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ABSTRACT

Exome sequencing strategy is promising for finding
novel mutations of human monogenic disorders.
However, pinpointing the casual mutation in a
small number of samples is still a big challenge.
Here, we propose a three-level filtration and priori-
tization framework to identify the casual mutation(s)
in exome sequencing studies. This efficient and
comprehensive framework successfully narrowed
down whole exome variants to very small numbers
of candidate variants in the proof-of-concept
examples. The proposed framework, implemented in
a user-friendly software package, named KGGSeq
(http://statgenpro.psychiatry.hku.hk/kggseq), will
play a very useful role in exome sequencing-based
discovery of human Mendelian disease genes.

INTRODUCTION

Identification of mutations underlying all human rare
monogenic disorders is far from complete (1–3) and is of
substantial interest in understanding disease mechanisms
and development of drug targets (4,5). Recent advances in
exome sequencing technologies make it possible to reveal
the unknown disease mutations (6) and are leading to the
discovery of many variants which affect protein function
and cause Mendelian diseases (2), compared to traditional
positional cloning strategies (7). However, finding the
causal mutation(s) for a particular Mendelian disease
among millions of variants is as difficult as looking for a
needle in the haystack. In addition, it has been noted that
most private sequence variants of a person or a pedigree,
which are not small in size, are likely to be neutral and do
not cause any severe disorders (8). So it is still costly, la-
borious and challenging to pinpoint the genuine disease
mutations even though the price of exome sequencing is
now dropping dramatically (9).

A number of software tools can be used to narrow down
the list of candidate variants in exome sequencing studies.
Some are statistical genetics tools which prioritize genomic
regions based on evidence for shared ancestral poly-
morphisms and/or genetic linkage co-segregation, like
BEAGLE, GERMLINE, PLINK IBD and MERLIN
(10–12). Meanwhile, a few computational biology tools
focus more on predicting degree of deleteriousness of a
non-synonymous (NS) single nucleotide variant (SNV)
in a protein-coding gene by various computational algo-
rithms using genomic features like amino acid physico-
chemical properties, protein structure, cross-species
conservation, etc (13,14). Recently, a database, named
dbNSFP, has complied and standardized the deleterious-
ness scores derived by five widely used prediction tools
[SIFT (15), Polyphen2 (16), LRT (17), MutationTaster
(18) and PhyloP (19)] at the NS SNVs of consensus
coding sequences (CCDS) regions of human genome to
facilitate the process of evaluating functional importance
of large amount of NS SNVs in exome sequencing studies
(20). Other bioinformatics tools, such as SeattleSeq
(http://snp.gs.washington.edu/SeattleSeqAnnotation131/)
and ANNOVAR (21), focus on comprehensive annota-
tion of variants using information from diverse bio-
informatics resources including gene features, genomic
conservation, etc. However, these functionalities are
scattered in different analytical tools, which means users
have to do the time-consuming job of combining their
results together. Sometimes, the results from different
functional site prediction tools are inconsistent (17),
making it difficult to obtain a single list of candidates
for follow-up validation. Moreover, other valuable
resources, including biological pathways and biomedical
literatures, are still not incorporated into the existing
tools.
Accordingly, we proposed a comprehensive three-level

framework to combine a number of filtration and priori-
tization functions into one analysis procedure for exome
sequencing-based discovery of human Mendelian disease
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genes. We then evaluate the performance of this frame-
work by a number of synthesized proof-of-concept
examples about known causal mutations of Mendelian
disorders.

MATERIALS AND METHODS

Construction of a three-level filtration and prioritization
framework

The proposed framework is comprised of a series of func-
tions to filter and prioritize variants at three different levels:
genetic level, variant-gene level and knowledge level, ac-
cording to the resources used (illustrated in Figure 1).
This framework has been implemented as one of functional
modules in our software tool called KGGSeq (a biological
Knowledge-based mining platform for Genomic and
Genetic studies using Sequence data, http://statgenpro
.psychiatry.hku.hk/kggseq). In KGGSeq, these functions
can be carried out sequentially or skipped optionally
according to various purposes.

Genetic level

Genetic information, if used appropriately, can help
quickly narrow the candidate regions of interest for

Mendelian diseases. The functions at genetic level
consider two pieces of information: genomic region
shared by multiple affected family members and mode
of inheritance of disease. For Mendelian diseases,
affected family members usually share the genomic
segment harboring the causal mutation(s). Therefore,
variants inside the identity-by-descent (IBD) regions
found among the affected family members are of
primary interest, regardless of the penetrance of the
causal mutation(s). KGGSeq can read the IBD regions,
estimated by a third-party software tool such as Beagle,
PLINK and Merlin, and then highlight variants falling
into these regions. It can also read the regions with sig-
nificant evidence of genetic linkage (or co-segregation)
reported by genetic linkage analysis tools like Merlin,
SimWalk2, and Allegro in order to filter out regions
unlikely covering the causal variants; these tools can
utilize the linkage information also in unaffected family
members and consider the penetrance of causal mutations
through statistical models. The mode of inheritance of
disease can also be used to effectively exclude impossible
disease-causal variants. Specifically, for rare autosomal
recessive disorder KGGSeq excludes sequence variants
which have heterozygous genotypes in one or more
affected family members; and if unaffected family

Figure 1. The three-level filtration and prioritization framework implemented in KGGSeq.
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members are also recruited for investigating of a familial
early-onset Mendelian disease, KGGSeq can be used to
exclude variants which have the same homozygous geno-
types in both affected and unaffected family members. For
rare autosomal dominant disorders, when it is very
unlikely that affected family members without consan-
guineous mating carry homozygous mutation genotypes,
KGGSeq can be used to exclude sequence variants which
are homozygous in one or more affected family members;
and if unaffected family members are also recruited for
investigating of a familial early-onset Mendelian disease,
KGGSeq can be used to exclude the bi-allelic variants
which are heterozygous genotypes in one or more of the
unaffected ones. Note, however, that the inheritance
mode-based filtration is proposed under strong assump-
tions for rare Mendelian diseases with clear inheritance
mode. If the inheritance mode is elusive, such filtration
is not suggested; otherwise it may lead to the missing of
the genuine mutation(s).

Variant-gene level

For rare severe diseases, underlying causal mutations are
very unlikely to be common in human population.
KGGSeq can filter out common variants deposited in
public databases (including the 1000 Genomes Project
and NCBI dbSNP) as well as existing in the in-house
data sets according to an adjustable allele frequency
threshold (1% by default in KGGSeq). In addition, one
can use gene features of variants for prioritization. As
severe Mendelian disorders are more likely to be caused
by NS or splicing or insertion/deletion mutations which
change the amino acids in a protein (2), focusing only on
these NS or splicing variants often substantially narrows
down the number of candidate variants. KGGSeq can
map the variants onto Refseq genes according to the co-
ordinates and allow users to exclude variants by their gene
features (such as intron and synonymous variants).
Moreover, because not all NS SNV contribute equally
to affecting functions of coded proteins, KGGSeq
incorporated the five deleteriousness scores from various
bioinformatics algorithms (20), by logistic regression
model to more accurately predict whether a NS SNV is
potentially disease-causal or not (see more in the ‘Logistic
regression prediction model for NS SNVs’ below).

Knowledge level

Since the protein products of genes responsible for
the same or phenotypically similar disorders tend to phys-
ically interact with each other so as to carry out certain
biological functions (22), KGGseq incorporates the
physical protein–protein interactions (PPIs) from
STRING database version 9.0 (23) (http://string-db.org/)
and highlights variants located in a gene whose protein
product is known to have PPI(s) with the protein
products of some user-specified seed genes. These seed
genes are often known to cause the exact disease in
question or phenotypically similar diseases. Analogously,
causative genes of the same (or phenotypically similar)
diseases are inclined to distribute within the same biologic-
al modules like pathways (24,25). KGGSeq currently

incorporates 880 canonical pathways curated by GSEA
(26) and is able to highlight variants of a gene sharing
the same biological pathway(s) with some user-specified
seed genes. Besides, KGGSeq can automatically look up
the relevant literature information in NCBI PubMed
database (http://www.ncbi.nlm.nih.gov/pubmed) using
gene symbol, ideogram location and the disease name(s)
as keywords. This feature can be very effective for finding
the causal variant (either novel or not) of a disease within
known casual genes or published genetic linkage regions.

Logistic regression prediction model for NS SNVs

The logistic regression model was constructed to combine
the five deleteriousness scores [SIFT (15), Polyphen2 (16),
LRT (17), MutationTaster (18) and PhyloP (19)] in order
to give a more accurate prediction of the role of a NS SNV
in Mendelian disease. We selected 7296 unique NS SNVs
underlying certain human monogenic disorders as cases
and 9829 unique NS SNVs with minor allele frequencies
(MAF) <0.01 as controls (see more in the ‘Data sets’
section below) to train and test the prediction model.
The 10-fold cross-validation approach was used to assess
the performance of the prediction model. The receiver
operating characteristic (ROC) curves were used to
compare the performance of the proposed model with
the individual deleteriousness scores. We used a discrim-
ination cutoff which led to the maximal summation of true
positive rate (sensitivity) and true negative rate (specifi-
city) to classify a variant as disease-causal or neutral by
the trained logistic regression model.

Data sets

Disease-causal and neutral variants. 9133 unique variants
associated with some human diseases in the OMIM
database were downloaded and extracted from Galaxy
(http://main.g2.bx.psu.edu/library). 59557 unique NS
SNVs in the 1000 Genomes Project dataset (released in
March 2010 and provided by ANNOVAR, http://www
.openbioinformatics.org/annovar/) were also downloaded.
The variants from the OMIM database were regarded as
disease-causal, after exclusion of variants in the 1000
Genomes Project and/or those associated with complex
diseases. The variants from the 1000 Genomes Project
were regarded as being neutral. Five types of standardized
deleteriousness scores (ranging from 0 to 1) downloaded
from the dbNSFP database (20) were used as explanatory
variables for each NS SNV in the multiple logistic regres-
sion model. Variants with any missing deleteriousness
scores were ignored. The numbers of disease-causal,
neutral variants with MAF< 0.01 and neutral variants
with MAF� 0.01 examined are 7296, 9829 and 38 260,
respectively.

Synthesized exomes with disease causal variants. We
downloaded exome sequence variants of six HapMap
subjects [NA12156 and NA12878 (Caucasian) NA18507
and NA19240 (African), NA18956 (Japanese) and
NA18555 (Chinese)] from the public domain provided
by Ng’s group (27). In order to test the effectiveness of
KGGseq in prioritizing disease causal variants/genes,
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we inserted several known causal mutations of monogenic
disorders into these exomes so as to make eight
synthesized exomes (named S_exome1till S_exome8).
The disease causal variants included a missense mutation
(in heterozygous form) on MYH3 for Freeman–Sheldon
syndrome (FS) (27), a truncating mutation (in homozy-
gous form) on SERPINF1 for Osteogenesis imperfect
(OI) (28) and a 1-bp frameshift insertion (in heterozygous
form) for Miller’s syndrome (2). Each of the six case
exomes (S_exome1� S_exome6) contained the missense
mutation for FS; S_exome7 was made up of the OI
causal truncating mutation (in homozygous form) and
SNV variants from NA18555. One 1-bp frameshift inser-
tion on DHODH for Miller syndrome was merged with
145 indels from NA18555 to form S_exome8.

RESULTS

Filtration and prioritization in the synthesized exomes

KGGSeq was used to prioritize causal variants/genes in
each synthesized exome through the three-level filtration
and prioritization framework (the IBD filtering function
are ignored because these HapMap subjects are unre-
lated). Table 1 shows the counts of variants after a
step-by-step filtration.
For the FS syndrome (S_exome1-S_exome6), the first

two-level filtrations produced a small set of �100–150
candidate variants. The FS syndrome is a subtype of
Distal arthrogryposis type 2A (DA2); and Distal
arthrogryposis type 1A (DA1) is clinically similar to (but
less severe than) DA2. Therefore, in the knowledge level
prioritization, we used four known causal genes (TNNI2,
TNNT3, TPM2 and MYBPC1) for DA1 and DA2 as seed
candidate genes for PPI and biological pathway
exploration and three terms (Freeman–Sheldon
syndrome, Distal arthrogryposis type 2A and Distal
arthrogryposis type 1A) for literature mining. The third
level prioritization successfully narrowed down the candi-
date variants to a very small subset variants and
even pinpointed the exact mutation, a missense

mutation p.672R>H at 17th exon of MYH3, in the
S_exome1 and S_exome6. We found the underling
causative gene MYH3 had physically PPIs with all of
the four seed candidate genes (Figure 2) and also
shared two pathways (REACTOME_MUSCLE_
CONTRACTION and REACTOME_STRIATED_
MUSCLE_CONTRACTION, http://www.reactome.org/
entitylevelview/PathwayBrowser.html#DB=gk_current&
FOCUS_SPECIES_ID=48887&FOCUS_PATHWAY_
ID=397014&ID=397014) with the four genes.

For the recessive disorder (S_ exome7), OI, the filtration
functions in the early steps (till common variants exclusion
step) effectively reduced the candidate variants from
16 048 to 51. The logistic risk score led to a further
removal of 49 predicted non-disease causal variants.
Among the two remaining variants, the causal mutation
(p. 232Y>X of SERPINF1) has a higher predicted score
which is related to the probability of being involved in
Mendelian disease given the deleteriousness scores
compared to the other mutation. Hence, the knowledge-
level filtration is ignored and Table 1 has no results at this
level. For the Miller syndrome (S_ exome8), the common
variants filtration function only removed around 30 indels
and the logistic prediction model based on the
deleteriousness scores was not applicable to them. To
avoid circular reasoning, we did not use the known
causal gene DHODH as seed candidate genes but
employed four anonymous disease names (Miller
syndrome, Postaxial acrofacial dysostosis, Genee–
Wiedemann syndrome, Wildervanck–Smith syndrome) to
explore the NCBI PubMed for a prioritization.
Eventually, eight indels were highlighted. The cytoband
regions of seven different indels co-occurred in the ab-
stracts of five published papers with the disease names
as PubMed keywords. The causative gene DHODH was
mentioned by three papers about Miller syndrome in the
PubMed database.

Logistic regression model-based prediction

Figure 4a shows the ROC curves of various prediction
methods to differentiate Mendelian disease-causal

Table 1. Counts of SNPs (and genes) after filtrations by functions of the three-level framework in KGGSeq

Steps S_exome1 S_exome2 S_exome3 S_exome4 S_exome5 S_exome6 S_exome7 S_exome8
SNV SNV SNV SNV SNV SNV SNV Indel

Initial 16 120 15 971 19 721 19 518 16 012 16 048 16 048 146
Inheritance patterna 10 180 (Dom) 9929 (Dom) 12 897 (Dom) 12 867 (Dom) 9133 (Dom) 9182 (Dom) 6867 (Rec) 146 (Dom)
Non-synonymousb 4705 4582 5837 5833 4171 4163 3089 143
Rare in dbSNP+1000 Genomec 457 508 709 794 410 508 51 116 (113)
Predicted to be disease causal 106 (90) 127 (117) 149 (133) 164 (152) 95 (87) 120 (107) 2 (2) –
Knowledge-relatedd 1 (1) 7 (7) 4 (4) 6 (6) 6 (5) 1 (1) –e 8 (8)
PPI 1 (1) 2 (2) 1 (1) 1 (1) 1 (1) 1 (1) – –
Pathway 1 (1) 5 (5) 2 (2) 4 (4) 2 (2) 1 (1) – –
PubMed 1 (1) 3 (3) 3 (3) 4 (4) 4 (3) 1 (1) – 8 (8)

aDominant mode only considered with variants with heterozygous genotypes and recessive mode only considered with variants with homozygous
genotypes; bNon-synonymous includes missence, stopgain, stoploss and splicing SNVs and insertions/deletions causing frameshift, non-frameshift,
stoploss, stopgain and splicing differences; cThe rare variants referred to variants with MAF< 0.01 in dbSNP and 1000 Genome; dKnowledge-related
variants/genes refer to those variants’ genes having PPI(s) or sharing pathway(s) with provided candidate gene(s), and those variants fell into
region(s) or gene(s) which co-occurred in the titles or abstracts of papers in PubMed database; e‘—’ means the corresponding analyses were not
conducted for reasons stated in the 2nd paragraph of the ‘Results’ section.
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variants from neutral variants with MAF< 0.01. Among
the five algorithms of the deleteriousness scores, the
MutationTaster outperforms the other four. However,
the combined prediction by logistic regression model can
still improve the overall performance a little bit and is
more accurate when the true positive rate (or sensitivity)
is over 70%. We also found that the individual
deleteriousness scores were only in weak or moderate
correlation (Spearman’s rank correlation, Figure 3) and
four of them are statistically significant in the multiple
logistic regression model (Table 2) despite the fact that
these tools use some common resources (such as
cross-species conservation) to derive these deleteriousness
scores. The combination of multiple scores may take ad-
vantage of the possible complementarities between differ-
ent tools to allow more accurate prediction. Figure 4b
shows the ROC curves of various prediction methods to

differentiate Mendelian disease-causal variants from
neutral variants with MAF� 0.01. As expected, it is
easier for all prediction tools to classify the relatively
common variants and disease causal variants. However,

Figure 3. Pair-wise correlation of the five deleteriousness scores in the (a) disease-causal and (b) neutral rare variant sets. The Spearman’s rank
correlation method was used to calculate the pair-wise correlation coefficients.

Figure 2. Protein–protein interaction network of MYH3 with four candidate genes. The five involved genes are in dashed circle. Each filled node
denotes a gene; edges between notes indicate PPIs between protein products of the corresponding genes. Different edge colors represent the types of
evidence for the association. This figure was produced by STRING (V9.0).

Table 2. Summary results of multiple logistic regression of five

deleteriousness scores

Deleteriousness scores Beta (±SD) Z statistic Pr(>jzj)

PhyloP 0.18 (±0.08) 2.13 0.033
SIFT 1.9 (±0.12) 15.33 <2e� 16
Polyphen2 1.00 (±0.06) 16.73 <2e� 16
LRTScore 0.10 (±0.12) 0.85 0.39
MutationTaster 2.34 (±0.06) 39.62 <2e� 16

The disease causal variants and neutral rare variants (MAF< 0.01)
were used for model fitting in the logistic regression model.
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since common variants (MAF� 0.01) can be straightfor-
wardly excluded using common variants in human popu-
lations, KGGSeq adopted the logistic regression model
trained and tested on the data set made up of neutral
variants with MAF< 0.01 and OMIM disease mutations
to prioritize NS SNVs for Mendelian diseases. Given the
deleteriousness scores, a probability-like value can be
calculated by the logistic regression formula. The cutoff
of the probability-like value which results in the maximal
summation of average true positive rate and true negative
rate was 0.5 in the 10-fold cross validation procedure. The
corresponding average true positive rate and true negative
rate are 81.4 and 74.2%, respectively.

KGGSeq platform

KGGSeq provides a user-friendly command line interface
for users to utilize functions in the three-level filtration
and prioritization framework to process large amount of
exome sequencing data easily. It can recognize the variants
data inputted in various formats, including the Variant
Call Format (VCF, http://vcftools.sourceforge.net/specs
.html). It outputs a list of prioritized and annotated
variants in a flat text file or an excel file (see more at
website of KGGSeq http://statgenpro.psychiatry.hku.hk/
kggseq). Resource data of KGGSeq can be automatically
updated from the website of KGGSeq or from their
original sources.
In a testing of the synthesized exome (S_exome5), it

took 5min to reduce the number of variants from 16,012
to 95 on a Linux machine with Intel XEON 2 CPU
2.93GHz. Memory usage was <1GB RAM. However, it
spent additional 15min in remotely accessing the NCBI
PubMed database to explore relevant literatures for the 95
variants. This step was slowed down deliberately because
too frequent connection to PubMed database would be
blocked by NCBI.

DISCUSSION

The proposed three-level framework has great potential to
pinpoint causal mutations of monogenic diseases in
massive amount of exome sequencing data. To our know-
ledge, KGGSeq is the first tool which efficiently combines
multiple diverse resources into a single analysis frame-
work for exome-sequencing-based discovery of human
Mendelian disease gene. We have conceptually demon-
strated its efficiency and power for prioritization in a
number of synthesized data sets of three monogenic
diseases (FS syndrome, OI and Miller syndrome), in
which it dramatically reduced thousands of variants to a
very small candidate variant list for follow-up replication.

We used a logistic regression model to combine multiple
deleteriousness scores to predict whether a rare variant
(MAF< 0.01) is disease-causal or not. In our testing
examples, the prediction model correctly excluded vast
majority of benign NS SNVs and even directly pinpointed
the causal mutations of the autosomal recessive disease,
OI. This suggests that the prediction function may be very
effective for dealing with autosomal recessive diseases. In
the study, we also found that the conventional logistic re-
gression model could be more accurate than Condel WAS
(29) which is a method recently proposed to combine
multiple deleteriousness scores, in many scenarios
(M.X. Li et al., unpublished data). Condel WAS relied
on using prior sensitivity and specificity as weights to
adjust each deleteriousness score individually. A possible
reason for our observation is that the prior sensitivity and
specificity used in Condel WAS are only optimized locally
for the individual deleteriousness scores but not globally
when all five scores were considered. In addition, the lo-
gistical model is widely used and has solid theoretical
foundation; it lends itself to flexibly combine more
deleteriousness scores or genomic features as we have
done for the five deleteriousness scores.

(b)(a)

Figure 4. Receiver operating characteristic (ROC) curves of various methods. (a) The control (neutral) variants are rare (MAF< 0.01); (b) the
control (neutral) variants have MAF� 0.01. The true positive rate (sensitivity) and false positive rate (1-specificity) of logistic model were obtained by
10-fold cross validation procedure. Logistic model: performance of conventional multiple logistic regression model when combining the five dele-
terious scores (PhyloP, SIFT, PolyPhen2, LRT and MutationTaster). The true positive rate and false positive rate of the five different prediction
methods were generated by varying the threshold scores for prediction in the entire data set.
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Currently, we combined deleteriousness scores by five
different prediction algorithms for a more comprehensive
prioritization of NS SNVs. We found these scores were
only in weak or moderate correlation although some al-
gorithms used common source data to produce the scores.
In the performance evaluation in our training and testing
dataset, MutationTaster outperformed the other four pre-
diction algorithms individually and even performed better
than a combined prediction of the four by the logistic re-
gression according to the ROC curve (M.X. Li et al.,
unpublished data). Probably, MutationTaster considered
more valuable information for the prediction and/or its
naive Bayes classifier trained under different amino acid
change models (18) has better performance than the other
four computational algorithms. Anyhow, a combined pre-
diction by all of the five deleteriousness scores had better
performance than individual scores as well as combined
prediction by part of the deleteriousness scores; it has
smaller false negative rate when the false positive rate is
over 16% for rare NS SNVs (Figure 4a). In the filtration
and prioritization procedure of exome sequence variants,
it is acceptable to allow a reasonably larger false positive
rate at this step and reduce the chance of missing true
causative NS SNVs because one often has additional
criteria to exclude the false positive variants.

Our use of the knowledge data to filter and prioritize
exome sequence variants is unique to other existing tools
which can be used to prioritize exome sequence variants.
When there is sufficient knowledge about the disease or
the underlying causal genes, this level analysis will be very
powerful for genetic mapping. In the testing experiments
the PPI and pathway information straightforwardly linked
the four provided candidate genes to the underlying causal
gene MYH3 of FS syndrome. The relationship between
these genes may also contribute to our understanding of
pathogenic mechanism of the disorder. Its PubMed litera-
ture searching-based prioritization function will be very
effective for diseases studied by previous independent
genetic linkage studies or even sequencing studies. In an
real example of our exome sequencing project, KGGSeq
successfully pinpointed a novel NS SNV mutation at a
gene recently reported responsible for the same monogenic
disorder named Spinocerebellar ataxia (M. X. Li et al.,
submitted for publication).

The synthesized exomes may not completely represent
exomes of real patients with monogenic disorders. So the
above analysis may not sufficiently illustrate that causal
mutation(s) for a rare Mendelian disease can be easily
detected by KGGSeq to process the sequencing data of
only one subject. Anyhow, these results suggest the
three-level filtration and prioritization procedure can
help dramatically reduce the number of candidate
variants to a very small subset that is human-manageable.
In reality, more stringent MAF thresholds (say, 0.005 or
even 0.0) can be applied to autosomal dominant
Mendelian disorders and more in-house data sets can be
used to exclude additional common variants or rare
benign sequence variants. The kinship information, if
available, can also be used to remove variants in regions
that are not shared by affected family members and those
that are shared by discordant family members through

KGGSeq. All these additional analysis can further
reduce the number of candidate variants. Once the
subset of highlighted variants is available, conventional
Sanger sequencing can be feasibly employed to validate
the variants in other subjects.
The knowledge level for filtration and prioritization

may be not straightforward for diseases seldom studied.
However well-studied diseases (and their causal genes)
with similar syndrome or clinical phenotypes to the
disease in question can be used as a ‘bait’ to fish the
underlying disease genes because causative genes for
the same (or phenotypically resembling) diseases tend to
distribute within the same biological modules (24,30).
In the testing experiment, we provided the known causal
genes of DA2 for DA1 and observed the underlying causal
gene had PPI and shared the same pathways with the
known causal genes of DA2. Anyway, as our knowledge
about human diseases and their pathogenesis are growing
exponentially, this obstacle is gradually diminishing.
We will keep on refining this framework in the future.

More resources [such as more valuable deleteriousness
scores of NS SNVs, pseudogene and dispensable genes
(21)] after careful evaluation will be incorporated into
this framework. Other improvement may include
advanced algorithms and statistical models to analytically
prioritize the variants. Moreover, we will also look into
the effectiveness of this framework (or an improved
version) for the prioritization of rare variants responsible
for complex diseases/traits.
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