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Abstract 

Background:  Comprehensive genome-wide DNA methylation profiling is critical to gain insights into epigenetic 
reprogramming during development and disease processes. Among the different genome-wide DNA methylation 
technologies, whole genome bisulphite sequencing (WGBS) is considered the gold standard for assaying genome-
wide DNA methylation at single base resolution. However, the high sequencing cost to achieve the optimal depth of 
coverage limits its application in both basic and clinical research. To achieve 15× coverage of the human methylome, 
using WGBS, requires approximately three lanes of 100-bp-paired-end Illumina HiSeq 2500 sequencing. It is impor‑
tant, therefore, for advances in sequencing technologies to be developed to enable cost-effective high-coverage 
sequencing.

Results:  In this study, we provide an optimised WGBS methodology, from library preparation to sequencing and 
data processing, to enable 16–20× genome-wide coverage per single lane of HiSeq X Ten, HCS 3.3.76. To process and 
analyse the data, we developed a WGBS pipeline (METH10X) that is fast and can call SNPs. We performed WGBS on 
both high-quality intact DNA and degraded DNA from formalin-fixed paraffin-embedded tissue. First, we compared 
different library preparation methods on the HiSeq 2500 platform to identify the best method for sequencing on the 
HiSeq X Ten. Second, we optimised the PhiX and genome spike-ins to achieve higher quality and coverage of WGBS 
data on the HiSeq X Ten. Third, we performed integrated whole genome sequencing (WGS) and WGBS of the same 
DNA sample in a single lane of HiSeq X Ten to improve data output. Finally, we compared methylation data from the 
HiSeq 2500 and HiSeq X Ten and found high concordance (Pearson r > 0.9×).

Conclusions:  Together we provide a systematic, efficient and complete approach to perform and analyse WGBS 
on the HiSeq X Ten. Our protocol allows for large-scale WGBS studies at reasonable processing time and cost on the 
HiSeq X Ten platform.
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Background
DNA methylation plays an important role in differentia-
tion and development [1, 2]. Alterations in DNA methyla-
tion patterns are associated with various human diseases, 
including cancer and diabetes [3–5]. DNA methylation 
is the covalent addition of methyl groups to DNA. In 
mammals, methyl groups are most commonly added to 
a ‘CpG site’, which is a cytosine (C) base that is immedi-
ately adjacent to guanine (G) base. There are ~ 28 million 
CpG sites in the human genome, and 70–80% are meth-
ylated in normal, healthy cells. The remaining unmeth-
ylated sites are found in clusters that are often 1000  bp 
long, termed CpG islands [6]. CpG islands are predomi-
nately located at gene promoters, and these genes are 
typically expressed and include almost all the housekeep-
ing genes present in the human genome [7, 8]. In cancer, 
CpG island promoters are prone to hypermethylation 
and associated genes silencing. In contrast the bulk of the 
genome in cancer is subject to hypomethylation and gene 
activation of cancer-associated oncogenes [9, 10].

To enable comprehensive methylation studies to be 
performed across large-scale clinical cohorts in order 
to profile methylation changes as we age or to identify 
changes that occur with disease progression, we need 
cost-saving advances in methylation sequencing tech-
nologies. To date, several methods have been developed 
to perform DNA methylation analysis on a genome-
wide scale. These can be divided into three broad cat-
egories: (1) enrichment based, either using antibodies, 
restriction enzymes or by immuno-precipitation fol-
lowed by sequencing [11–14], (2) bisulphite conver-
sion followed by sequencing [1, 15] and (3) array-based 
methods, such as Illumina arrays [16–19]. Among 
these, bisulphite conversion followed by next-genera-
tion sequencing is known as the best approach to pro-
vide the complete human methylome [20–22]. Whole 
genome bisulphite sequencing (WGBS) maps cytosine 
methylation across the entire genome at single base 
resolution. WGBS is currently the standard method of 
choice for studies that generate reference methylomes 
[23–25]. In addition, WGBS is also increasingly used in 
basic and clinical research [26]. Although WGBS has 
been widely accepted as the gold standard method to 
assay genome-wide DNA methylation, the high cost 
[22] and depth of sequencing required [27] make it a 
challenge for large-scale DNA methylation studies. 
Ever since the time WGBS was developed in 2009 the 
number of large-scale WGBS studies is limited [28, 29], 
either small numbers of samples are studied at a high 
coverage [15, 30] or larger numbers of samples are 
studied at low coverage [31]. One of the earliest pub-
lications on WGBS was performed at 30× coverage in 
order to compare the DNA methylation profiles of an 

embryonic stem cell and a fibroblast cell line [15]. Here, 
376 lanes of bisulphite sequencing were performed on 
the Illumina GAII instrument to achieve this cover-
age. Similarly, Kulis et  al. [30] performed WGBS on 
sorted B cells at different stages of differentiation at a 
depth of 54× for 12 biological samples on at least 85 
lanes of the HiSeq  2000. Large-scale methylome stud-
ies may not therefore be affordable to many researchers 
due to the high cost required to run multiple lanes. The 
advent of the HiSeq X Ten has opened up possibilities 
of generating WGBS data with better coverage per lane 
of sequencing making it potentially more cost-effective.

Despite the promising potential of performing meth-
ylome studies on the HiSeq X Ten, achieving optimum 
coverage of WGBS is challenging. HiSeq X Ten has a 
fixed sequencing length of 300 cycles (150  bp paired 
end). Therefore, to achieve maximum output with 
higher diversity from this platform, the library needs 
to be at least 300 bp long—excluding the length of the 
adaptors on either side. Achieving this large library size 
for a WGBS library is difficult due to the fragmentation 
process during bisulphite conversion [32]. In addition, 
since bisulphite-converted libraries comprise an unbal-
anced base composition, it is a challenge to achieve 
optimal cluster passing filter of the library without bal-
ancing the library with another library of uniform base 
composition. However, the fast EXamp amplification 
chemistry of the HiSeq X Ten can result in preferential 
amplification and cluster formation of smaller insert 
size libraries. Therefore, even a 5% contamination of 
adaptor dimers in the library can result in up to 60% of 
the sequencing output being adaptor sequence. In addi-
tion, a higher loading concentration of the bisulphite 
library can lead to polyclonal clusters and a lower load-
ing concentration can lead to higher duplicate reads.

In this study, we optimised and developed a working 
protocol for the preparation and processing of WGBS 
data prepared from good quality DNA and FFPET 
material to maximise data output from the HiSeq X Ten 
(Additional file 2: Fig. 5a, b). We provide guidelines on 
the best method to achieve larger bisulphite library size 
and optimum loading concentration for the bisulphite 
library and the spike-in library, for the HiSeq X Ten, 
HCS 3.3.76. We consistently achieve ~ 16–20× cover-
age per lane of WGBS data for the good quality DNA 
and ~ 10–14× per lane for FFPET. Finally, we explored 
the possibility of performing integrated WGS and 
WGBS from the same DNA samples in the same lane 
of the HiSeq X Ten platform and show that this results 
in minimal read wastage. Higher methylome coverage 
using the HiSeq X Ten platform now enables larger-
scale population-based WGBS studies to be potentially 
more cost-effective.
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Results
Comparison of library sequencing preparation methods 
using intact genomic DNA with the Illumina HiSeq 2500 
platform
To optimise the coverage output per lane from WGBS, 
we first compared different library preparation methods 
on the HiSeq  2500 on a rapid run (two lanes) to deter-
mine differences in library fragment size distribution. 
We compared two pre-bisulphite (pre-BS) library prepa-
ration methods, where adaptor tagging and ligation are 
performed before bisulphite conversion, and three post-
bisulphite (post-BS) methods, where adaptor tagging 
and ligation are performed after bisulphite conversion 
[33] (‘Methods’ section). The pre-BS library preparation 
methods used were KAPA LTP and KAPA Hyperprep, 
from KAPA Biosystems, with input amounts of, 1000 and 
100 ngs, respectively. The post-BS methods we used were 
TruSeq DNA methylation kit from Illumina, TruMethyl 
WG from Cambridge Epigenetix and Accel-NGS Methyl-
Seq from Swift Biosciences, with input amounts of, 50, 
200 and 100  ngs DNA, respectively. In addition to the 
original methods from the manufacturer, we also modi-
fied the AMpure XP bead ratios during the size selection 
step of the library preparation to determine if a change 
in bead ratios had an effect on the library fragment size 
and subsequent overall sequencing coverage across 
the genome. Details of the modifications are provided 
(‘Methods’ section). For consistency, the libraries were 
prepared from the same cell line (LNCaP) DNA sample.

Table  1 summarises the differences observed in per-
centage of duplicate reads, library fragment size distri-
bution, genome-wide coverage and the ratio of bias in 
coverage across CpG islands and CpG shores (illustrated 

in Fig. 1a). Details of how the bias ratio was estimated are 
provided in the methods section. First we found that the 
library preparation methods with altered size selections 
(< 300 and > 400  bp) gave rise to different library frag-
ment size distribution (Table  1 and Fig.  1b) and associ-
ated differences in genomic coverage. For example, the 
KAPA LTP kit < 300  bp size selection resulted in aver-
age library fragment size 175  bp and 8.8× per lane of 
sequencing whereas > 400  bp size selection resulted in 
average library fragment size 237 bp and 17.2× per lane 
of sequencing (Table 1). The trend for larger library frag-
ment size to improve genomic coverage was observed 
across all the different library preparation methods 
(Fig.  1c). Second, we observed that, among the manu-
facturer’s recommended methods, both the KAPA LTP 
and KAPA Hyperprep result in an under-representation 
of reads across CpG islands (Additional file 2: Fig. 1a, b), 
whereas the TruSeq DNA methylation method shows 
a bias towards CpG islands (Additional file  2: Fig.  1c). 
The TruMethyl WG showed the least bias (0.8 CpG 
islands/1.1 CpG shores), with almost equal coverage 
across CpG islands, CpG shores and other regions of 
the genome (7.68×, 10.80×, 10.08×) closely followed by 
the Accel-NGS-Methyl-Seq method (Additional file  2: 
Fig.  1d, e). Based on these combined results for cover-
age and bias, we decided to further optimise the TruMe-
thyl WG library method for WGBS of intact DNA on the 
HiSeq X Ten platform. 

Optimisation of library loading concentration and spike‑in 
balanced libraries on the HiSeq X Ten
A challenge in performing WGBS on the HiSeq X Ten 
is the unbalanced base composition of the bisulphite 

Table 1  Comparison of different library preparation kits on intact genomic DNA using HiSeq 2500 Platform

a  Manufacturer’s recommended method
b  Two lanes( HiSeq 2500 rapid run)

Library 
preparation 
method

Library preparation kit Input 
amount 
(ng)

Size 
selection 
(bp)

Duplicate 
read (%)

Fragment size (stdev) Coverageb Ratio of bias 
in CpG island/
shores

Pre-BS KAPA LTP (Kapa Biosystems) 1000 < 300a 1.00 175 bp (42 bp) 8.8× 0.7:0.9

> 300 3.50 226 bp (69 bp) 12.4× 0.3:0.7

< 400 0.72 229 bp (62 bp) 13.5× 0.3:0.6

> 400 1.90 237 bp (82 bp) 17.2× 0.8:0.9

KAPA Hyperprep (Kapa Biosystems) 100 < 300a 5.50 164 bp (72 bp) 6.3× 0.3:0.7

> 300 5.50 189 bp (88 bp) 7.0× 0.3:0.7

Post-BS TruSeq DNA methylation (Illumina) 50 < 200a 10.00 156 bp (77 bp) 4.0× 2.1:1.5

TruMethyl WGv 1.9 (Cambridge Epige‑
netix)

200 > 300a 0.95 227 bp (98 bp) 12.9× 0.8:1.1

Accel-NGS Methyl-Seq (Swift Bio‑
sciences)

100 < 300a 1.40 179 bp (61 bp) 10.7× 0.7:0.9

> 300 1.10 202 bp (70 bp) 12.6× 0.7:0.9
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library, and therefore, the bisulphite-treated DNA 
requires spiking with DNA of a normal base composi-
tion in order to maximise the cluster passing filter dur-
ing sequencing. For whole genome sequencing (WGS), 
the optimal loading concentration of library recom-
mended by Illumina is 300  pM. Therefore, we used 
300  pM as the loading concentration for the WGBS 
library (Table  2), cell line (LNCaP DNA). To balance 
the nucleotide composition of the bisulphite library, we 
spiked in PhiX (from Illumina) at 25% of 250  pM and 

obtained a coverage of 8.7× from one lane of sequenc-
ing on the HiSeq X Ten (Table  2). To further improve 
the coverage, we lowered the loading concentration 
of the bisulphite library to 250  pM and performed 
sequencing with two different loading concentration of 
PhiX spike-in, namely 250 and 300 pM. This improved 
coverage from 8.70× to 15.19× using the same cell 
line input DNA (Table 2). To further test which of the 
PhiX loading concentration gave a higher coverage, 
we compared the sequencing coverage output from 
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six different DNA samples isolated from blood, three 
of which were spiked with 25% of 250  pM PhiX and 
the other three were spiked with 25% of 300 pM PhiX 
spike (Table 2, blood DNA samples). We observed that 
the loading concentration of 250 pM for the bisulphite 
library with a combination of 300 pM loading concen-
tration for PhiX spiked at a percentage of 25% gave a 
marked and consistent increase in overall coverage of 
the bisulphite genome (16.59–20.24×) (Fig. 2a).  

However, the problem with using PhiX DNA to spike 
is that at least 25% of the sequencing reads are ‘wasted’. 
Therefore, to maximise the sequencing information we 
tested the effect of using genomic DNA (cell line DNA) 
as the balanced DNA control spike. First we spiked in 
25% of 250  pM of unconverted genomic library DNA 
(similar size to the matching bisulphite libraries) to 5 
independent libraries prepared from cell line DNA 
and DNA from blood (Table  3). We obtained bisul-
phite genome mean coverage of ~ 15× per lane of the 
HiSeq X Ten and the whole genome mean coverage 
of ~ 8.4× per lane (Table 3; Fig. 2b). We next compared 
the coverage output between 25% of 300 pM PhiX and 
25% of 250 pM genomic spike-in using the same set of 
10 independent bisulphite libraries (blood DNA, cell 
line DNA) (Fig.  2c). Interestingly, we found that the 
best spike-in DNA to give maximum bisulphite cover-
age output is 25% of 300  pM PhiX, which resulted in 
15.5×–20.2× WGBS coverage (Table  4). Therefore, if 
only methylome data are required, our results suggest 
that PhiX spike-in is preferable. 

The potential for HiSeq X Ten to provide integrated WGS 
and WGBS on intact genomic DNA
To further capitalise on informative sequencing data 
per lane of sequencing, we tested the output reads from 
simultaneously sequencing the methylome and genome 
from the same DNA samples. We first tested spiking 
four independent bisulphite-converted libraries from 

clinical prostate cancer DNA samples (intact genomic 
DNA) with 250 pM of their matching genomic library in 
a 50:50 ratio. We performed the library prep and spike-in 
and sequencing on the HiSeq X Ten in technical dupli-
cates (Table 5a, b) and observed that overall coverage per 
lane (for WGBS and WGS library together) is ~ 26× the 
library prep and spike, consisting of bisulphite library 
(~ 10–13× the library prep and spike) average coverage 
and matching genomic sequence coverage (~ 13–16× 
the library prep and spike) (Table  5; Fig.  3a). Using the 
Meth10X pipeline (see methods), we could detect exem-
plary SNPs from the WGBS data at coverage of 13× 
(Fig. 3b; Additional file 2: Fig. 2), which were confirmed 
in the WGS spike-in data of the same sample. 

Approximately 40–45% of SNPs called from WGBS 
(~ 10–13×) coverage data were found to be concord-
ant with the SNPs identified from spike-in WGS 
(~ 13–16×) coverage data for each sample tested, 
(Fig. 3c, d; Additional file 1: Table 1). At higher cover-
age (~ 20–26×), the number of SNPs commonly called 
between WGBS and spike-in WGS data increased to 
51–53% (Fig. 3c, d; Additional file 1: Table 1). To com-
pare the fidelity of SNPs called from WGBS and WGS 
spike-in data, we first identified the overlap of variants 
called in two single lanes of HiSeq X Ten sequencing 
(each lane corresponding to 30× coverage) for each of 
the 4 clinical prostate cancer samples (see methods) 
and termed WGS ‘Gold Standard’ SNP data (WGS-
GS). We found that ~ 95–96% of the SNPs detected in 
the spike-in WGS data (Additional file 1: Table 2; Addi-
tional file 2: Fig. 3) and ~ 55–57% of SNPs from WGBS 
data to be concordant with the WGS-GS data (Addi-
tional file 1: Table 3; Additional file 2: Fig. 3) indicating 
a higher degree of false positives called in the WGBS 
data, as previously reported [34]. However, we did 
find that there is a similar distribution of variant calls 
across all genomic features (Additional file 1: Table 4). 
We also found that WGBS detects a higher percentage 

Table 2  Comparison of coverage obtained with different bisulphite library and PhiX loading concentrations

Library 
preparation 
method

Library 
preparation 
kit name

Input 
amount (ng)

DNA samples Sequencing 
platform

Bisulphite 
library loading 
concentration

PhiX loading 
concentration

% of spike-in Coverage/lane

Post-BS TruMethyl 
WG v1.9

200 Cell line (LNCaP) HiSeq X Ten 300 pM 250 pM 25% 8.70×
Cell line (LNCaP) 250 pM 250 pM 14.50×
Cell line (LNCaP) 300 pM 15.19×
1. Blood sample (2) 250 pM 15.46×
2. Blood sample (3) 250 pM 13.87×
3. Blood sample (4) 250 pM 12.15×
4. Blood sample (6) 300 pM 20.24×
5. Blood sample (23) 300 pM 16.59×
6. Blood sample (24) 300 pM 19.67×
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of SNPs at regions with higher GC content (0.5–0.75), 
whereas WGS-GS detects a higher percentage of SNPs 
at regions with lower GC content (0.1–0.4) (Additional 
file 2: Fig. 4a). In addition, a higher percentage of SNPs 
were detected by WGS-GS near CpG sites which have 
high DNA methylation levels, (> 0.75) (Additional 
file  2: Fig.  4b), whereas WGBS detects a higher per-
centage of SNPs near CpG sites which are unmethyl-
ated or are lowly methylated, (< 0.5) (Additional file 2: 
Fig. 4b). Together our analyses indicate that integrated 

sequencing of WGBS and WGS libraries provides an 
efficient and cost-effective method to explore combina-
torial analyses of genetic and epigenetic variations on 
one common technology platform.

Correlation between library duplicate reads, spike‑ins 
comparing HiSeq 2500 and HiSeq X Ten sequencing 
platforms
In general, we also observed that the duplicate read 
percentage for bisulphite libraries on the HiSeq X 
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Ten were much higher for all than the duplicate reads 
observed for bisulphite libraries on the HiSeq  2500 
platform (Tables  1, 4). To investigate this further, we 
compared the duplicate reads obtained from bisul-
phite libraries of cell line DNA samples sequenced on 
both the HiSeq  2500 and the HiSeq X Ten. Interest-
ingly, for the same library preparation, we consist-
ently obtained more duplicate reads on the HiSeq X 
Ten than the HiSeq  2500. For example, the duplicate 
read on the HiSeq 2500 for the bisulphite libraries (cell 
lines) was ~ 1.2–2.7 and ~ 15–18% on the HiSeq X Ten 
(Table  6); despite this, the coverage was consistently 
higher using the HiSeq X Ten.

To next determine if the higher coverage contributes 
towards the greater duplicate reads of the bisulphite 
libraries observed on the HiSeq X Ten, we measured the 
distribution of duplicate reads after randomly downsam-
pling the number of raw reads obtained from the HiSeq 
X Ten platform to approximately the same number of 
raw reads obtained from the HiSeq 2500. Random down-
sampling was performed approximately 100 times, and 

the distribution of duplicate reads was estimated for two 
DNA samples (Fig.  4a, b). We observed that the distri-
bution of duplicate reads for the bisulphite libraries on 
the HiSeq X Ten was similar across the hundred simula-
tions (Fig. 4, b). For example, the distribution of percent-
age of duplicate reads in sample 1 ranged between 17.85 
and 17.88% for different simulations and the frequency 
of such occurrence for each simulation is shown in the 
y-axis (Fig. 4a). These results support that the high dupli-
cate reads observed on the HiSeq X Ten are a machine-
generated artefact rather than an indication of library 
complexity.

We also observed that the rate of duplicate reads for 
the same bisulphite library was higher when the library 
was sequenced with the 300 pM PhiX spike compared to 
the 250 pM genomic spike (Fig. 4c; Table 4, for ten inde-
pendent bisulphite libraries). Differences in duplicate 
read numbers for the same bisulphite library preparation 
with different spike-ins suggest that the duplicate reads 
are not due to PCR amplification bias inherent to the 
library, instead we surmise that they are due to the way 

Table 3  Comparison of coverage from bisulphite and genomic library when 25% of genomic library is spiked

a  Genomic library used as spike-in

Library 
preparation 
method

Library 
preparation 
kit name

Input 
amount (ng)

WGBS library 
samples

Sequencing 
platform

WGBS library 
loading 
concentration

WGS library 
samplea

% 
of spike-in 
library

WGBS 
coverage/
lane

WGS 
coverage/
lane

Post-BS TruMethyl 
WG v1.9

200 1. Cell line (LNCaP) HiSeq X Ten 250 pM Cell line 
(LNCaP)

25% 15.57× 7.40×
2. Cell line (LNCaP) 14.10× 7.02×
3. Cell line (B80-

T17-P12)
16.50× 9.50×

4. Blood sample 3 14.80× 5.47×
5. Blood sample 4 14.40× 12.47×

Table 4  Comparison of coverage and duplicate reads for bisulphite libraries when spiked with genomic library or PhiX

a  25% of 250 pM genomic library spiked in
b  25% of 300 pM PhiX library spiked in

Library 
preparation 
method

Library 
preparation 
kit

Input 
amount (ng)

Sequencing 
platform

DNA samples Coverage 
with genomic 
spike-ina

Coverage 
with PhiX 
spike-inb

Duplicate 
read % 
with genomic 
spike-in

Duplicate read 
% with PhiX 
spike-in

Post-BS TruMethyl 
WG v1.9

200 HiSeq X Ten 1. Blood sample (23) 14.02× 16.6× 32 39

2. Blood sample (24) 13.66× 19.67× 21 30

3. Blood sample (25) 12.43× 18.37× 22 33

4. Blood sample (26) 12.6× 17.34× 28 36

5. Cell line (27) 12.36× 16.29× 33 44

6. Cell line (28) 13.37× 18.33× 25 36

7. Blood sample (5) 11.8× 15.19× 36 48

8. Blood sample (6) 15.14× 20.24× 21 28

9. Blood sample (13) 10.86× 17.41× 18 30

10. Blood sample (14) 11.79× 15.55× 31 43
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the clusters are spatially distributed in the nanowells of 
the HiSeq X Ten’s patterned flow cells. This spatial distri-
bution of the clusters could be dependent on the nature 
of spike-in DNA library loaded, its concentration and 
insert size.

Comparison of overall coverage between HiSeq 2500 
and HiSeq X Ten
Next, we compared the difference in overall genome cov-
erage and individual CpG site coverage obtained from 
WGBS from four clinical samples prepared by the Tru-
Methyl WG method, on the HiSeq  2500 High Output 
mode (HO) and on the HiSeq X Ten (Fig.  5a, b). The 
bisulphite libraries were all spiked with 25% of 300  pM 
PhiX for WGBS on the HiSeq X Ten and gave an over-
all coverage of ~  16–20× per lane compared to ~ 8× 
coverage per lane on the HiSeq 2500. Figure 5a summa-
rises the whole genome coverage plot for the four sam-
ples sequenced individually on single lanes of the HiSeq 
X Ten and merged coverage obtained from multiplexing 
the four samples on one lane of HiSeq  2500 high out-
put mode. We found that almost 75% of the genome is 
covered at a depth of 10× from the HiSeq X Ten single 
lane sequencing, while only 40% of the genome is cov-
ered at a depth of ~  10× from one lane of sequencing 
on the HiSeq  2500 (Fig.  5a). In addition, we assessed 
the coverage at individual CpG sites and found that only 
30% of CpG sites were covered at a depth of ~ 10× from 
the HiSeq  2500 sequencing (Fig.  5b). However, ~ 70% of 
CpG sites were covered at a depth of ~  10× from the 
HiSeq X Ten sequencing (Fig.  5b). We also compared 

the difference in coverage at specific genomic regions 
including, exons, intergenic regions, introns, promot-
ers and repeat regions between the HiSeq 2500 platform 
and HiSeq X Ten platform for a clinical sample and a cell 
line (Fig. 5c, d, Additional file 2: Fig. 5a, b). We find that 
the HiSeq 2500 sequencing platform results in coverage 
ranging between 2.7× to 5.0× per lane across the dif-
ferent genomic regions, whereas the HiSeq X Ten plat-
form results in coverage ranging between ~ 15× to 20× 
per lane across these same regions (Fig. 5c, d; Additional 
file 2: Fig. 5a, b).

Comparison of library preparation methods on FFPET DNA 
on the HiSeq 2500 Platform
Archival FFPET DNA is a valuable resource in cancer 
research to explore methylation alterations in cancer 
samples retrospectively; however, the DNA is generally 
degraded and genome-wide methylation analysis can 
be a challenge. In order to determine if FFPET DNA 
can be used for WGBS on the HiSeq X Ten platform, 
we first performed a comparison of two pre-BS and the 
three Post-BS methods on the HiSeq  2500 platform, 
using FFPET DNA, isolated from prostate cancer biop-
sies (Table 7). Since FFPET DNA is commonly degraded 
(< 300 bp), a comparison of the library preparation meth-
ods with varying size selection was not feasible. We 
found that for FFPET DNA the different library methods 
were fairly similar and gave lower coverage than for intact 
DNA, ranging from 3.9× (KAPA Hyperprep) to 6.6× 
coverage (Accel-NGS Methyl-Seq method) from two 

Table 5  Comparison of coverage from bisulphite and genomic library when sequenced in a 50:50 ratio on a single lane 
of HiSeq X Ten

a  50% of corresponding genomic library used as spike-in

Library 
preparation 
method

Library 
preparation 
kit name

Input 
amount (ng)

WGBS library 
sample

WGBS library 
loading 
concentration

WGS library 
samplea

% of spike-in 
library

WGBS 
coverage/
lane

WGS 
coverage/
lane

Post-BS TruMethyl WG 
v1.9

200 1a. Prostate cancer 
DNA (5287)

250 pM 1a. Prostate cancer 
DNA (5287)

50% 13.48× 13.48×

1b. Prostate cancer 
DNA (5287)

1b. Prostate cancer 
DNA (5287)

13.16× 13.97×

2a. Prostate cancer 
DNA (5060)

2a. Prostate cancer 
DNA (5060)

13.20× 15.38×

2b. Prostate cancer 
DNA (5060)

2b. Prostate cancer 
DNA (5060)

12.70× 15.70×

3a. Prostate cancer 
DNA (13179)

3 a. Prostate cancer 
DNA (13179)

10.70× 16.12×

3b. Prostate cancer 
DNA (13179)

3b. Prostate cancer 
DNA (13179)

9.80× 16.83×

4a. Prostate cancer 
DNA (10738)

4a. Prostate cancer 
DNA (10738)

11.80× 16.50×

4b. Prostate cancer 
DNA (10738)

4b. Prostate cancer 
DNA (10738)

11.20× 16.45×
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lanes (one rapid run on the HiSeq 2500) (Table 7; Fig. 6). 
Overall, with regard to input amount, fragment size and 
coverage, the Accel-NGS Methyl-Seq method performed 
the best using 100  ng of DNA and 132  bp fragment 
library size (Fig.  6). However, with regard to the bias 

ratio for representation of CpG islands and CpG shores, 
we found that the Accel-NGS Methyl-Seq method under 
represented CpG islands (ratio of 0.6:0.9), whereas the 
TruMethyl WG method showed good coverage across 
these CpG-rich features (ratio of 1.1:1) (Table  7). We 
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therefore decided to test both the TruMethyl WG and 
Accel-NGS Methyl-Seq method for WGBS performance 
on the HiSeq X Ten.

WGBS of FFPET DNA on the HiSeq X Ten
We first compared WGBS coverage and bias outputs 
on the HiSeq X Ten from FFPET DNA using the Tru-
Methyl WG and Accel-NGS Methyl-Seq method, with 
25% of 300  pM PhiX as the spike-in concentration. 
We observed that the Accel-NGS Methyl-Seq method 
gave higher coverage (~ 13.05–13.97×) per lane and 
lower duplicate reads than the TruMethyl WG method 
(10.84–11.16×) for the same FFPET DNA (Table  8). 
However, as we found for intact DNA, the ratio of 
representation of CpG islands and CpG shores is less 
biased using the TruMethyl WG method, for exam-
ple, 0.4:0.9 for Accel-NGS Methyl-Seq versus 0.8:1.1 
for TruMethyl WG (Table  8). We further confirmed 
the apparent bias by determining the average cover-
age across CpG islands, CpG shores and other regions 
of the genome for WGBS data obtained from both the 
TruMethyl WG method and the Accel-NGS Methyl-
Seq method (Fig.  7a, b). We then investigated candi-
date CpG islands and compared the reads spanning the 
CpG islands, between the TruMethyl WG method and 
the Accel-NGS Methyl-Seq method (Fig. 7c; Additional 
file 2: Fig.  6a, b) We also computed the CpG coverage 
distribution across exons, intergenic regions, introns, 
promoters and repeat regions of the genome (Fig.  7d, 
e). Our results confirmed that the representation of 
reads across specific genomic features is less biased in 
the TruMethyl WG method. However, the Accel-NGS 
Methyl-Seq method represents a higher fraction of 
repeat regions than the genomic features (Fig. 7d, e).

Comparison of overall methylation correlation for intact 
genomic DNA and FFPET between HiSeq 2500 and HiSeq 
X Ten
We observed that despite differences in the chemis-
try between the two Illumina sequencing platforms and 
resulting genome-wide coverage per lane of sequencing, 
there is a remarkable correlation between the methylation 
calls obtained from the HiSeq 2500 and HiSeq X Ten, as 
demonstrated using DNA from a cell line, clinical sample 
and FFPET sample (Pearson r > 0.94) (Fig.  8a). We next 
classified CpG sites into four bins based on their methyla-
tion level percentage, namely under-methylated (0–20%), 
low methylation (20–50%), intermediate methylation (50–
80%) and high methylation (80–100%), and determined 
the percentage of CpG sites, in the different methylation 
bins between the two platforms (Fig. 8b). Again we found 
high concordance in methylation levels between both the 
HiSeq 2500 and the HiSeq X Ten platform. To further test 
the agreement between the methylation data at different 
bins of CpG methylation percentage, we used the Kappa 
statistics [35]. The average kappa values for 6 sample 
pairs, (two cell lines, two clinical samples and two FFPET 
samples), compared between the two platforms is > 0.75 
for the cell lines, ~ 0.75 for the clinical samples and 0.6 for 
FFPET (Fig. 8c). These values indicate that there is mini-
mal difference in methylation calls obtained from both 
platforms; 0.21% CpG sites discordant in cell line DNA, 
0.17% in the clinical samples and 0.49% in the FFPET 
sample. We found that these discordant sites were distrib-
uted across genomic features, including promoter, exon, 
intron, intergenic and repeat regions for all three-sample 
types (Fig. 8d). The higher rate of discordance identified 
for FFPET DNA could relate to the smaller fragment size 
relative to the intact DNA samples.

Table 6  Comparison of duplicate reads obtained for the same libraries sequenced on both HiSeq 2500 and HiSeq X Ten

a  One rapid run is two lanes

Library 
preparation 
method

Library 
preparation 
kit

Input amount 
(ng)

Sequencing 
platform

DNA samples Raw reads Duplicate 
reads (%)

Coverage Ratio of CpG 
islands/
shores

Post-BS TruMethyl 
WG v1.9

200 HiSeq 2500 Rapid runa 1. Cell line (B80-T17-p12) 303298084 2.0 9.12× 1.0:1.1

2. Cell line (B80-T17-p95) 412412960 2.7 12.40× 0.9:1.1

3. Cell line (B80-T8-p8) 309366352 1.9 9.48× 1.0:1.1

4. Cell line (B80-T8-p46) 337623632 2.2 10.20× 1.0:1.1

5. Cell line (MCF7) 232184682 1.6 7.24× 1.0:1.1

6. Cell line (TAMR) 28866392 1.2 6.66× 1.0:1.1

HiSeq X Ten 1. Cell line (B80-T17-p12) 549,330,057 18 16.41× 1.0:1.1

2. Cell line (B80-T17-p95) 623,032,192 18 18.83× 0.8:1.0

3. Cell line (B80-T8-p8) 534,563,634 15 16.84× 1.0:1.1

4. Cell line (B80-T8-p46) 551,950,690 16 17.24× 1.0:1.1

5. Cell line (MCF7) 634,201,220 19 23.43× 0.9:1.0

6. Cell line (TAMR) 571,714,843 15 20.48× 0.9:1.0
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Discussion
Over the past decade large-scale genome-wide methyla-
tion studies have been performed primarily with the Illu-
mina 450 K methylation array platform, RRBS technology 
or targeted approaches [36–38]. Though these profiling 
methods are relatively cost-effective, they can only assess 
less than 5% of the CpG sites across the genome and pri-
marily are biased to CpG islands [39]. Therefore, there is 
a strong need to develop an economical method to allow 

genome-wide methylation analysis. Currently, WGBS 
provides the gold standard for methylome analysis at sin-
gle base resolution. However, the high sequencing cost, 
considerable technical expertise required and associated 
bioinformatic challenges to process the data have lim-
ited the widespread application of WGBS. The advent of 
HiSeq X Ten has opened up possibilities of performing 
WGBS with greater coverage per lane at a relatively lower 
cost.
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Here we compare the most common available library 
preparation methods and identify the most efficient 
method to prepare WGBS libraries to achieve the 
greatest sequencing coverage on the HiSeq X Ten (HCS 
3.3.76). We provide strategic guidelines that routinely 
produce ~ 16–20× coverage per lane of sequencing for 
intact human DNA and ~ 10–13× coverage per lane 

from FFPET samples. We find that coverage is primar-
ily influenced by library fragment size and the nature 
and amount of the spike-in DNA. First, we show that 
the library choice can influence coverage and this is due 
to the resulting library fragment size that is obtained, 
as increasing fragment size results in higher sequencing 
coverage. Even greater coverage is expected if 100  bp 
PE reads could be supported on the HiSeq X Ten, since 
the current requirement to use 150 bp PE reads means 
there is still considerable read wastage due to the 
smaller fragments generated after bisulphite treatment.

Second, we find that adding insufficient amounts of 
the spike-in library can lead to poor cluster passing fil-
ter of the bisulphite library leading to lower coverage. 
We identify an optimum amount of spike-in libraries 
both for PhiX and genomic DNA to achieve the best 
coverage for human bisulphite libraries. Even though 
PhiX resulted in more WGBS coverage per lane of 
sequencing, the advantage of spiking genomic DNA 
from the same sample into the sequencing run allowed 
for the potential to identify SNP variants along with 
DNA methylation calling and therefore reduces read 
wastage.

Finally, our study compares the coverage obtained for 
a human bisulphite library from one lane of HiSeq 2500 
sequencing and one lane of HiSeq X Ten sequencing. 
We show there is a high concordance in methylation 
levels obtained from both the platforms. However, only 

Table 7  Comparison of different library preparation kits on FFPET using HiSeq 2500 Platform

a  Two lanes (HiSeq 2500 rapid run)

Library 
preparation 
method

Library preparation kit Input  
amount (ng)

Duplicate 
read (%)

Fragment size 
(stdev)

Coveragea Ratio of bias 
in CpG island/
shores

Pre-BS KAPA LTP (Kapa Biosystems) 1000 4.2 138 bp (41 bp) 5.4× 0.5:0.8

KAPA Hyperprep (Kapa Biosystems) 100 5.6 105 bp (49 bp) 3.9× 0.2:0.6

Post-BS TruSeq DNA methylation (Illumina) 50 9.6 73 bp (37 bp) 4.2× 3.3:2.0

TruMethyl WG v1.9 (Cambridge Epigenetix) 200 1.8 120 bp (49 bp) 5.1× 1.1:1.0

Accel-NGS methyl-seq (Swift Biosciences) 100 1.4 132 bp (50 bp) 6.6× 0.6:0.9
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Table 8  Comparison of coverage output of FFPET on the HiSeq X Ten using two library preparation kits

a  Ratio of coverage represented in the CpG islands and shores of the genome

Library 
preparation 
method

Library 
preparation kit 
name

Input 
amount 
(ng)

DNA samples FFPET Sequencing 
platform

Fragment size 
(stdev)

Duplicate 
read (%)

Coverage/lane CpG 
island/
shorea

Post-BS Accel-NGS Methyl-
Seq

100 1. Prostate normal(1601) HiSeq X Ten 158 bp (51 bp) 13 13.05× 0.6:1.0

2. Prostate cancer (1601) 177 bp (53 bp) 18 13.97× 0.4:0.9

TruMethyl WG v1.9 200 1. Prostate normal (1601) 161 bp (81 bp) 23 11.16× 1.3:1.3

2. Prostate cancer (1601) 174 bp (91 bp) 27 10.84× 0.8:1.1
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30% of the CpG sites are covered at a depth of 10× in 
sequencing from the HiSeq 2500 platform, and almost 
70% of the CpG sites are covered at a depth of 10× in 
the sequencing from the HiSeq X Ten platform.

A summary of our workflow for achieving optimal 
coverage on the HiSeq X Ten for intact genomic DNA 
and FFPET DNA is shown in Additional file 2: Fig. 7a, 
b. This workflow can also be potentially transferred 
to the newer software version HCS 3.4.0.38 and the 
newer Illumina sequencing platform, NovaSeq, which 
uses patterned flow cell similar to the HiSeq X Ten. 
The applicability of WGBS on large-scale epigenome-
wide mapping studies is on the rise, and different tech-
nologies will appear. In fact a study recently published 
in BioRxiv [40] has devised a completely new library 
preparation strategy involving tagmentation and bisul-
phite tagging and a sequencing approach using custom 
sequencing oligos to achieve high-coverage WGBS on 
the HiSeq X Ten. However, our results and observa-
tions provide an established protocol for generating 
good quality WGBS data of high coverage at a reason-
able cost and in combination with WGS herald a new 
era for integrated genomic and methylation sequencing 
studies.

Conclusions
In this study, we provide a systematic, efficient and com-
plete approach to perform and analyse WGBS on the 
HiSeq X Ten. Our protocol allows for large-scale WGBS 
studies at reasonable processing time and cost on the 
HiSeq X Ten platform.

Methods
Cell lines
Prostate cancer cell line, LNCaP, and breast cancer cell 
line, MCF7, were obtained from the American Type 
Culture Collection (ATCC). The endocrine-resistant 
MCF7-derived cell line and tamoxifen-resistant (TAMR) 
were generated by the long-term culture of MCF7 cells 
in phenol red-free RPMI medium with 5% charcoal 
stripped FCS and 4-OH-tamoxifen [41]. The B80 cell 
lines used in Tables 3 and 6 are human mammary epithe-
lial cells immortalised by simian virus 40 T-antigen [42]. 
All cell lines were cultured under recommended condi-
tions at 37  °C and 5% CO2. Sample 27, from Table 4, is 

THP-1 cell line, and sample 28 is THP-1 treated with 
PMA. Human THP-1 cells were maintained in RPMI 
media supplemented with 10% (v/v) FCS, 0.05  mM 
2-mercaptoethanol, 0.1  mg/ml penicillin/streptomycin 
and 2  mM  l-glutamine. Differentiation of THP-1 into 
macrophages was performed by culturing the cells with 
100  ng/ml phorbol-12-myristate 13-acetate (PMA) and 
50 μM 2-mercaptoethanol for 48 h.

DNA samples
Genomic DNA from cell lines was extracted using 
QIAmp DNA Mini kit (Qiagen, USA). DNA from blood 
samples and clinical prostate cancer samples were also 
extracted using the QIAmp DNA Mini kit (Qiagen, USA).

Library preparation methods
Pre‑BS library preparation method
The two pre-BS library preparation methods were the 
KAPA LTP library preparation method and the KAPA 
Hyper prep library preparation method, which was per-
formed following the manufacturer’s protocol. For the 
size selection steps, with the KAPA LTP method, a dual 
size selection ratio of 0.5:1.0 followed by 0.7:1.0 was per-
formed to get library size of approximately 400  bp. For 
a library size of 300 bp, we followed the manufacturer’s 
protocol where the size selection ratio recommended 
was 0.6:1 followed by 0.8:1. To achieve library fragment 
size bigger than 300 and 400  bp, fragments that were 
not bound to the beads were eluted out. With the KAPA 
Hyperprep method, the protocol by the manufacturer 
was followed except at the post-PCR clean-up size selec-
tion step, and two different AMPure XP bead ratios were 
used 0.75:1 and 0.85:1 to achieve library sizes of above 
300 bp and above 200 bp, respectively. In both methods, 
the bisulphite conversion was performed using the EZ 
DNA Methylation Gold kit from Zymo Research.

Post‑BS library preparation methods
The three post-BS library preparation methods used 
are the TruSeq DNA methylation kit from Illumina, the 
Accel-NGS Methyl-seq DNA library preparation from 
Swift Biosciences and the TruMethyl WG method from 
Cambridge Epigenetix (CEGX). The library preparation 
using the TruSeq DNA methylation kit was performed 

Fig. 7  Difference in HiSeq X Ten coverage distribution for FFPET bisulphite library prepared from two methods. a, b Box plot showing the difference 
in coverage across CpG islands, CpG shores and other regions of the genome for TruMethyl WG (a) and Accel-NGS Methyl-Seq (b) methods, when 
sequenced on the HiSeq X Ten. c IGV plot showing the difference in distribution of reads for a FFPET library obtained from the TruMethyl WG 
method and Accel-NGS Methyl-Seq method across a CpG island. d, e Box plots showing the coverage distribution across exons, intergenic regions, 
introns, promoter regions and repeat regions of the genome for a FFPET library prepared by the TruMethyl WG (d) and Accel-NGS Methyl-Seq (e) 
methods and sequenced on one lane of HiSeq X Ten

(See figure on next page.)
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exactly as the manufacturer’s protocol. With the Accel-
NGS Methyl-seq DNA library prep method, besides fol-
lowing the original protocol, a size selection of 0.85:1 was 
performed during the post-PCR SPRI clean-up step to 
achieve library size greater than 300 bp. For the TruMe-
thyl WG method, library preparation and indexing were 
carried out as described in the CEGX TruMethyl WG 
user guide v2. Since the presence of even 5% of adap-
tor dimers in the library leads to a 60% contamination 
of adaptor dimer reads on the HiSeq X Ten, we further 
improved the protocol by adding an additional clean-
up step in the end using AmPure Xp beads at a ratio of 
50:50. For both TruSeq DNA methylation kit and the 
Accel-NGS Methyl-Seq kit, bisulphite conversion was 
performed using the EZ DNA Methylation Gold kit from 
Zymo Research. The TruMethyl WG method has its 
own bisulphite conversion process incorporated in the 
protocol.

Library QC and quantification
All libraries were quantified using the Qubit and KAPA 
library quantification kit (KAPA Biosystems), and the 
library quality was assessed using the High-sensitivity 
DNA kit on the Agilent 2100 Bioanalyzer (Agilent, CA, 
USA). Paired-end 150 bp sequencing was performed for 
each library on the Illumina HiSeq 2500 and the HiSeq X 
Ten platform.

CpG islands and CpG shores bias analysis
The genomic coordinates of CpG islands were obtained 
from http://hgdow​nload​.cse.ucsc.edu/golde​npath​/
hg19/datab​ase/cpgIs​landE​xt.txt.gz, and CpG shores are 
defined as the regions immediately flanking CpG islands 
up to 2kbp away from both sides of the islands. CpG oth-
ers are all the hg19 human regions, which are not either 
in CpG islands or in CpG shores. To compute CpG cover-
age distribution of CpG islands, bedtools [44] was used 
to intersect genomic coordinates of CpG islands with 
coverage data of all hg19 CpG sites (~ 28 million CpGs). 
The same procedure was applied for both CpG shores 
and others. Finally, the coverage for the three classes 
was plotted as box plot using ggplot2 in R. With regard 
to the bias, a value < 0.75 indicates under-representation 

and > 1.2 indicates over-representation of reads across 
CpG islands and CpG shores.

Exons, intron, promoter, repeats and intergenic coverage 
analysis
Annotation of known gene transcripts and repeat ele-
ments was obtained from UCSC (http://hgdow​nload​.cse.
ucsc.edu/golde​npath​/hg19/datab​ase/known​Gene.txt.gz, 
http://hgdow​nload​.cse.ucsc.edu/golde​npath​/hg19/datab​
ase/rmsk.txt.gz). Genomic coordinates of repeat ele-
ments were obtained from rmsk.txt.gz file. Promoters are 
regions of non-repeat bases containing all bases ranging 
from upstream 1500 and downstream 500 base pairs of 
a known transcription start site (TSS) in knownGene.txt.
gz and not overlapping with itself. Exons were non-repeat 
bases and obtained from knownGene.txt.gz and not 
overlapping with itself. Introns were non-repeat bases 
and bases that are flanked by two exons of a single tran-
script and no overlapping with itself. Finally, intergenic 
regions were identified as the remaining bases in the ref-
erence genome. For computing the CpG coverage distri-
bution of exons, introns, promoter regions, repeats and 
intergenic regions, bedtools was used to intersect the rel-
evant genomic coordinates with coverage data of all hg19 
CpG sites. Finally, the coverage for all the five classes was 
plotted as box plots using ggplot2 in R.

Estimating read duplication rate for WGBS data of lower 
coverage
Nearly 50% of reads were randomly withdrawn from 
bam files of HiSeq X Ten’s WGBS data of approximately 
20× coverage by using samtools [43], and Picard tool 
2.3.0 (http://broad​insti​tute.githu​b.io/picar​d) was used to 
measure the read duplication rate of the down sampled 
bam file. This procedure was repeated 100 times to get 
the estimation of read duplication rate for the low-cover-
age WGBS data (5–10X).

Evaluation of DNA methylation agreement 
between different platforms
Pairs of WGBS data in HiSeq  2500 and HiSeq X Ten 
with coverage of at least 15× for every CpG site were 
used to compute the Pearson correlation. These CpG 

(See figure on next page.)
Fig. 8  Comparison of methylation correlation between HiSeq 2500 and HiSeq X Ten. a Correlation plots of methylation levels obtained from a cell 
line, a clinical sample and a FFPET sample sequenced on the Hiseq 2500 versus HiSeq X Ten (Pearson r > 0.94). b Correlation of methylation values 
obtained from HiSeq 2500 and HiSeq X Ten for a cell line, clinical sample and a FFPET sample after grouping them into four bins of methylation 
percentages. c Average kappa values for six sample pairs, including two cell lines, two clinical samples and two FFPE samples compared between 
the HiSeq 2500 and HiSeq X Ten platform. d Bar plot showing the distribution of percentage of discordant sites across the genome for a cell line, 
clinical sample and a FFPET sample

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/knownGene.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/knownGene.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/rmsk.txt.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/rmsk.txt.gz
http://broadinstitute.github.io/picard
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pair sites were then plotted with smoothScatter in 
R. To further evaluate the DNA methylation agree-
ment between the platforms, we binned these DNA 
methylation values into 4 bins of (0–20%), (20–50%), 
(50–80%) and (80–100%) as no methylation, low, inter-
mediate and high DNA methylation, respectively. Then, 
these bins were plotted as a heatmap using gplots [44]. 
Finally, Kappa statistics was used as a measure of agree-
ment between two different platforms [35] with func-
tion kappa2 (without weighted) in IRR package [47]. 
Kappa values from − 1 to 1 were assigned to the sam-
ples with values from + 0.0 to 0.2 indicating slight agree-
ment, + 0.21–0.40 indicating fair agreement, + 0.41–0.60 
indicating moderate agreement, + 0.61–0.80 indicating 
substantial agreement, + and 0.81 to 1.0 indicating per-
fect agreement.

HiSeq X Ten WGBS processing pipeline
The increased coverage achieved on the HiSeq X Ten 
generates > 1  Tb of data per run. To process the data, 
we developed a new bioinformatics pipeline package, 
Meth10X, based on previously published P3BSseq pack-
age [45], to support the increased number of bisulphite 
reads and reduce the processing time significantly. The 
Meth10X pipeline takes raw bisulphite reads in fastq files 
and trims the adapters following the guide of pre kit. The 
trimmed fastq files are aligned with bwa-meth [46] to the 
reference genome. The generated bam files are marked 
with duplication and merged if necessary. Estimation of 
the duplication rate, coverage bias (genomic features) 
and methylation bias in reads is carried out to provide 
quality control. We also use Qualimap 2 [47] for fur-
ther evaluation of the alignment, such as percentage of 
unmapped/mapped read metrics, mapping quality distri-
bution, GC content distribution, insert size distribution 
and coverage distribution. The pipeline, Meth10X, can be 
accessed from github, https​://githu​b.com/luulo​i/Meth1​
0X. For DNA methylation calling, MethylDackel (https​://
githu​b.com/dprya​n79/Methy​lDack​el) is used with three 
different cytosine context patterns (CG, CHH, CHG) and 
strand specificity. MethylDackel also gives more options 
to remove methylation bias by trimming bias before call-
ing methylation levels.

Estimating concordant SNPs from WGBS and WGS
For calling SNPs from WGBS, we incorporated Bis-
cuit (https​://githu​b.com/zwdzw​d/biscu​it) within the 
Meth10X pipeline. For calling SNPs from spike-in WGS 
50:50 mix data and WGS-GS, we used GenomeAnaly-
sisTK [48] following GATK best practices for variant call-
ing. All the SNP sets obtained were then filtered with at 
least 5× coverage and QUAL of SNP with at least 200.0 

for spike-in WGS data and WGS-GS and 20.0 for WGBS 
data. The SNP concordance and discordance between 
pairs (spike-in WGS, WGS-GS and WGBS) were evalu-
ated on the filtered vcf files by using hap.py package, a 
Haplotype VCF comparison tool (https​://githu​b.com/
Illum​ina/hap.py). For assessing the GC content across 
the genome for both WGBS and WGS-GS data, we used 
bedtools and human genome hg19 to create GC content 
with 100 bp sliding window, called GC content track. We 
then overlapped the vcf files of SNP from WGBS and 
WGS-GS with the GC content track to get the GC con-
tent score for every SNP. Followed by this, the density 
distribution of GC content score of WGS-GS and WGBS 
was plotted by ggplot2 in R. To get the methylated and 
unmethylated ratio of CpG sites near to a SNP across 
the genome for both WGBS and WGS-GS data, we used 
bedtools to get the CpG site nearest to a SNP within 
50 bp. Further, the CpG nearest track for both WGBS and 
WGS-GS was overlapped with the methylomes of the 
same sample to get the methylation ratio. The density dis-
tribution of methylation ratio for WGBS and WGS-GS 
was plotted by ggplot2 in R.

Abbreviations
WGBS: whole genome bisulphite sequencing; WGS: whole genome sequenc‑
ing; SNP: single nucleotide polymorphism.
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to a SNP within 50 bp. Figure 5 a, b Box plot showing the coverage 
distribution across exons, intergenic regions, introns, promoter regions 
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HiSeq X Ten (a) and HiSeq 2500 (b). Figure 6 a, b Two examples showing 
the difference in distribution of reads for a FFPET library obtained from the 
TruMethyl WG method and Accel-NGS Methyl-Seq method across a CpG 
island. Figure 7 a, b Summary of workflow for achieving optimal coverage 
on the HiSeq X Ten for intact genomic DNA and FFPET DNA.

https://github.com/luuloi/Meth10X
https://github.com/luuloi/Meth10X
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://github.com/zwdzwd/biscuit
https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py
https://doi.org/10.1186/s13072-018-0194-0
https://doi.org/10.1186/s13072-018-0194-0


Page 19 of 20Nair et al. Epigenetics & Chromatin  (2018) 11:24 

Authors’ contributions
SSN and SJC conceived and designed the experiments. PLL was involved 
in developing the Meth10X pipeline and processing the data. SSN and PLL 
performed the analysis and interpretation of data. SSN and WQ performed the 
library preparations and sequencing experiments. JJ-LW, JEJR, DLW and TPH 
provided the blood DNA samples, LH, JK, VH and PS provided prostate cancer 
DNA samples, and GT, MT, RR and LH provided the breast cancer cell line DNA. 
SJC and SSN wrote the manuscript with help from MM and PLL. All authors 
read and approved the final manuscript.

Author details
1 Genomics and Epigenetics Division, Garvan Institute of Medical Research, 
Darlinghurst, NSW 2010, Australia. 2 St Vincent’s Clinical School, UNSW, Sydney, 
NSW 2010, Australia. 3 Cancer Research Unit, Children’s Medical Research Institute, 
University of Sydney, Westmead, NSW 2145, Australia. 4 QIMR Berghofer, Brisbane, 
QLD 4006, Australia. 5 Department of Tissue Pathology and Diagnostic Oncology, 
Royal Prince Alfred Hospital, Camperdown, NSW, Australia. 6 Central Clinical School, 
Sydney Medical School, University of Sydney, Camperdown, NSW, Australia. 
7 Clinical Prostate Cancer Research, The Kinghorn Cancer Centre, Garvan Institute 
of Medical Research, Darlinghurst, NSW, Australia. 8 Chris O’Brien Lifehouse, 
Camperdown, NSW, Australia. 9 Department of Urology, St. Vincent’s Hospital, Dar‑
linghurst, NSW, Australia. 10 Cancer Theme, South Australian Health and Medical 
Research Institute, Adelaide, SA, Australia. 11 Australian Leukaemia and Lymphoma 
Group, Melbourne, Australia. 12 Discipline of Medicine, University of Adelaide, 
Adelaide, SA, Australia. 13 Department of Haematology, SA Pathology, Adelaide, 
SA, Australia. 14 Faculty of Health Science and Faculty of Science, University of Ade‑
laide, Adelaide, SA, Australia. 15 Australian Genomic Health Alliance, Melbourne, 
Australia. 16 Gene and Stem Cell Therapy Program, Centenary Institute, University 
of Sydney, Camperdown, NSW 2050, Australia. 17 Sydney Medical School, Univer‑
sity of Sydney, Sydney, NSW 2006, Australia. 18 Cell and Molecular Therapies, Royal 
Prince Alfred Hospital, Camperdown 2050, Australia. 19 Gene Regulation in Cancer 
Laboratory, Centenary Institute, University of Sydney, Camperdown, NSW 2050, 
Australia. 20 Epigenetics Research Program, The Garvan Institute of Medical 
Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia. 

Acknowledgements
We thank Marcel Dinger and Justin Stockmeyer for providing us access to the 
HiSeq 2500 and HiSeq X Ten, Kenlee Nagasuki (Illumina) for technical support 
in sequencing and Cambridge Epigenetix for providing us training for the 
TruMethyl WG library preparation method. The Australian Prostate Cancer 
Research Centre—NSW, would like to thank study participants for their contri‑
bution and the Australian Department of Health for funding and supporting 
the prostate biorepository.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets generated and/or analysed during the current study are not pub‑
licly available as they were generated as part of optimisation of the WGBS proto‑
col but are available from the corresponding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
We confirm we obtained consent to participate in the study from the partici‑
pants. Peripheral blood samples 23, 24, 25 and 26 from healthy individuals 
were collected with ethics approval from the Human Research Ethics Commit‑
tee of the Royal Prince Alfred Hospital (HREC/08/RPAH/222). Peripheral blood 
samples 2, 3, 4, 5, 6, 13 and 14 were collected from individuals with chronic 
myeloid leukaemia with ethics approval from the Royal Adelaide Hospital 
Human Research Ethics Committee (HREC/13/RAH/409, Protocol Number 
131015 and 101010). Prostate cancer DNA samples 5287, 5060, 13179 and 
10738 and FFPET DNA 1601 were collected with ethics approval from the 
Human Research Ethics Committee at St Vincent’s Hospital (H12/231).

Funding
This work was funded by the National Health and Medical Research Council 
(NHMRC) Project grants (#1070418, #1106870 to SJC, #1070881 to RR); 

Fellowships SJC (#1063559), Australian Prostate Cancer Research Centre-
NSW. This work was supported by computational resources provided by the 
Australian Government through NCI Raijin under the National Computational 
Merit Allocation Scheme. The blood samples and samples 27 and 28 used 
in this study were part of the NSW Genomics Collaborative Grant (JJ-LW and 
JEJR) and NHMRC Project Grants (#1080530, #1129901, #1128175 to JJ-LW and 
JEJR) and (#1126306 to JJ-LW). JEJR was funded by Cure the Future and an 
anonymous foundation. JJ-LW is a Cancer Institute of New South Wales Fellow. 
We would also like to acknowledge the Cancer Council SA Beat Cancer Fund 
(TPH) and NHMRC Practitioner Fellowship (TPH).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 9 February 2018   Accepted: 21 May 2018

References
	1.	 Meissner A, et al. Genome-scale DNA methylation maps of pluripotent 

and differentiated cells. Nature. 2008;454(7205):766–70.
	2.	 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies 

and beyond. Nat Rev Genet. 2012;13(7):484–92.
	3.	 Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. 

Nature. 2007;447(7143):433–40.
	4.	 Hovestadt V, et al. Decoding the regulatory landscape of medul‑

loblastoma using DNA methylation sequencing. Nature. 
2014;510(7506):537–41.

	5.	 Kretzmer H, et al. DNA methylome analysis in Burkitt and follicular 
lymphomas identifies differentially methylated regions linked to somatic 
mutation and transcriptional control. Nat Genet. 2015;47(11):1316–25.

	6.	 Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J 
Mol Biol. 1987;196(2):261–82.

	7.	 Zhu J, et al. On the nature of human housekeeping genes. Trends Genet. 
2008;24(10):481–4.

	8.	 Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes 
Dev. 2011;25(10):1010–22.

	9.	 Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes 
of some human cancers from their normal counterparts. Nature. 
1983;301(5895):89–92.

	10.	 Cheah MS, Wallace CD, Hoffman RM. Hypomethylation of DNA in human 
cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer 
Inst. 1984;73(5):1057–65.

	11.	 Brunner AL, et al. Distinct DNA methylation patterns characterize differ‑
entiated human embryonic stem cells and developing human fetal liver. 
Genome Res. 2009;19(6):1044–56.

	12.	 Brinkman AB, et al. Whole-genome DNA methylation profiling using 
MethylCap-seq. Methods. 2010;52(3):232–6.

	13.	 Gu H, et al. Genome-scale DNA methylation mapping of clinical samples 
at single-nucleotide resolution. Nat Methods. 2010;7(2):133–6.

	14.	 Serre D, Lee BH, Ting AH. MBD-isolated genome sequencing provides a 
high-throughput and comprehensive survey of DNA methylation in the 
human genome. Nucleic Acids Res. 2010;38(2):391–9.

	15.	 Lister R, et al. Human DNA methylomes at base resolution show wide‑
spread epigenomic differences. Nature. 2009;462(7271):315–22.

	16.	 Bibikova M, et al. Genome-wide DNA methylation profiling using 
Infinium (R) assay. Epigenomics. 2009;1(1):177–200.

	17.	 Bibikova M, et al. High density DNA methylation array with single CpG 
site resolution. Genomics. 2011;98(4):288–95.

	18.	 Pidsley R, et al. Critical evaluation of the illumina METHYLATIONEPIC 
BeadChip microarray for whole-genome DNA methylation profiling. 
Genome Biol. 2016;17(1):208.

	19.	 Zhou W, Laird PW, Shen H. Comprehensive characterization, annota‑
tion and innovative use of Infinium DNA methylation BeadChip probes. 
Nucleic Acids Res. 2017;45(4):e22.

	20.	 Suzuki MM, Bird A. DNA methylation landscapes: provocative insights 
from epigenomics. Nat Rev Genet. 2008;9(6):465–76.



Page 20 of 20Nair et al. Epigenetics & Chromatin  (2018) 11:24 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	21.	 Bibikova M, Fan JB. Genome-wide DNA methylation profiling. Wiley 
Interdiscip Rev Syst Biol Med. 2010;2(2):210–23.

	22.	 Laird PW. Principles and challenges of genomewide DNA methylation 
analysis. Nat Rev Genet. 2010;11(3):191–203.

	23.	 Beck S. Taking the measure of the methylome. Nat Biotechnol. 
2010;28(10):1026–8.

	24.	 Bock C, et al. Quantitative comparison of genome-wide DNA methylation 
mapping technologies. Nat Biotechnol. 2010;28(10):1106–14.

	25.	 Harris RA, et al. Comparison of sequencing-based methods to profile 
DNA methylation and identification of monoallelic epigenetic modifica‑
tions. Nat Biotechnol. 2010;28(10):1097–105.

	26.	 Schubeler D. Function and information content of DNA methylation. 
Nature. 2015;517(7534):321–6.

	27.	 Ziller MJ, et al. Coverage recommendations for methylation analysis by 
whole-genome bisulfite sequencing. Nat Methods. 2015;12(3):230–2.

	28.	 Jensen TJ, et al. Whole genome bisulfite sequencing of cell-free DNA and 
its cellular contributors uncovers placenta hypomethylated domains. 
Genome Biol. 2015;16:78.

	29.	 Jenkinson G, et al. Potential energy landscapes identify the information-
theoretic nature of the epigenome. Nat Genet. 2017;49(5):719–29.

	30.	 Kulis M, et al. Whole-genome fingerprint of the DNA methylome during 
human B cell differentiation. Nat Genet. 2015;47(7):746–56.

	31.	 Durek P, et al. Epigenomic profiling of human CD4 + T cells supports a lin‑
ear differentiation model and highlights molecular regulators of memory 
development. Immunity. 2016;45(5):1148–61.

	32.	 Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic 
investigation of critical experimental parameters. Nucleic Acids Res. 
2001;29(13):E65-5.

	33.	 Miura F, et al. Amplification-free whole-genome bisulfite sequencing by 
post-bisulfite adaptor tagging. Nucleic Acids Res. 2012;40(17):e136.

	34.	 Gao S, et al. BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics. 
2015;31(24):4006–8.

	35.	 McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 
(Zagreb). 2012;22(3):276–82.

	36.	 Pei L, et al. Genome-wide DNA methylation analysis reveals novel 
epigenetic changes in chronic lymphocytic leukemia. Epigenetics. 
2012;7(6):567–78.

	37.	 Zouridis H, et al. Methylation subtypes and large-scale epigenetic altera‑
tions in gastric cancer. Sci Transl Med. 2012;4(156):156ra140.

	38.	 El Hajj N, et al. DNA methylation signatures in cord blood of ICSI children. 
Hum Reprod. 2017;32:1761–9.

	39.	 Stirzaker C, et al. Mining cancer methylomes: prospects and challenges. 
Trends Genet. 2014;30(2):75–84.

	40.	 Suzuki M, Liao W, Wos F, Johnston AD, DeGrazia J, Ishii J, Bloom T, Zody 
MC, Germer S, Greally JM. Whole genome bisulphite sequencing using 
the illumina Hiseq X system. BioRxiv preprint; 2017.

	41.	 Stone A, et al. DNA methylation of oestrogen-regulated enhancers 
defines endocrine sensitivity in breast cancer. Nat Commun. 2015;6:7758.

	42.	 Toouli CD, et al. Comparison of human mammary epithelial cells 
immortalized by simian virus 40 T-antigen or by the telomerase catalytic 
subunit. Oncogene. 2002;21(1):128–39.

	43.	 Li H, et al. The sequence alignment/map format and SAMtools. Bioinfor‑
matics. 2009;25(16):2078–9.

	44.	 Warnes GR, Bolker B. gplots: various R programming tools for plotting 
data. R package version 2.6.0, 2012.

	45.	 Luu PL, et al. P3BSseq: parallel processing pipeline software for automatic 
analysis of bisulfite sequencing data. Bioinformatics. 2017;33(3):428–31.

	46.	 Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. Fast and accurate align‑
ment of long bisulfite-seq reads. ArXiv, 2014. 1401.1129v2.

	47.	 Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced 
multi-sample quality control for high-throughput sequencing data. 
Bioinformatics. 2015;32:292–4.

	48.	 Van der Auwera GA, et al. From FastQ data to high confidence variant 
calls: the genome analysis toolkit best practices pipeline. Curr Protoc 
Bioinf. 2013;43:1–33.


	Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Comparison of library sequencing preparation methods using intact genomic DNA with the Illumina HiSeq 2500 platform
	Optimisation of library loading concentration and spike-in balanced libraries on the HiSeq X Ten
	The potential for HiSeq X Ten to provide integrated WGS and WGBS on intact genomic DNA
	Correlation between library duplicate reads, spike-ins comparing HiSeq 2500 and HiSeq X Ten sequencing platforms
	Comparison of overall coverage between HiSeq 2500 and HiSeq X Ten
	Comparison of library preparation methods on FFPET DNA on the HiSeq 2500 Platform
	WGBS of FFPET DNA on the HiSeq X Ten
	Comparison of overall methylation correlation for intact genomic DNA and FFPET between HiSeq 2500 and HiSeq X Ten

	Discussion
	Conclusions
	Methods
	Cell lines
	DNA samples
	Library preparation methods
	Pre-BS library preparation method
	Post-BS library preparation methods

	Library QC and quantification
	CpG islands and CpG shores bias analysis
	Exons, intron, promoter, repeats and intergenic coverage analysis
	Estimating read duplication rate for WGBS data of lower coverage
	Evaluation of DNA methylation agreement between different platforms
	HiSeq X Ten WGBS processing pipeline
	Estimating concordant SNPs from WGBS and WGS

	Authors’ contributions
	References




