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Abstract: This study aimed to evaluate if the changes in oxygen saturation levels at intercostal muscles
(SmO2-m.intercostales) assessed by near-infrared spectroscopy (NIRS) using a wearable device could
determine the respiratory compensation point (RCP) during exercise. Fifteen healthy competitive
triathletes (eight males; 29 ± 6 years; height 167.6 ± 25.6 cm; weight 69.2 ± 9.4 kg;

.
VO2-máx

58.4 ± 8.1 mL·kg−1·min−1) were evaluated in a cycle ergometer during the maximal oxygen-uptake
test (

.
VO2-máx), while lung ventilation (

.
VE), power output (watts, W) and SmO2-m.intercostales were

measured. RCP was determined by visual method (RCPvisual: changes at ventilatory equivalents
(

.
VE·

.
VCO2

−1,
.

VE·
.

VO2
−1) and end-tidal respiratory pressure (PetO2, PetCO2) and NIRS method

(RCPNIRS: breakpoint of fall in SmO2-m.intercostales). During exercise, SmO2-m.intercostales decreased
continuously showing a higher decrease when

.
VE increased abruptly. A good agreement between

methods used to determine RCP was found (visual vs NIRS) at %
.

VO2-máx,
.

VO2,
.

VE, and W (Bland-
Altman test). Correlations were found to each parameters analyzed (r = 0.854; r = 0.865; r = 0.981;
and r = 0,968; respectively. p < 0.001 in all variables, Pearson test), with no differences (p < 0.001 in
all variables, Student’s t-test) between methods used (RCPvisual and RCPNIRS). We concluded that
changes at SmO2-m.intercostales measured by NIRS could adequately determine RCP in triathletes.

Keywords: exercise; near-infrared spectroscopy; respiratory muscles; oxygen uptake; respiratory
compensation point

1. Introduction

To objectively estimate the exercise intensity in a non-invasive and straightforward
way both during training and in a competitive race is crucial in long-distance sports, such
as marathon, road cycling, or triathlon [1–3]. Coaches and athletes have traditionally
used few physiological parameters, such as maximal heart rate (HR-máx.), oxygen uptake
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(
.

VO2-máx.), work rate (power (watts, W) or velocity), and lactate levels in capillary blood
([Lac]blood) [4,5]. Different models have been used to define training intensities zones
according to changes in these parameters at systemic levels [6–10]. The gold-standard
method to identify the training zones is based on the analysis of expired gases and changes
at ventilatory parameters, determining ventilatory thresholds (VT1 or aerobic threshold,
and VT2 or respiratory compensation point (RCP)) which corresponds to exercise-intensity
where a particular source of energy supply has more prevalence [11]. However, it is
expensive and difficult for athletes to access this kind of evaluation on a routine basis due
to the high cost of the equipment and the high technical skills and training required of
the staff. This gap must be covered by new methods that allow athletes to recognize the
steady-state exercise intensity that they could maintain for a long time without limiting the
blood flow and local oxygen delivery at peripheral locomotor muscles.

The assessment of oxygen saturation at muscular level (SmO2) has aroused growing
interest to researchers in exercise physiology by the easy and not-expensive cost of the
wearable devices that, by using the near-infrared spectroscopy (NIRS) principle, record the
local changes of this parameter. Regarding, SmO2 has mainly been evaluated in locomotor
muscles [12], showing good values for validity [13] and reliability [14,15]. Fontana et al. [16]
found that the breakpoint at SmO2-m.vastus laterallis was associated with RCP in healthy
participants during cycling exercise; and recently, Klusiewics et al. [17] determined that
changes in SmO2-m.vastus laterallis are similar to maximal lactate steady-state in rowers.
This evidence gives to SmO2 in locomotor muscles relevance and confidence to other
traditional methods for prescribing exercise; however, this parameter can be conditioned
by the energy demand of the respiratory muscles associated with the cost of breathing
(COB) during exercise [18], a factor that varies among sports disciplines [19], and breathing
patterns adopted during physical effort [20,21]. Considering that determination of VT is
based on changes at ventilatory variables (mainly, lung ventilation (

.
VE)), it is relevant to

know if changes at SmO2 of respiratory muscles (SmO2-RM) during exercise could help
to determine training zones, and specifically the RCP. Our research group previously had
been reported the good-to-excellent reliability of SmO2-RM measurements in long-distance
runners [22], the impact associated with breathing patterns [21], and sex differences during
exercise [23].

To our knowledge, few studies have been evaluated if the changes at SmO2-RM could
identify ventilatory thresholds. Moalla et al. [24] reported that changes at SmO2-RM could
identify RCP in children, similar to Rodrigo-Carranza et al. [25] in adult runners; however,
these studies did not consider the possible influence of respiratory mechanics and breathing
pattern adopted during physical effort on changes of SmO2-RM given the heterogeneous
of their participants and type of exercise protocol used, as while as the determination of
RCP was based on the v-slope method, which shows some difficulty to adequately identify
RCP when there is no precise breakpoint from linearity in the data curve. To elucidate if
oxygen level changes at respiratory muscles could determine RCP, this study aimed to
evaluate the SmO2-m.intercostales using a wearable device (MOXY®) in fifteen competitive
triathletes during a maximal incremental protocol exercise in a cycle ergometer, at the same
time that exhaled gases and ventilatory parameters were recorded by the breath-by-breath
method. Thus, parameters associated with exercising intensity, %

.
VO2-máx.,

.
VO2,

.
VE,

and power output were analyzed at exercise-time where RCP were determined by gold
standard method and the breakpoint in SmO2-m.intercostales (RCPNIRS). We hypothesized
that measuring changes of SmO2-m.intercostales during exercise is an adequate method to
determine the respiratory compensation point and a valuable tool to prescribe training
zones in athletes.

2. Materials and Methods
2.1. Design of Study and Participants

A cross-sectional observational study that assessed 15 healthy competitive triathletes
(8 males; age 29.2 ± 5.5 years; height 167.6 ± 25.6 cm; weight 69.2 ± 9.4 kg; body mass index
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(BMI) 22.6 ± 1.8; maximum oxygen-uptake (
.

VO2-máx.) 58.4 ± 8.1 mL·kg−1·min−1; maxi-
mal cycling-load (watts, W) 318.8 ± 41.0 W) without a history of systemic problems (e.g., res-
piratory, cardiovascular, metabolic, musculoskeletal or neoplastic diseases) or any infectious
or inflammatory process, for at least two weeks before measurements. The participants did
not consume drugs, antioxidants, or any nutritional support. The sample size calculation
was done by the software G*Power® 3.1 (Heinrich-Heine-University, Dusseldorf, Germany)
using previous data concerning the changes in oxygen saturation levels at m.intercostales
from rest to respiratory compensation point (or anaerobic threshold, VT2) found in healthy
subjects during cycling (from 77.5 to 64.0%) [23] and competitive marathoners during run-
ning (from 74.6 ± 10.7 to 52.9 ± 11.4%; and effect size 1.387) [21], considering a significance
level of 5%, statistical power of 80% and two-tail test, plus considering 5% of data losing.

All participants were informed of the purpose, protocol, and procedures before in-
formed consent was obtained from then. This study was approved by the Ethics Committee
of the Pontificia Universidad Católica de Chile (Institutional Review Board, protocol num-
ber 210525001, date of approval: 9 September 2021). The study was carried out according
to the Declaration of Helsinki for human experimentation.

2.2. Procedures

The measurements were done in the Laboratory of Exercise Physiology of the Pontificia
Universidad Católica de Chile, under controlled environmental conditions (temperature
20 ± 2 ◦C; relative humidity 40 ± 2%) and fixed schedule (08:00 to 12:00 h). All participants
were instructed to avoid physical activity 24 h before the day of evaluations and not to
engage alcohol, caffeine or other stimulants and food intake for at least three hours prior to
the measurements.

2.3. Anthropometric and Respiratory Measurements

The anthropometric assessments (body weight and height) were measured immedi-
ately after the participants arrived at the laboratory; subsequently, spirometry (Microlab,
model ML3500, CareFusion®, San Diego, CA, USA) was performed according to the Ameri-
can Thoracic Society (ATS) and European Respiratory Society (ERS) protocols [26], utilizing
the reference values of Knudson et al. [27].

2.4. Oxygen-Uptake Test

The maximal aerobic capacity (
.

VO2-máx.) was assessed by analyzing the ventilatory
parameters (lung ventilation (

.
VE), respiratory rate (RR), tidal volume (Vt)) and exhaled

gases (oxygen-uptake or consumption (
.

VO2) and carbon dioxide production (
.

VCO2)) by the
breath-by-breath method (MasterScreen CPX, JaegerTM, Traunstein, Germany) and expressed
under standard temperature pressure dry air (STPD), while the participants completed
an incremental exercise until voluntary exhaustion, despite verbal stimuli (respiratory
quotient 1.20 ± 0.05). This test was performed on a bike connected to an electronically
braked cycle ergometer indoor trainer device (KICKR®, Wahoo Fitness, Atlanta, GA, USA).
The participants maintained the same position on their road bike throughout the entire
exercise protocol (cycling postural position individually adjusted according to precedent
training sessions). The exercise protocol consisted of a 2-min rest, 3-min warm-up period at
100 watts (W), followed by an increase of 20 W every 80 s until exhaustion or all criteria
for ending the test were met. Participants were requested to maintain a cadence between
80 and 100 rpm during the test. To keep a good signal from the devices used (NIRS and
ergoespirometer), participants were required to keep their arms on the handlebars during
the test and not to adopt an “uphill” standing position of exclusive support on the pedals
(without contact on the saddle) during the last stages.

The
.

VO2-máx. was calculated as the highest value obtained during the last 30 s of the
incremental test, despite increasing the exercise intensity (<150 mL·min−1 of exercise) [28].
A cool-down phase of 3 min of the submaximal exercise was performed before the test.
The heart rate, pulse oxygen saturation, blood pressure, and subjective sensation of physical
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effort by modified Borg’s scale were measured at baseline and throughout the test. Before
every test, the gas analyzer was calibrated according to the instructions provided by the
manufacturer.

2.5. Measurement of Muscle Oxygenation (SmO2)

During the protocol, oxygen saturation levels at m.intercostales (SmO2-m.intercostales)
were non-invasively assessed using the monitor MOXY® (Fortiori Design LLC, Hutchinson,
MN, USA), which emits light waves close to the infrared range (Near-Infrared Spectroscopy,
NIRS (630–850 nm)) from diodes to the surrounding tissue and records total haemoglobin
(THb) and myoglobin (mHb) concentrations at the microvascular level [12]. This device
detects the amount of emitted light that returns to two detectors placed 12.5 and 25.0 mm
from the source, thus locally recording SmO2 through the interpretation of THb and
mHb levels [29]. The light penetration depth is half of the distance between the emitting
source and the detector (±12.5 mm) [30,31]. To determine SmO2-m.intercostales, a MOXY®

device was located in the seventh intercostal space of the anterior axillary line of the right
hemithorax [21–23]. The device was fixed to the skin using the material suggested by the
manufacturer, in addition to extra fixation with a cohesive band on the measurement zone,
avoiding excessive compression that could alter the SmO2 record (see Figure 1).
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Figure 1. Scheme design.

2.6. Data Analysis

Each athlete had an initial record of 90 s on the bike, followed by 60 s of baseline
resting phase, during which data acquisition was synchronized. Using the ventilatory vari-
ables and exhaled gases values recorded by the ergoespirometer during exercise protocol,
two blinded researchers determined by the visual method the respiratory compensation
point (RCPvisual) [11], which correspond to the secondary increase in

.
VE, the ventilatory

equivalent of oxygen-uptake (
.

VE·
.

VO2
−1), a marked increase in the ventilatory equivalent

of carbon dioxide production (
.

VE·
.

VCO2
−1) and decrease in the pressure value at the end

of CO2 expiration (Pet-CO2) during exercise, above aerobic threshold (VT1). In case of a
discrepancy between these evaluators, the opinion of an experienced third blinded research
was possible, accepting as the definitive criterion that point at which at least two evaluators
agreed [32]. None of the cases revealed differences between the two researchers in this
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study. Likewise, RCPNIRS was determined using a segmented linear regression model
on the SmO2-m.intercostales values recorded by MOXY® [33]. Two linear segments were
considered for the regression model, for which the segment slopes and breakpoint location
were unknown variables. To estimate these variables, the sum of the squared differences
of the segmented regression model with the data obtained in each subject is minimized.
This provides numerical values for the time associated with the regression breakpoint for
each subject, which is considered the threshold at which SmO2-m.intercostales decrease
significantly. To determine if changes at SmO2-m.intercostales during exercise could identify
the RCP, the values of %

.
VO2-máx.,

.
VO2,

.
VE, and W obtained at RCPvisual and RCPNIRS

were analyzed. The values studied were the average of the last 30 s before RCP time (visual
and NIRS). In this study, the data of SmO2 were expressed as a percentage ranging from 0 to
100%, considering the value at the resting stage as the maximal %SmO2-m.intercostales [31].

2.7. Statistical Analysis

The normality of the data was evaluated using the Shapiro-Wilk test. To assess whether
the variables analyzed differed between methods used to identify RCP (visual vs. NIRS),
confidence intervals (95% CI) were calculated to determine the averages of the means of
the differences of all the variables evaluated. The interpretation considered no differences
when the null value was within the confidence interval (Bland-Altman test). Pearson’s
correlation coefficient assessed correlations between variables’ values analyzed at RCP
time (visual and NIRS). Also, a comparison of variables was performed using the paired
Student´s t-test. Statistical significance was set at p < 0.05. The statistical analysis was
performed using GraphPad Prism (version 8.0; San Diego, CA, USA).

3. Results

The participants’ characteristics, spirometry parameters, and maximum cardiores-
piratory values at the oxygen-uptake test are shown in Table 1. The lung function was
normal with no restrictive or obstructive alterations. The oxygen-uptake test ended when
all participants achieved criteria for maximal effort.

Table 1. Characteristics of participants and maximum cardiorespiratory values at oxygen-uptake test.

Variables Mean ± Standard Deviation

sex (n) male = 8; female = 7
years 29.2 ± 6.5

height (cm) 167.6 ± 25.6
weight (kg) 69.2 ± 9.4

BMI 22.6 ± 1.8
Triathlon experience (year) 8.2 ± 2.3

Training volume (hours·week−1) 18.0±2.3
FEV1 (L) 4.28 ± 0.78

FEV1 (% predicted) 94.0 ± 1.2
FVC (L) 5.03 ± 1.03

FVC (% predicted) 111.9 ± 2.5
FEV1 ·FVC−1 (%) 85.0 ± 7.5
load-máx. (watts) 318.8 ± 41.0

.
VO2-máx. (mL·kg−1·min−1) 58.4 ± 8.1

.
VE-máx. (L·min−1) 168.4 ± 29.3

HR-máx. (bpm) 184.2 ± 8.6
%HR-máx. (220-age) 96.0 ± 1.8

RPE 9.8 ± 0.4
Abbreviations: BMI = body mass index; FEV1 = Forced expiratory volume at first second; FVC = Forced vital
capacity;

.
VO2-máx = maximum oxygen uptake;

.
VE = lung ventilation; HR = heart rate; RPE = Rate of perceived

exertion (assessed by modified Borg scale).
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During exercise protocol, the ventilatory equivalent of carbon dioxide (
.

VE·
.

VCO2
−1)

showed an abrupt increase because of increased lung ventilation (
.

VE) associated with in-
creased effort intensity. Concomitantly, the muscle oxygen saturation level at m.intercostales
decreases markedly, corresponding with a breakpoint detected by the algorithm used
(RCPNIRS). The THb levels measured by MOXY® did not change during exercise protocol.
Figure 2 shows the changes of variables analyzed during exercise in a participant.
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3.1. Comparison between RCPvisual and RCPNIRS

No differences between variables selected to compare RCPvisual and RCPNIRS methods
were found (paired Student’s t-tests, see Figure 3).
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3.2. Correlations

The Pearson´s correlations analysis for each variable studied is shown in Figure 4.
A good-to-excellent direct association was found between both methods (p < 0.001, for
all variables).

3.3. Agreement

The Bland-Altman plots are shown in Figure 5. The mean differences and limits of
agreements against the average value obtained by both methods used to detect RCP (visual
and NIRS) for %

.
VO2-máx.,

.
VO2 relative (mL·kg−1·min−1),

.
VE, and load (watts, W) showed

that the differences in scores were within 95% of the confidence interval, showing that both
methods predict RCP closely.
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4. Discussion

The study aimed to evaluate if changes in oxygen saturation levels at m.intercostales
measured by a wearable device could accurately determine the respiratory compensation
point (RCP) in competitive triathletes during cycling exercise. The main findings are that in
variables associated with exercise-intensity (%

.
VO2-máx.,

.
VO2 relative (mL·kg−1·min−1),

.
VE, and load (watts, W), were not significant differences between the traditional method
used to determine RCP (visual method by analysis of exhaled gases and ventilatory param-
eters) and the breakpoint in %SmO2-m.intercostales during cycle exercise; good-to-excellent
levels of associations; and good levels of agreement (high reliability). To our knowledge,
this is the first study that reports that RCP could be determined by a wearable device
(MOXY®) during cycling exercise in competitive triathletes.

Few studies have focused on identifying RCP using a NIRS device on respiratory
muscles during exercise. Although, Moalla et al., (2005) in children [24], Fontana et al.
(2015) [16] in healthy adults, and Rodrigo-Carranza et al., (2021) in runners [25] have
reported interesting results, those data are difficult to extrapolate to our participants owing
to factors such as the method used for RCP determination [11,32], sex-differences associated
to ventilatory response to exercise [23], high biological variability of cardio-ventilatory
responses during exercise in a non-steady-state [19], breathing patterns adopted during
effort [21], intensity of physical exercise performed [20,34–36], decreased muscle perfusion
as a consequence of muscular contractions [37,38], loss of SmO2 signal due to changes
in positions and/or adipose tissue where the devices are positioned [39,40], and type of
device used to record muscle oxygen levels [12,30,41,42]. In this study, we used a MOXY®

for recording SmO2-m.intercostales. This device has shown good values of validity [14] and
reliability [22] to record SmO2 during exercise; and good agreement levels to other NIRS
devices [30]. The depth of light penetration is maintained at near 12.5 mm, aspects that
allowed the non-presence of artefacts in the assessment of m.intercostales in the triathletes of
this study, given they were within the normal BMI range; this strength from the wearable
device has been found previously by our research group in runners [21] and healthy
subjects [23]. Another relevant factor is the method used to identify RCP. This visual
method is based on the criterion used by experienced researchers, who determine RCP
considering the abrupt increase in the ventilatory equivalent of carbon dioxide production
(

.
VE·

.
VCO2

−1) and decrease in the pressure value at the end of CO2 expiration (Pet-CO2)
during exercise, above aerobic threshold [43]. Other studies with interesting findings
have used other methods to identify RCP, such as the v-slope method, based on the
breakpoint of the linearity of the curve

.
VCO2 vs.

.
VO2 [24,44,45], breakpoint at heart-rate

variability [46–50], or lactate blood level curves [11,41,51]; however, in order to diminish
the variability inter- and intra- evaluator, we chose the method widely used for exercise
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scientists, with good results because in no case was there a discrepancy between two
experienced researchers.

Another finding was regarding the changes of SmO2-m.intercostales during the ex-
ercise protocol. This data showed abrupt decreases while

.
VE increased exponentially,

sustaining that an increase of recruitment of these muscle fibers implicates a decrease in
oxygen levels in respiratory muscles. The changes of oxygen levels in respiratory muscles
during our exercise protocol were similar to previous studies [16,20–25,34], recognizing
this assessment as a novel and non-invasive method to estimate the cost of breathing (COB)
or oxygen-uptake associated to the work of the respiratory muscles during exercise in
athletes. Concerning, the COB at rest is near 2% of the total oxygen requirement in healthy
adults [52], while during exercise, by the increase of

.
VE, it reaches 9 ± 3% of

.
VO2-máx.

in trained subjects [53,54], 10–15% in inactive subjects [55], and 30–45% in patients with
chronic respiratory diseases [56–58]. At exercise-time where RCPvisual was determined,
the %SmO2-m.intercostales decreased between 10–15%, reaching a greater decrease at maxi-
mal stage (30–35%); these results are similar to exercise-time at the breakpoint in which
SmO2-m.intercostales was found by the linear regression model used, and maximal stage
(data not showed).

In this study, both sex groups showed similar results (data not showed); however,
possible sex differences is another aspect to include in future research because women have
shown more COB at the same exercise intensity with lower values of SmO2 at respiratory
muscles than their male counterparts [23,59–61]. The relatively low number of subjects
and the homogeneity of participants’ characteristics in terms of their fitness level probably
influenced the fact that no possible sex differences were found.

A limitation of this study is the lack of adipose thickness measures by skinfold and/or
ultrasonography. This prevented us from verifying that the muscle tissue assessed was
within the measuring range of the wearable device used to record SmO2 (MOXY®) [30].
In the case of the MOXY® device, the light penetration is maintained at near 2 cm, aspects
that allowed the non-presence of artefacts in the assessment of m.intercostales in the triath-
letes of this study, given they were within the normal BMI range. However, we consider
that a limitation of the MOXY® device is that it does not report the oxygenated and de-
oxygenated haemoglobin vs. myoglobin levels, and specially that is not possible to know
the blood flow in the muscles assessed; this aspect should be evaluated in future studies
to elucidate if the local SmO2 changes are caused by oxygen consumption or vasomotor
responses. For instance, a decrease in SmO2 can be due both to local vasoconstriction and
low delivery of blood flow or exclusively because of high oxygen uptake at muscle tissue,
even under a higher blood flow regime. Another limitation is that the cyclic hormonal
variations should be considered in women participants, given that oedema, dehydration,
and altered thermoregulation are factors affecting physical performance by modifying the
ventilatory center response [62–64]. New studies could consider the stage of the menstrual
cycle; however, it is not consistently found to influence exercise performance [65,66]. Future
research should include a larger cohort with a greater variety of long-distance competitors
(e.g., runners, cyclists, ultra-trail, etc.) to confirm the results obtained in this study.

It is of interest that future studies will evaluate the impact of respiratory muscle
training on the exercise-induced changes at SmO2-m.intercostales. To our knowledge, it is
unknown whether specific training regimes, such as ones based on resistance like load
threshold (e.g., POWERbreathe®, MT Technologies, Birmingham, UK) or endurance train-
ing like isocapnic hyperpnea (e.g., SpiroTiger®, MVM, Bologna, Italy), could have more
beneficial effects either on this parameter or improvements on exercise capacity reflected
in ventilatory threshold changes. Also, the associations between the assessments of respi-
ratory muscles oxygen-uptake or oesophageal balloon catheter and SmO2-m.intercostales
measurements can be explored to define the best and low-cost method that allows sports
and clinicians to incorporate an easy and valuable way to measure the COB adequately.
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5. Conclusions

This study demonstrates that assessing oxygen saturation levels at m.intercostales
during exercise is a valid method to determine the respiratory compensation point (RCP)
in triathletes. Our results show an adequate level of agreement, good-to-excellent levels of
associations, and no differences between the gold-standard method to determine the RCP
(the visual method by analysis ventilatory variables and exhaled breath gases), and changes
of SmO2-m.intercostales recorded by a wearable device using NIRS principle. These findings
are helpful for athletes and coaches, allowing to recognize adequately the exercise intensity
or training zone at which to perform or prescribe sport activities, disregarding not-easy
access and expensive techniques.
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