

Contents lists available at ScienceDirect

Data in Brief

Data Article

Dataset on *in-silico* investigation on triazole derivatives via molecular modelling approach: A potential glioblastoma inhibitors

Abel Kolawole Oyebamiji ^{a,g,*}, Oluwatumininu Abosede Mutiu ^b, Folake Ayobami Amao ^c, Olubukola Monisola Oyawoye ^d, Temitope A Oyedepo ^e, Babatunde Benjamin Adeleke ^f, Banjo Semire ^g

- ^a Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
- ^b Department of Chemical Sciences, Osun State University, Osogbo, Osun State, Nigeria
- ^c Department of Mathematics, Faculty of Science, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
- ^d Department of Microbiology, Laboratory of Molecular of Biology, Immunology and Bioinformatics, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
- e Department of Biochemistry, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
- f Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
- g Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria

ARTICLE INFO

Article history:
Received 7 September 2020
Revised 18 December 2020
Accepted 24 December 2020
Available online 30 December 2020

Keywords: Triazole Glioblastoma Inhibitors In-silico DFT QSAR Docking ADMET

ABSTRACT

In this work, ten molecular compounds were optimised using density functional theory (DFT) method via Spartan 14. The obtained descriptors were used to develop quantitative structural activities relationship (QSAR) model using Gretl and Matlab software and the similarity between predicted IC_{50} and observed IC_{50} was investigated. Also, docking study revealed the non-bonding interactions between the studied compounds and the receptor. The molecular interactions between the observed ligands and brain cancer protein (PDB ID: 1q7f) were investigated. Adsorption, distribution, metabolism, excretion and toxicity (ADMET) properties were also investigated.

E-mail address: abeloyebamiji@gmail.com (A.K. Oyebamiji).

^{*} Corresponding author.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Computational Chemistry
Specific subject area	Drug Discovery and Development
Type of data	Figure
	Table
	QSAR model
How data were	Spartan'14, Pymol 1.7.4.4, Autodock tool 1.5.6, AutoVina 1.1.2, Discovery
acquired	Studio 2017.
Data format	Raw data
Parameters for data	B3LYP, 6–31G*, Pymol 1.7.4.4, Discovery studio 2017R, Autodock tool
collection	1.5.6 and Autodock vina 1.1.2.
Description of data collection	The research work started with optimizing the selected compounds using DFT. The obtained descriptors from the optimized compounds were extracted and used to develop QSAR model using MLR and Genetic Algrithm. Also, the developed QSAR model was used to predict the biological activites of new set of triazole based drug-like comounds and further subjected to docking. The results obtained were collected and interpreted.
Data source location	Computational Chemistry Research Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria.
Data accessibility	The observed and calculated data can be accessed with the data article

Value of the Data

- The data obtained from investigated triazole derivatives in this research will assist scientists to know the molecular descriptors that describe its anti-glioblastoma activity.
- Data in this research will disclose the role of individual molecular descriptors obtained from optimised compounds in the developed QSAR model.
- The obtained binding affinity will reveal the ability of each compound to inhibit brain tumor protein (PDB ID: 1q7f).
- ADMET properties of the observed and proposed molecular compounds were also investigated in order to define the nature of triazole derivatives in receptor.

1. Data Description

The 2D structures of the molecules used in this research were shown in Table 1. The observed compounds used in this work were obtained from the research carried out by Ewa et al., (2018) [1]. The compounds with inhibition concentration (IC₅₀) of $\leq 10 \,\mu$ M were selected and subjected to quantum chemical calculation using density functional theory via B3LYP (6–31G*basis set).

Thirteen descriptors (Table 2) which describe anti-glioblastoma activities of the investigated triazole derivative were obtained and they were used for further research. The descriptors obtained were highest occupied molecular orbital energy (E_{HOMO}), lowest unoccupied molecular orbital (E_{LUMO}), band gap (BG), molecular weight (MW), area, volume, polar surface area (PSA), ovality, dipole moment (DM), log P, polarisability (POL), hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA).

Table 3 revealed the developed QSAR model (which help to probe into biological activities of triazoles derivatives) from the calculated molecular descriptor obtained from

Table 1
The Schematic diagram of the observed Triazole derivatives [1].

SN	Molecular Structures	IUPAC Name
1		3-Acetyl-28-propynoylbetulin
	ococ≡ch	
2	AcO	28-Propynoylbetulone
5		28-PTOPYHOYIDEUHOHE
	осос≡сн	
3		3-Acetyl-28-[1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin
	OC N CH ₂	
4	A00° / 7.7.111	3-Acetyl-28-(1-ethylacetyl-1H-1,2,3-triazol-4-yl)carbonylbetulin
	OC CH2OCOCH2CH3	
	Aco	
5	Aco Vinn	3-Acetyl-28-[1-(3-hydroxypropyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin
	OC CH ₂ CH ₂ CH ₂ CH ₂ OH	
	N = "	
	Aco Ying	

Table 1 (continued)

SN	Molecular Structures	IUPAC Name
6	O CH ₂ CH(NH ₂)COOH	2-Amino-3-[4-(3-acetyl-28-betulinylcarbonyl)—1H-1,2,3-triazol-1-yl]propanoic acid
7	ACU VIIII	28-[1-(4-Fluorobenzyl)—1H-1,2,3-triazol-4-yl]carbonylbetulone
8	OF AND CH2 CN	28-[1-(4-Cyanobenzyl)—1H-1,2,3-triazol-4-yl]carbonylbetulone
9	H ₃ C NH HO OC NNH	28-[1-(3'-Deoxythymidine-5'-yl)-1H-1,2,3-triazol-4-yl]carbonylbetulone
10	O OH OH OH OH OH	28-[1-(1-Deoxy-β-D-glucopyranosyl)—1H-1,2,3-triazol-4-yl]carbonylbetulone

 Table 2

 Calculated molecular descriptors with anti-glioblastoma activities.

	E_{HOMO}	E_{LUMO}	BG	DM	MW	AREA	VOL	PSA	OVA	LOG P	POL	HBD	HBA
1	-6.30	-2.75	3.55	3.72	536.79	571.38	598.14	40.09	1.66	8.09	89.06	0	2
2	-6.29	-1.49	4.80	3.76	492.74	521.02	551.1	33.37	1.60	8.35	84.95	0	2
3	-6.36	-0.99	5.37	6.72	673.95	706.89	726.39	51.01	1.81	10.23	99.03	0	5
4	-6.33	-1.00	5.33	7.57	651.93	692.8	704.58	71.86	1.81	8.21	97.27	0	6
5	-6.39	-0.96	5.43	7.58	623.92	668.32	681.66	71.04	1.78	8.10	95.39	1	6
6	-6.36	-1.02	5.34	6.29	652.92	682.91	695.04	109.53	1.80	6.86	96.49	1	7
7	-6.25	-1.04	5.21	5.98	643.88	659.42	682.81	59.30	1.76	10.02	95.53	0	5
8	-6.28	-1.92	4.36	4.46	650.90	674.84	697.86	74.64	1.77	9.90	96.95	0	6
9	-6.28	-1.12	5.16	6.23	759.98	760.65	777.32	125.34	1.86	7.12	103.21	2	11
10	-6.26	-1.15	5.11	4.81	697.91	692.16	711.58	138.97	1.80	6.03	97.89	4	10

Table 3Calculated QSAR model for the observed triazole derivatives.

Equation	F	P-value	\mathbb{R}^2	Adjusted R ²	MSE
$\begin{aligned} \hline IC_{50} &= -88,509.7 - \\ &513.940(E_{HOMO}) + 500.156(E_{LUMO}) - \\ &174.603(VOL) + 11.3407(Log \\ P) + 2137.77(POL) + 0.587370(PSA) + 1.00 \\ \hline \end{aligned}$	31.03 91540(AREA)	P < 0.0001	0.990	0.958	0.085

Table 4Assessment for validation of Developed QSAR model.

QSAR model validation parameters Standard	value Developed QSAR model v	alue Remark
	0.990 0.958 0.031	Pass Pass Pass

Table 5Observed IC₅₀ and predicted IC₅₀.

	Observed IC ₅₀	Predicted IC ₅₀	Residual	Genetic Algorithm (GA)	Residual
1	0.67	0.45	0.217310	0.616731	0.053269
2	0.19	0.49	-0.307571	0.136731	0.053269
3	0.85	0.50	0.342669	0.816023	0.033977
4	0.78	0.74	0.0302183	0.746023	0.033977
5	7.75	7.91	-0.161626	7.716023	0.033977
6	1.22	1.19	0.0226067	1.186023	0.033977
7	0.45	0.28	0.167543	0.416023	0.033977
8	6.45	6.72	-0.270293	6.416796	0.033204
9	0.17	0.67	-0.500773	0.137068	0.032932
10	7.45	6.99	0.459915	7.417068	0.032932

optimised compounds using Gretl software and Matlab [2,3]. The selected descriptors used in developing QSAR model were E_{HOMO} , E_{LUMO} , Vol, Log P, Pol, PSA and Area and the statistical factors considered for QSAR validation were correlation coefficient (R^2), adjusted correlation coefficient (Adj. R^2), P-Value, F-Value and MSE. The calculated value for correlation coefficient (R^2), Adjusted correlation coefficient (Adj. R^2), P-Value and F-Value were 0.990, 0.958, P < 0.0001, 31.03 and 0.085 as shown in Table 4.

Table 5 showed the calculated inhibition concentration (IC_{50}) for the investigated molecular compounds. The correlation between the predicted inhibition efficiency (IC_{50}) and observed efficiency (IC_{50}) were displayed in Fig. 1. In this work, six (6) molecular compounds were proposed using the developed QSAR model and the inhibition concentration of individual proposed compound was predicted and displayed in Table 6.

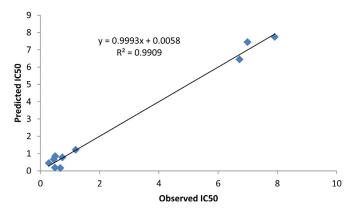
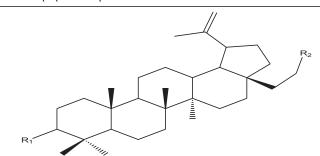



Fig. 1. Graphical description of correlation between predicted IC50 and Observed IC50.

Table 6Schematics structures of the proposed compounds with the inhibition concentration.

	R_1	R_2	IC ₅₀
1	OCH₃	CH ₃	-13.54
2	OC_2H_5	CH ₃	-9.60
3	NH ₂	CH ₃	-16.79
4	CH ₃	CH ₃	-7.72
5	CH ₂ F	CH ₃	-27.30
6	CHF ₂	CH ₃	-32.98

Also, Table 7 showed four molecular compounds (2, 7, 9 and 10) with $-9.5 \, \text{kcal/mol}$, $-11.2 \, \text{kcal/mol}$, $-10.0 \, \text{kcal/mol}$, and $-9.4 \, \text{kcal/mol}$ respectively. The selected compounds were subjected to ADMET study using admetSAR server and the factor considered were based on adsorption, distribution, metabolism, excretion and toxicity of the investigated ligands. The obtained ADMET values were compared to the standard compound used (Carmustine).

The calculated molecular interaction observed between the optimised triazole derivatives and brain tumor protein (PDB ID: 1q7f) [4] were reported in Table 8. The binding affinity calculated for each complex was $-8.4 \, \text{kcal/mol}$, $-9.5 \, \text{kcal/mol}$, $-8.6 \, \text{kcal/mol}$, $-8.8 \, \text{kcal/mol}$, $-8.5 \, \text{kcal/mol}$, $-8.1 \, \text{kcal/mol}$, $-11.2 \, \text{kcal/mol}$, $-9.0 \, \text{kcal/mol}$, $-10.0 \, \text{kcal/mol}$ and $-9.4 \, \text{kcal/mol}$ for compound 1–10 and the interaction between the observed complexes were shown in Fig. 2.

2. Design, Materials and Methods

The studied triazole derivatives (Table 1) were drawn using ChemDraw Ultra 8.0 and were optimised using Spartan 14 [5]. The optimization was accomplished using B3LYP with 6–31 G*

 Table 7

 Obtained calculated ADMET Properties.

Compo	Compound 2	nd 2	Compound 7	2 pc	Compound 8	8 pu	6 punoduoo	6 pu	Compound 10	d 10	Carmustine	ne
Mode	Result	Probability	Result	Probability								
Blood-Brain Barrier	BBB+	0.9079	BBB+	0.5892	BBB+	0.5456	BBB-	0.8875	BBB-	0.9564	BBB+	0.9533
Human Intestinal Absorption	HIA+	0.9900	HIA+	0.9962	HIA+	0.9947	HIA+	0.9430	HIA+	0.6024	HIA+	1.0000
Caco-2 Permeability	Caco2+	0.6469	Caco2-	0.5649	Caco2-	0.5831	Caco2-	0.6729	Caco2-	0.6997	Caco2-	0.5621
P-glycoprotein Substrate	Substrate	0.6290	Substrate	0.8512	Substrate	0.8125	Substrate	0.8454	Substrate	0.8269	Non-Substrate	0.7552
P-glycoprotein Inhibitor	Inhibitor	0.9030	Inhibitor	0.9365	Inhibitor	0.9495	Inhibitor	0.6937	Inhibitor	0.7651	Non-inhibitor	0.7970
	Inhibitor	0.7882	Inhibitor	0.8550	Inhibitor	0.9370	Inhibitor	0.5500	Inhibitor	0.5758	Non-inhibitor	0.8778
Renal Organic Cation	Non-inhibitor	0.7387	Non-inhibitor	0.5700	Non-inhibitor	0.5301	Non-inhibitor	0.8682	Non-inhibitor	0.9224	Non-inhibitor	0.8177
Transporter												
Subcellular localization	Mitochondria	0.8457	Mitochondria	0.6253	Mitochondria	0.6304	Mitochondria	0.5907	Mitochondria	0.4545	Mitochondria	0.7342
CYP450 2C9 Substrate	Non-substrate	0.8652	Non-substrate	0.8442	Non-substrate	0.8067	Non-substrate	0.7938	Non-substrate	0.7848	Non-substrate	0.7656
CYP450 2D6 Substrate	Non-substrate	0.9104	Non-substrate	0.8250	Non-substrate	0.8210	Non-substrate	0.8343	Non-substrate	0.8260	Non-substrate	0.8491
CYP450 3A4 Substrate	Substrate	0.7739	Substrate	0.6987	Substrate	0.7062	Substrate	0.7076	Substrate	0.6901	Non-substrate	0.6720
CYP450 1A2 Inhibitor	Non-inhibitor	0.8848	Non-inhibitor	0.7102	Non-inhibitor	0.7503	Non-inhibitor	0.8277	Non-inhibitor	0.7723	Non-inhibitor	0.9045
CYP450 2C9 Inhibitor	Non-inhibitor	0.6679	Non-inhibitor	0.5957	Non-inhibitor	0.6198	Non-inhibitor	0.6658	Non-inhibitor	0.7210	Non-inhibitor	0.9070
CYP450 2D6 Inhibitor	Non-inhibitor	0.9248	Non-inhibitor	0.8454	Non-inhibitor	0.8666	Non-inhibitor	0.8863	Non-inhibitor	0.9026	Non-inhibitor	0.9231
CYP450 2C19 Inhibitor	Inhibitor	0.5296	Inhibitor	0.5581	Non-inhibitor	0.5391	Non-inhibitor	0.7017	Non-inhibitor	0.7290	Non-inhibitor	0.9025
CYP450 3A4 Inhibitor	Non-inhibitor	0.6446	Inhibitor	0.7561	Inhibitor	0.7227	Inhibitor	0.9283	Inhibitor	0.6378	Non-inhibitor	0.9031
CYP Inhibitory Promiscuity	Low CYP	0.5796	High CYP	0.8442	High CYP	0.7893	High CYP	0.6255	High CYP	0.5093	Low CYP	0.9131
	Inhibitory		Inhibitory		Inhibitory		Inhibitory		Inhibitory		Inhibitory	
	Promiscuity		Promiscuity		Promiscuity		Promiscuity		Promiscuity		Promiscuity	
Human Ether-a-go-go-Related Weak inhibitor	Weak inhibitor	0.9102	Weak inhibitor	0.6081	Weak inhibitor	0.5223	Weak inhibitor	0.7555	Weak inhibitor	0.9532	Strong inhibitor	0.7278
Gene Inhibition	Non-inhibitor	0.7874	Non-inhibitor	0.5632	Non-inhibitor	0.7159	Non-inhibitor	0.7011	Non-inhibitor	0.5634	Non-inhibitor	0.9190
AMES Toxicity	Non AMES toxic	0.8923	Non AMES toxic	0.5299	Non AMES toxic	0.5228	Non AMES toxic	0.5140	Non AMES toxic	0.5885	AMES toxic	0.9577
Carcinogens	Non-carcinogens	0.8769	Non-carcinogens	0.8221	Non-carcinogens	0.8539	Non-carcinogens	0.7862	Non-carcinogens	0.9015	Carcinogens	0.6880
Fish Toxicity	High FHMT	96660	High FHMT	1.0000	High FHMT	0.9999	High FHMT	8666.0	High FHMT	0.9999	High FHMT	0.6546
Tetrahymena Pyriformis Toxicity	High TPT	0.9996	High TPT	8966:0	High TPT	0.9931	High TPT	0.9874	High TPT	0.9924	High TPT	0.9857
Honey Bee Toxicity	High HBT	0.8781	Low HBT	0.6610	Low HBT	0.5742	Low HBT	0.6662	Low HBT	0.6038	Low HBT	0.7045
Biodegradation	Not ready	0.9800	Not ready	1.0000	Not ready	1.0000	Not ready	0.9870	Not ready	0.9803	Not ready	0.5596
	biodegradable		biodegradable		biodegradable		biodegradable		biodegradable		biodegradable	

 Table 8

 Scoring and residues involved in the interaction between the studied complex.

	Scoring (kcal/mol)	Residues involved in the interactions	Types of Non-bonding interaction involved
1	-8.4	VAL-835, VAL-788, VAL-921, LEU-1sss009, ILE-965	Conventional Hydrogen Bond, Alkyl
2	-9.5	GLY-964, VAL-921, ALA-787, ARG-837, ILE-965	Carbon Hydrogen Bond, Alkyl
3	-8.6	ILE-965, VAL-1007, ALA-787, ALA-834, VAL-922, ARG-837	Carbon Hydrogen Bond, Alkyl
4	-8.8	ASP-924, ARG-837, ALA-834, VAL-877	Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Alkyl, Alkyl
5	-8.5	ASP-924, ILE-965, VAL-950, THR-878, LEU-1009, ALA-1008, ARG-837	Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Alkyl, Alkyl
6	-8.1	THR-986, GLN-987, GLY-969, ASN-968, ILE-965, VAL-922, ARG-837, VAL-835	Conventional Hydrogen Bond, Carbon Hydrogen Bond, Alkyl
7	-11.2	ARG-837, ALA-1008, ASP-1006, VAL-877, VAL-833, LEU-1009, ILE-965	Conventional Hydrogen Bond, Halogen(Fluorine), Pi-Anion, Pi-Alkyl, Alkyl
8	-9.0	ILE-965, GLY-969, VAL-922, ARG-837, ALA-1008, ALA-787	Carbon Hydrogen Bond, Alkyl
9	-10.0	ILE-965, ALA-787, ALA-834, VAL-922, ARG-837, ALA-790	Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Alkyl, Pi-Sigma, Alkyl
10	-9.4	ILE-965, ALA-787, ALA-1008, VAL-922, ASN-838, ARG-837	Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Alkyl, Alkyl
Carmustine	-5.0	VAL-835, ARG-837, VAL-879	Conventional Hydrogen Bond
Proposed Con	npounds		
P1	-8.6	PHE-916, ILE-961, TYR-959	Alkyl, Pi-Alkyl
P2	-8.7	PHE-916, ILE-961, TYR-959	Alkyl, Pi-Alkyl
P3	-8.5	VAL-788, VAL-835, ARG-837, ILE-965	Conventional Hydrogen Bond, Unfavourable Donor-Donor, Alkyl
P4	-8.7	PHE-916, ILE-961, TYR-959	Alkyl, Pi-Alkyl
P5	-8.6	PHE-1005, PHE-916, ILE-961, TYR-959	Alkyl, Pi-Alkyl
P6	-8.9	ARG-837, VAL-788, ALA-787, VAL-835, ALA-834, ILE-965, VAL-921	Conventional Hydrogen Bond, Halogen Alkyl

as basis set which produce descriptors that were used for further investigation. The selected calculated descriptors obtained from the optimised compounds were used to build robust QSAR model in order to relate the biological activity of the studied compounds to the calculated molecular parameters [6]. This was achieved using mathematical methods (multiple linear regression method) via Gretl 1.9.8. The observed inhibition concentration (IC_{50}) served as dependent variable while the calculated descriptors served as independent variables; thus, the QSAR model was developed. Several factors such as correlation coefficient (R^2), P-Value, F-value were considered to know the level of efficiency of the developed QSAR model. More so, validation of the developed QSAR model was implemented by observing some mathematical factors (cross validation correlation coefficient (R^2), adjusted correlation coefficient) which could be calculated using Eq. (1) and 2 [7].

$$C.VR^{2} = 1 - \frac{\sum (Y_{obs} - Y_{cal})^{2}}{\sum (Y_{obs} - \bar{Y}_{obs})^{2}}$$
(1)

$$R_a^2 = \frac{(N-1) \times R^2 - P}{N-1-P} \tag{2}$$

Absorption, Distribution, Metabolism, Excretion and the Toxicity properties of the studied triazole derivatives were done via online software (admetSAR) (http://lmmd.ecust.edu.cn/admetsar1) [8]. The factors considered were Blood Brain Barrier, Caco-2 cell permeability, Human Intestinal Absorption, Ames test. Also, four software (Pymol

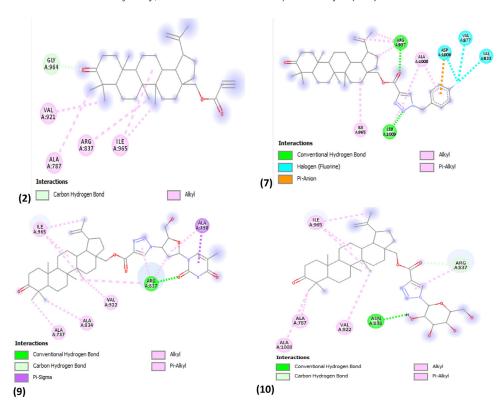


Fig. 2. 2D structures of brain tumor protein (PDB ID: 1q7f) and compound 2, 7, 8, 9 and 10 respectively.

(for treating downloaded protein), Autodock Tool (for locating binding site in the downloaded protein and for converting ligand and receptor to.pdbqt format from.pdb format), Auto dock vina (for docking calculation) and discovery studio (for viewing the non-bonding interaction between the docked complexes) were used to accomplish docking study between triazole derivative and brain tumor protein (PDB ID: 1q7f). The observed grid box was as follows: center (X = 12.534, Y = 23.847, Z = 40.848) and size (X = 68, Y = 64, Z = 72) as well as the spacing was set to be 1.00 Å.

Ethics Statement

Not Applicable.

CRediT Author Statement

Abel Kolawole **OYEBAMIJI:** Conceptualization, Methodology, Writing- Original draft preparation; Oluwatumininu Abosede **MUTIU**: Software; Folake Ayobami **AMAO**, Data curation; Olubukola Monisola **OYAWOYE**: Writing- Reviewing and Editing; Temitope A **OYEDEPO**: Writing-Reviewing and Editing; Babatunde Benjamin **ADELEKE**: Visualization; Banjo **SEMIRE**: Supervision, Software, Validation.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

Acknowledgement

We are grateful to the computational chemistry research laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Nigeria for the computational resources and Mrs E.T. Oyebamiji for the assistance in the course of this work. Also, this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

- [1] B. Ewa, K.-T. Monika, C. Elwira, L. Małgorzata, B. Stanisław, Novel triazoles of 3-acetylbetulin and betulone as anticancer agents, Med. Chem. Res. 27 (2018) 2051–2061.
- [2] A.Beheshti, E.Pourbasheer, M. Nekoei, S. Vahdani, QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm-multiple linear regressions, J. Saudi Chem. Soc., (2012), 10.1016/j.jscs.2012.07.019
- [3] A. Ousaa, B. Elidrissi1, M. Ghamali, S. Chtita, A. Aouidate, M. Bouachrine, T. Lakhlifi, Quantitative structure-toxicity relationship studies of aromatic aldehydes to Tetrahymena pyriformis based on electronic and topological descriptors, J. Mater. Environ. Sci. 9 (1) (2018) 256–266.
- [4] A.E. Thomas, B.D. Wilkinson, R.P. Wharton, A.K. Aggarwal, Model of the brain tumor-pumilio translation repressor complex, Genes Dev. 17 (2015) 2508–2513.
- [5] Spartan 14 program, Wavefunction, Irvine, USA.
- [6] A.K. Oyebamiji, I.O. Abdulsalami, B. Semire, Dataset on Insilico approaches for 3,4-dihydropyrimidin-2(1H)-one urea derivatives as efficient Staphylococcus aureus inhibitor, Data Brief 32 (2020) 106195.
- [7] R.O. Oyewole, A.K. Oyebamiji, B. Semire, Theoretical calculations of molecular descriptors for anticancer activities of 1, 2,3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches, Heliyon 6 (2020) e03926.
- [8] S. Jie, C. Feixiong, X. You, L. Weihua, T. Yun, Estimation of ADME properties with substructure pattern recognition, J. Chem. Inf. Model. 50 (2010) 1034–1041.