient’s clinical information, we con-
structed a comprehensive prognostic array map based 
on the entire TCGA data set to assess the probability of 
survival of CRC patients within 3 and 5 years. Six clinical 
features, including survival status, time, tumor stage, age, 

sex, and weight, were included in the nomogram analysis 
(Fig. 6a, 7a). In the TCGA cohort, in terms of 3-year and 
5-year survival rates, the calibration chart showed good 
agreement between nomogram predictions and actual 
observations (Fig. 6b, c, 7b, c).

Discussion
Macrophage is a type of innate immune cell that plays 
an important role in host defense and inflammation. 
They are highly plastic and can be polarized into sub-
types with different functions in different pathological 
environments. Tumor-associated macrophages (TAMs) 
are abundant in the TME, and they play an important 
role in promoting the growth of various tumors [40]. It 
is worth noting that different types of TAM have differ-
ent effects on the TME of CRC. For example, some mac-
rophages can promote tumor formation, while others 
inhibit tumor formation. High macrophage infiltration 
is believed to be related to the prognosis of tumors [41]. 
Although macrophage is one of the most common cells 
in the microenvironment of colorectal cancer, their prog-
nostic role in tumors is not fully understood [42]. The 
differentiation and activation of macrophages require 
regulation of gene expression, which is subject to the 
interaction of many factors, including transcription fac-
tors and epigenetic modifications [43]. For example, there 
are differences of the human c-fes gene and murinespi-1 
(PU.1) gene in constitutive and inducible gene expression 
in macrophages [44]. In solid tumors, many macrophages 
and other immune cells constitute the TME [45]. The 
TME changes the malignancy of tumors. Studies have 
shown that macrophages stimulate tumor cell migration, 
invasion, vascular invasion and strengthen blood vessels 
to promote the development of tumors in the direction 
of malignant tumors [46, 47]. Generally, the expres-
sion level of genes is specific in TAMs and tumor cells. 
However, the expression of some genes is consistent in 
tumor cells and TAMs. Myeloma cells can secrete vas-
cular endothelial growth factor A (VEGFA) to stimulate 
angiogenesis [48]. A recent study reported that M2 mac-
rophages and RPMI 8226 cells can synergistically pro-
mote the proliferation, migration and tube formation of 
human umbilical vein endothelial cells (HUVEC), and the 
consumption of VEGFA in both cell types can inhibit the 
tube formation ability of HUVEC [49]. In addition, rep-
resentative molecular markers for macrophage such IL-6, 

Fig. 5  Validation of the efficacy for the ten key DE-MaRGs. a The gene mutation overview of key DE-MaRGs based on TCGA-COAD mutation data. 
b The gene mutation overview of key DE-MaRGs based on TCGA-READ mutation data. c KM curve analysis of ATIC (P-value < 0.05) based on the 
TCGA-COAD dataset. d KM curve analysis of NIT2 (P-value < 0.05) based on the TCGA-COAD dataset. e ROC curves of key DE-MaRGs model based on 
the TCGA-COAD dataset. f ROC curves of key DE-MaRGs model based on the TCGA-READ dataset

(See figure on next page.)

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
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IL-8, CD80, and PIM1 were closely associated with CRC 
[28–33]. Therefore, we speculate that there are other uni-
dentified macrophage-related genes that bear the poten-
tial to regulate the occurrence and metastasis of CRC. In 
this study, we integrated five CRC transcriptome data-
sets, including 302 samples, and screened the mMaRGs 
in CRC. Through differential expression analysis, we 
obtained 31 DEGs from the five datasets, 29 of which 
were up-regulated in the five datasets while two of them 
were down-regulated. We identified 25,470 CrRGs from 

the four datasets (GSE23194, GSE32323, GSE37182, and 
GSE103512) via WGCNA analysis. Then 119,923 MaRGs 
were obtained from GeneCard with the search keyword 
“macrophage”. Finally, we obtained 29 DE-MaRGs via 
merging DEGs, CrRGs and MaRGs.

At present, the role of macrophages in the pathogen-
esis of CRC is still unclear. At the molecular level, the 
activation of oncogenes and the inactivation of tumor 
suppressor genes are related to the occurrence of CRC 
[50]. At the cellular level, macrophages in the TME 

Fig. 6  Nomogram for predicting the 3-year and 5-year survival probability of patients with CRC based on TCGA-COAD dataset. a Prognostic 
nomogram for CRC patients. b Calibration curve for the nomogram at 3-year. c Calibration curve for the nomogram at 5-year
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may adopt different polarization states, thereby affect-
ing the occurrence of CRC. The regulation and expres-
sion of genes promote the differentiation and activation 
of macrophages, which is affected by the interaction of 
many factors, including transcription factors and epi-
genetic modifications [43]. Therefore, it is very mean-
ingful to study the potential biological functions and 
pathways of the genes associated with macrophages in 
CRC. We found that the main biological pathways of 
the 29 DE-MaRGs enrichment were DNA biosynthetic 
process, telomere maintenance, cellular modified amino 

acid metabolic process, chaperone complex. Telomere 
maintenance is an important sign of cancer. Continuous 
classification of cells can cause telomere shortening, but 
tumor cells can use telomere maintenance mechanisms 
to avoid this phenomenon. The presence of TAMs will 
shorten the survival time of patients. A previous study 
pointed out that most tumors with uncertain mecha-
nisms of telomere maintenance have a large number 
of TAMs [51], which is consistent with our finding that 
these DE-MaRGs were enriched in the telomere main-
tenance. Activated macrophages can be divided into M1 

Fig. 7  Nomogram for predicting the 3-year and 5-year survival probability of patients with CRC based on TCGA-READ dataset. a Prognostic 
nomogram for CRC patients. b Calibration curve for the nomogram at 3-year. c Calibration curve for the nomogram at 5-year
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macrophages and M2 macrophages. Our finding dem-
onstrated that the cellular modified amino acid meta-
bolic process was a significant pathway for DE-MaRGs, 
which can explain the M2 polarization defect and the 
enhancement of M1 polarization caused by Lamtor1 
deficiency, amino acid starvation, and mTOR inhibition 
[52]. Intracellular macrophage migration inhibitory fac-
tor (MIF) usually becomes stable in human cancer cells. 
MIF can promote tumor cell survival. We found that 
DE-MaRGs were enriched in the chaperone complex, 
which is consistent with a previous study reporting that 
tumor-activated HSP90 chaperone complex can pro-
tect MIF from degradation [53]. It is worth noting that 
molecular chaperone proteins are pleiotropic signals of 
many kinds of cells. Henderson and colleagues [54] put 
forward a hypothesis by comparing the literature, that 
is, animal molecular chaperones can induce a variety of 
macrophage activation states. We found that glutathione 
metabolism was an important pathway for DE-MaRGs. 
The oxidative state of cells is one of the key factors that 
mediate apoptosis, and glutathione plays a vital role in 
mediating cell apoptosis through NO* and reactive oxy-
gen species (ROS). Thus, our findings can explain why 
glutathione levels determine apoptosis in macrophages 
[55]. In another study, glutathione was considered as a 
significant protective component against NO cytotoxic-
ity on macrophages [56]. In conclusion, our findings can 
provide new ideas on the functions and pathways of the 
genes related to the macrophages and CRC.

To better understand the pathogenesis mechanisms of 
CRC and the related function of macrophages, we stud-
ied the interaction of proteins encoded by DE-MaRGs. 
Here, we used PPI analysis to construct a network of 22 
nodes and 48 edges. After Cytoscape MCODE analy-
sis, we finally obtained nine hub DE-MaRGs, includ-
ing PDIA6, PSMA1, PRC1, RRM2, HSP90AB1, CDK4, 
MCM7, RFC4, and CCT5. The mutation results showed 
that MCM7, HSP90AB1, and RFC4 were the genes with 
the highest mutation frequency. A previous study dem-
onstrated that RFC4 is overexpressed in CRC and is 
associated with tumor progression and poor survival 
results [57], which is consistent with the results found 
in this study that RFC4 was jointly up-regulated in the 
five datasets. RFC is involved in DNA replication as 
a clamp loader and is regulated in a series of cancers. 
According to the results of Cytoscape MCODE analy-
sis, we found that PDIA6 may play an important role in 
macrophages. A study reported that oxysterol loaded 
in THP-1 macrophages caused a decrease in the abun-
dance of proteins related to cell death or cell life, includ-
ing PDIA6 [58], which is consistent with the findings of 
the present study. At present, there is no sufficient evi-
dence that PRC1 is directly related to macrophages, but a 

previous study reported that PRC1 had a regulatory role 
in immune evasion and angiogenesis [59]. Recent stud-
ies have shown that overexpression of PRC1 may pro-
mote the formation of various tumors, including ovarian 
cancer [60] and colorectal cancer [61]. The expression of 
RRM2 and p53R2 is related to the malignancy and pro-
gression of several types of tumors. Overexpression of 
RRM2 was thought to be useful for predicting metastasis 
and disease prognosis [62]. Similarly, the ribonucleotide 
reductase subunit RRM2B was considered to be associ-
ated with advanced stage III-IV tumors that have better 
survival than early stage I-II tumors, and its expression 
was associated with better survival prognosis in CRC 
patients [63]. However, the mechanism of how mac-
rophages regulate the occurrence and metastasis of CRC 
through RRM2B is still unclear. We suggested that CDK4 
may be indirectly involved in the pathway through which 
macrophages promote the formation of CRC. CDK4 
is a type of cyclin-dependent kinase, its inhibitor gene 
p16 (INK46a) can inhibit rheumatoid arthritis in syno-
vial tissue, in which macrophages are the main source of 
inflammatory cytokines [64]. CDK4 is the basic driving 
factor of the cell cycle and is essential in the initiation 
and development of various malignant tumors. A previ-
ous study reported that selective CDK4 inhibitors can 
induce tumor cell cycle arrest and promote anti-tumor 
immunity. Therefore, macrophages may participate in 
the pathogenesis and development of CRC by indirectly 
regulating the expression of CDK4 [65]. Although we 
have discussed some genes related to macrophages and 
CRC, there are still many genes that have not yet been 
reported. In the future, more in vitro and in vivo experi-
ments are needed to verify the role of these genes in mac-
rophages in the occurrence of CRC.

In order to further study the prognostic role of the 29 
DE-MaRGs in CRC, we used LASSO analysis to select 10 
key DE-MaRGs from the 29 DE-MaRGs. Among the key 
DE-MaRGs, we found that the expression levels of NIT2 
(P-value < 0.05) and ATIC (P-value < 0.05) were related 
to the prognosis of CRC via survival analysis. A previ-
ous study indicated that the down-regulation of NIT2 
inhibited the proliferation of colon cancer cells through 
the caspase-3 and PARP pathways, and induced cell cycle 
arrest [66]. Another research team gave a similar finding 
that NIT1 inhibited the growth of CRC through the posi-
tive feedback formed by NIT1 and the activation of the 
TGFβ-Smad signaling pathway [67]. Therefore, we antici-
pate that a low level of NIT2 may be associated with a 
better CRC prognosis. In addition, our study found that 
the expression level of NIT2 was up-regulated in the 
five CRC datasets, indicating that the high expression 
level of NIT2 may be related to the occurrence of CRC. 
As far as we know, we found for the first time that low 
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level of ATIC was associated with better CRC prognosis, 
which is consistent with the increase of ATIC in the five 
CRC datasets. The mechanism of how ATIC is involved 
in CRC and the correlation between ATIC and mac-
rophages deserves more in-depth research.

Although we have discovered some key DE-MaRGs 
and discussed how these genes participate in the for-
mation and development of CRC, there are still some 
genes that have not been reported, and more in vivo and 
in vitro experiments are needed to verify their functions. 
We have discovered several possible pathways in which 
DE-MaRGs participate; this can provide new ideas for 
understanding the pathways via which macrophages may 
participate in CRC. However, the present study was only 
based on the computational analysis of biological infor-
mation, and more studies are needed to verify our find-
ings in the future. Moreover, we evaluated the predictive 
effects of ten key DE-MaRGs models and constructed 
the nomogram of CRC using the TCGA dataset. Due to 
the limited number of samples of the dataset we used, 
these CRC prognostic models may have more room for 
improvement in the future. There are few published mac-
rophage microarray data, thus we used CRC datasets to 
explore the role of MaRGs in CRC pathogenesis, which 
can explain the specific role of these genes in CRC and 
indirectly give insights on the role of macrophages in 
CRC. In the future, we will collect macrophages associ-
ated with CRC for single-cell sequencing to get insight 
into the specific molecular mechanism of macrophages 
in the occurrence and development of CRC.

Conclusion
We obtained 29 DE-MaRGs associated with macrophages 
and CRC from five CRC datasets through a comprehen-
sive analysis method. These genes may directly or indi-
rectly participate in the occurrence and development of 
CRC through telomere maintenance, cellular modified 
amino acid metabolic process, chaperone complex, etc. 
Among these genes, NIT2 and ATIC were considered to 
be related to the prognosis of CRC (P-value < 0.05). In the 
future, we will conduct in vivo and in vitro experiments 
to verify the role of these genes in macrophages and 
CRC. Our research provides a new direction for under-
standing the biological functions of the genes related to 
both macrophages and CRC, and provide more diverse 
options for the prognosis of CRC.
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