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Abstract Spatial population genetic data often exhibits ‘isolation-by-distance,’ where genetic

similarity tends to decrease as individuals become more geographically distant. The rate at which

genetic similarity decays with distance is often spatially heterogeneous due to variable population

processes like genetic drift, gene flow, and natural selection. Petkova et al., 2016 developed a

statistical method called Estimating Effective Migration Surfaces (EEMS) for visualizing spatially

heterogeneous isolation-by-distance on a geographic map. While EEMS is a powerful tool for

depicting spatial population structure, it can suffer from slow runtimes. Here, we develop a related

method called Fast Estimation of Effective Migration Surfaces (FEEMS). FEEMS uses a Gaussian

Markov Random Field model in a penalized likelihood framework that allows for efficient

optimization and output of effective migration surfaces. Further, the efficient optimization

facilitates the inference of migration parameters per edge in the graph, rather than per node (as in

EEMS). With simulations, we show conditions under which FEEMS can accurately recover effective

migration surfaces with complex gene-flow histories, including those with anisotropy. We apply

FEEMS to population genetic data from North American gray wolves and show it performs

favorably in comparison to EEMS, with solutions obtained orders of magnitude faster. Overall,

FEEMS expands the ability of users to quickly visualize and interpret spatial structure in their data.

Introduction
The relationship between geography and genetics has had enduring importance in evolutionary biol-

ogy (see Felsenstein, 1982). One fundamental consideration is that individuals who live near one

another tend to be more genetically similar than those who live far apart (Wright, 1943;

Wright, 1946; Malécot, 1948; Kimura, 1953; Kimura and Weiss, 1964). This phenomenon is often

referred to as ‘isolation-by-distance’ (IBD) and has been shown to be a pervasive feature in spatial

population genetic data across many species (Slatkin, 1985; Dobzhansky and Wright, 1943; Meir-

mans, 2012). Statistical methods that use both measures of genetic variation and geographic coor-

dinates to understand patterns of IBD have been widely applied (Bradburd and Ralph, 2019;

Battey et al., 2020). One major challenge in these approaches is that the relationship between

geography and genetics can be complex. Particularly, geographic features can influence migration in

localized regions leading to spatially heterogeneous patterns of IBD (Bradburd and Ralph, 2019).

Multiple approaches have been introduced to model spatially non-homogeneous IBD in popula-

tion genetic data (McRae, 2006; Duforet-Frebourg and Blum, 2014; Hanks and Hooten, 2013;

Petkova et al., 2016; Bradburd et al., 2018; Al-Asadi et al., 2019; Safner et al., 2011;

Ringbauer et al., 2018). Particularly relevant to our proposed approach is the work of

Petkova et al., 2016 and Hanks and Hooten, 2013. Both approaches model genetic distance using

the ‘resistance distance’ on a weighted graph. This distance metric is inspired by concepts of
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effective resistance in circuit theory models, or alternatively understood as the commute time of a

random walk on a weighted graph or as a Gaussian graphical model (specifically a conditional auto-

regressive process) (Chandra et al., 1996; Hanks and Hooten, 2013; Rue and Held, 2005). Addi-

tionally, the resistance distance approach is a computationally convenient and accurate approxima-

tion to spatial coalescent models (McRae, 2006), although it has limitations in asymmetric migration

settings (Lundgren and Ralph, 2019).

Hanks and Hooten, 2013 introduced a Bayesian model that uses measured ecological covariates,

such as elevation, to predict genetic distances across sub-populations. Specifically, they use a graph-

based model for genotypes observed at different spatial locations. Expected genetic distances

across sub-populations in their model are given by resistance distances computed from the edge

weights. They parameterize the edge weights of the graph to be a function of known biogeographic

covariates, linking local geographic features to genetic variation across the landscape.

Concurrently, the Estimating Effective Migration Surfaces (EEMS) method was developed to help

interpret and visualize non-homogeneous gene-flow on a geographic map (Petkova, 2013;

Petkova et al., 2016). EEMS uses resistance distances to approximate the between-sub-population

component of pairwise coalescent times in a ‘stepping-stone’ model of migration and genetic drift

(Kimura, 1953; Kimura and Weiss, 1964). EEMS models the within-sub-population component of

pairwise coalescent times, with a node-specific parameter. Instead of using known biogeographic

covariates to connect geographic features to genetic variation as in Hanks and Hooten, 2013,

EEMS infers a set of edge weights (and diversity parameters) that explain the genetic distance data.

The inference is based on a hierarchical Bayesian model and a Voronoi-tessellation-based prior to

encourage piece-wise constant spatial smoothness in the fitted edge weights.

EEMS uses Markov Chain Monte Carlo (MCMC) and outputs a visualization of the posterior mean

for effective migration and a measure of genetic diversity for every spatial position of the focal habi-

tat. Regions with relatively low effective migration can be interpreted to have reduced gene-flow

over time, whereas regions with relatively high migration can be interpreted as having elevated

gene-flow. EEMS has been applied to multiple systems to describe spatial genetic structure, but

despite EEMS’s advances in formulating a tractable solution to investigate spatial heterogeneity in

IBD, the MCMC algorithm it uses can be slow to converge, in some cases leading to days of compu-

tation time for large datasets (Peter et al., 2020).

The inference problems faced by EEMS and Hanks and Hooten are related to a growing area

referred to as ‘graph learning’ (Dong et al., 2019; Mateos et al., 2019). In graph learning, a noisy

signal is measured as a scalar value at a set of nodes from the graph, and the aim is then to infer

non-negative edge weights that reflect how spatially ‘smooth’ the signal is with respect to the graph

topology (Kalofolias, 2016). In population genetic settings, this scalar could be an allele frequency

measured at locations in a discrete spatial habitat with effective migration rates between sub-popu-

lations. Like the approach taken by Hanks and Hooten, 2013, one widely used representation of

smooth graph signals is to associate the smoothness property with a Gaussian graphical model

where the precision matrix has the form of a graph Laplacian (Dong et al., 2016; Egilmez et al.,

2016). The probabilistic model defined on the graph signal then naturally gives rise to a likelihood

for the observed samples, and thus much of the literature in this area focuses on developing special-

ized algorithms to efficiently solve optimization problems that allow reconstruction of the underlying

latent graph. For more information about graph learning and signal processing in general see the

survey papers of Dong et al., 2019 and Mateos et al., 2019.

To position the present work in comparison to the ‘graph learning’ literature, our contributions

are twofold. First, in population genetics, it is impossible to collect individual genotypes across all

the geographic locations and, as a result, we often work with many, often the majority, of nodes hav-

ing missing data. As far as we are aware, none of the work in graph signal processing considers this

scenario and thus their algorithms are not directly applicable to our setting. In addition, if the num-

ber of the observed nodes is much smaller than the number of nodes of a graph, one can project

the large matrices associated with the graph to the space of observed nodes, therefore allowing for

fast and efficient computation. Second, highly missing nodes in the observed signals can result in

significant degradation of the quality of the reconstructed graph unless it is regularized properly.

Motivated by the Voronoi-tessellation-based prior adopted in EEMS (Petkova et al., 2016), we pro-

pose regularization that encourages spatial smoothness in the edge weights.
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Building on advances in graph learning, we introduce a method, Fast Estimation of Effective

Migration Surfaces (FEEMS), that uses optimization to obtain penalized-likelihood-based estimates

of effective migration parameters. In contrast to EEMS which uses a node-specific parameterization

of effective migration, we optimize over edge-specific parameters allowing for more flexible migra-

tion processes to be fit, such as spatial anisotropy, in which the migration process is not invariant to

rotation of the coordinate system (e.g. migration is more extensive along a particular axis). Although

we developed this model as a Gaussian Markov Random Field, the resulting likelihood has key simi-

larities to the EEMS model, in that it is a Wishart-distribution that is a function of a genetic distance

matrix. Expected genetic distances in both models can be interpreted as ‘resistance distances’

(McRae, 2006).

To fit the model, rather than using MCMC, we develop a fast quasi-Newton optimization algo-

rithm (Nocedal and Wright, 2006) and a cross-validation approach for choosing the penalty param-

eter used in the penalized likelihood. We demonstrate the method using coalescent simulations and

an application to a dataset of gray wolves from North America. The output is comparable to the

results of EEMS but is provided in orders of magnitude less time. With this improvement in speed,

FEEMS opens up the ability to perform fast exploratory data analysis of spatial population structure.

Results

Overview of FEEMS
Figure 1 shows a visual schematic of the FEEMS method. The input data are genotypes and spatial

locations (e.g. latitudes and longitudes) for a set of individuals sampled across a geographic region.

We construct a dense spatial grid embedded in geographic space where nodes represent sub-popu-

lations, and we assign individuals to nodes based on spatial proximity (see Appendix 1—figure 1

for a visualization of the grid construction and node assignment procedure). The density of the grid

is user defined and must be explored to appropriately balance model mis-specification and compu-

tational burden. As the density of the lattice increases, the model is similar to discrete approxima-

tions used for continuous spatial processes, but the increased density comes at the cost of

computational complexity.

Details on the FEEMS model are described in the Materials and methods section, however at a

high level, we assume exchangeability of individuals within each sub-population and estimate allele

frequencies, bfjðkÞ, for each sub-population, indexed by k, and single nucleotide polymorphism (SNP),

indexed by j, under a simple Binomial sampling model. We also use the recorded sample sizes at

each node to model the precision of the estimated allele frequency. With the estimated allele fre-

quencies in hand, we model the data at each SNP using an approximate Gaussian model whose

covariance is, up to constant factors, shared across all SNPs—in other words, after rescaling by SNP-

specific variation factors, we assume that the set of observed frequencies at each SNP is an indepen-

dent realization of the same spatial process. The latent frequency variables, fjðkÞ, are modeled as a

Gaussian Markov Random Field (GMRF) with a sparse precision matrix determined by the graph Lap-

lacian and a set of residual variances that vary across SNPs. The pseudo-inverse of the graph Lapla-

cian in a GMRF is inherently connected to the notion of resistance distance in an electrical circuit

(Hanks and Hooten, 2013) that is often used in population genetics to model the genetic differenti-

ation between sub-populations (McRae, 2006). The graph’s weighted edges, denoted by wij

between nodes i and j, represent gene-flow between the sub-populations (Friedman et al., 2008;

Hanks and Hooten, 2013; Petkova et al., 2016). The Gaussian approximation has the advantage

that we can analytically marginalize out the latent frequency variables. The resulting likelihood of the

observed frequencies shares a number of similarities to that of EEMS (see Materials and methods).

To prevent over-fitting we use penalized maximum likelihood to estimate the edge weights of the

graph. Our overall goal is thus to solve the following optimization problem:

bw¼
l�w�u

argmin ‘ðwÞþflðwÞ;

where w is a vector that stores all the unique elements of the weighted adjacency matrix, l and u are

element-wise non-negative lower and upper bounds for w, ‘ðwÞ is the negative log-likelihood func-

tion that comes from the GMRF model described above, and flðwÞ is a penalty that controls how
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constant or smooth the output migration surface will be and is controlled by the hyperparameter

l>0. Writing V to denote the set of nodes in the graph and EðiÞ � V to denote the subset of nodes

that have edges connected to node i, our penalty is given by

flðwÞ ¼
l

2

X

i2V

X

k;‘2EðiÞ

logðewik=bw0 � 1Þ� logðewi‘=bw0 � 1Þ
� �2

:

This function serves to penalize large differences between the weights wik and wi‘ on edges that are

adjacent, that is, penalizing differences for any pair of edges that share a common node. The tuning

parameter l controls the overall strength of the penalization placed on the output of the migration

surface—if l is large, the fitted surface will favor a homogeneous set of inferred migration weights

on the graph, while if l is low, more flexible graphs can be fitted to recover richer local structure,

but this suffers from the potential for over-fitting. The tuning parameter l is selected by evaluating

the model’s performance at predicting allele frequencies at held out locations using leave-one-out

Figure 1. Schematic of the FEEMS model: The full panel shows a schematic of going from the raw data (spatial coordinates and genotypes) through

optimization of the edge weights, representing effective migration, to convergence of FEEMS to a local optima. (A) Map of sample coordinates (black

points) from a dataset of gray wolves from North America (Schweizer et al., 2016). The input to FEEMS are latitude and longitude coordinates as well

as genotype data for each sample. (B) The spatial graph edge weights after random initialization uniformly over the graph to begin the optimization

algorithm. (C) The edge weights after 10 iterations of running FEEMS, when the algorithm has not converged yet. (D) The final output of FEEMS after

the algorithm has fully converged. The output is annotated with important features of the visualization.
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cross-validation (see Materials and methods ‘Leave-one-out cross-validation to select tuning

parameters’).

The scale parameter bw0 is chosen first fitting a ‘constant w’ model, which is a spatially homoge-

neous isolation-by-distance model constrained to have a single w value for all edges. In the fl pen-

alty, for adjacent edges ði; kÞ and ði; ‘Þ, if wik and wi‘ are large (relative to bw0) then the corresponding

term of the penalty is approximately proportional to ðwik � wi‘Þ
2, penalizing differences among

neighboring edges on a linear scale; if instead wik and wi‘ are small relative to bw0, then the penalty is

approximately proportional to ðlogðwikÞ � logðwi‘ÞÞ
2, penalizing differences on a logarithmic scale. In

fact, it is also possible to consider treating this scale parameter as a second tuning parameter—we

can define a penalty function fl;aðwÞ ¼
l
2

P
i2V

P
k;‘2EðiÞ logðe

awik � 1Þ � logðeawi‘ � 1Þð Þ2, and explore

the solution across different values of both l and a. However, we find that empirically choosing

a ¼ 1=bw0 offers good performance as well as an intuitive interpretation (i.e. scaling edge weights wik

with reference to the constant-w model), and allows us to avoid the computational burden of search-

ing a two-dimensional tuning parameter space.

We use sparse linear algebra routines to efficiently compute the objective function and gradient

of our parameters, allowing for the use of widely applied quasi-Newton optimization algorithms

(Nocedal and Wright, 2006) implemented in standard numerical computing libraries like scipy

(Virtanen et al., 2020) (RRID:SCR_008058). See the Materials and methods section for a detailed

description of the statistical models and algorithms used.

Evaluating FEEMS on ‘out of model’ coalescent simulations
While our statistical model is not directly based on a population genetic process, it is useful to see

how it performs on simulated data under the coalescent stepping stone model (Figure 2, also see

Appendix 1—figure 2 for additional scenarios). In these simulations we know, by construction, the

model we fit (FEEMS) is different from the true model we simulate data under (the coalescent),

allowing us to assess the robustness of the fit to a controlled form of model mis-specification.

The first migration scenario (Figure 2A–C) is a spatially homogeneous model where all the migra-

tion rates are set to be a constant value on the graph, this is equivalent to simulating data under an

homogeneous isolation-by-distance model. In the second migration scenario (Figure 2D–E), we sim-

ulate a non-homogeneous process by representing a geographic barrier to migration, lowering the

migration rates by a factor of 10 in the center of the habitat relative to the left and right regions of

the graph. Finally, in the third migration scenario (Figure 2G–I), we simulate a pattern which corre-

sponds to anisotropic migration with edges that point east/west being assigned to a fivefold higher

migration rate than edges pointing north/south. For each migration scenario, we simulate two sam-

pling designs. In the first ‘dense-sampling’ design (Figure 2B,E,I) we sample individuals for every

node of the graph. Next, in the ‘sparse-sampling’ design (Figure 2C,F,J) we sample individuals for

only a randomly selected 20% of the nodes.

For each coalescent simulation, we used leave-one-out cross-validation (at the level of sampled

nodes) to select the smoothness parameter l. In the homogeneous migration simulations, the best

value for the smoothness parameter, as determined by the grid value with the lowest leave-one-out

cross-validation error, is lcv ¼ 100 in both sampling scenarios with complete and missing data. In the

heterogeneous migration simulations lcv ¼ 0:298 with no missing data and lcv ¼ 37:927 with missing

data. Finally, in the anisotropic simulations with no missing data lcv ¼ 0:298 and with missing data

lcv ¼ 0:042. We note the magnitude of the selected l depends on the scale of the loss function so

comparisons across different datasets are not generally interpretable.

With regard to the visualizations of effective migration, FEEMS performs best when all the nodes

are sampled on the graph, that is, when there is no missing data (Figure 2B,E,H). Interestingly, in

the simulated scenarios with many missing nodes, FEEMS can still partly recover the migration his-

tory, including the presence of anisotropic migration (Figure 2I). A sampling scheme with a central

gap leads to a slightly narrower barrier in the heterogeneous migration scenario (Appendix 1—fig-

ure 2I) and for the anisotropic scenario, a degree of over-smoothness in the northern and southern

regions of the center of the graph (Appendix 1—figure 2N). For the missing at random sampling

design, FEEMS is able to recover the relative edge weights surprisingly well for all scenarios, with

the inference being the most challenging when there is anisotropic migration. The potential for

FEEMS to recover anisotropic migration is novel relative to EEMS, which was parameterized for
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fitting non-stationary isotropic migration histories and produces banding patterns perpendicular to

the axis of migration when applied to data from anisotropic coalescent simulations (Petkova et al.,

2016, Supplementary Figure 2; see also Appendix 1 ‘Edge versus node parameterization’ for a

related discussion). Overall, even with sparsely sampled graphs, FEEMS is able to produce visualiza-

tions that qualitatively capture the migration history in coalescent simulations.

Application of FEEMS to genotype data from North American gray
wolves
To assess the performance of FEEMS on real data, we used a previously published dataset of 111

gray wolves sampled across North America typed at 17,729 SNPs (Schweizer et al., 2016;
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Figure 2. FEEMS fit to coalescent simulations: We run FEEMS on coalescent simulations, varying the migration history (columns) and sampling design

(rows). In each simulation, we used leave-one-out cross-validation (at the level of sampled nodes) to select the smoothness parameter l. The first

column (A–C) shows the ground-truth and fit of FEEMS to coalescent simulations with a homogeneous migration history that is, a single migration

parameter for all edge weights. Note that the ground-truth simulation figures (A,D,G) display coalescent migration rates, not fitted effective migration

rates output by FEEMS. The second column (D–F) shows the ground truth and fit of FEEMS to simulations with a heterogeneous migration history

that is, reduced gene-flow, with 10-fold lower migration, in the center of the habitat. The third column (G–I) shows the ground truth and fit of FEEMS to

an anisotropic migration history with edge weights facing east-west having five fold higher migration than north-south. The second row (B,E,H) shows a

sampling design with no missing observations on the graph. The final row (C,F,I) shows a sampling design with 80% of nodes missing at random.
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Appendix 1—figure 5). This dataset has a number of advantageous features that make it a useful

test case for evaluating FEEMS: (1) The broad sampling range across North America includes a num-

ber of relevant geographic features that, a priori, could conceivably lead to restricted gene-flow

averaged throughout the population history. These geographic features include mountain ranges,

lakes, and islands. (2) The scale of the data is consistent with many studies for non-model systems

whose spatial population structure is of interest. For instance, the relatively sparse sampling leads to

a challenging statistical problem where there is the potential for many unobserved nodes (sub-popu-

lations), depending the density of the grid chosen.

Before applying FEEMS, we confirmed a signature of spatial structure in the data through

regressing genetic distances on geographic distances and top genetic PCs against geographic coor-

dinates (Appendix 1—figures 6, 7, 8, 9). We also ran multiple replicates of ADMIXTURE for K ¼ 2

to K ¼ 8, selecting for each K the highest likelihood run among replicates to visualize (Appendix 1—

figure 10). As expected in a spatial genetic dataset, nearby samples have similar admixture propor-

tions and continuous gradients of changing ancestries are spread throughout the map

(Bradburd et al., 2018). Whether such gradients in admixture coefficients are due to isolation by

distance or specific geographic features that enhance or diminish the levels of genetic differentiation

is an interpretive challenge. Explicitly modeling the spatial locations and genetic distance jointly

using a method like EEMS or FEEMS is exactly designed to explore these types of questions in the

data (Petkova, 2013; Petkova et al., 2016).

We first show FEEMS results for four different values of the smoothness parameter, l from large

l ¼ 100 to small l ¼ 0:0008 (Figure 3). One interpretation of our regularization penalty is that it

encourages fitting models of homogeneous and isotropic migration. When l is very large

(Figure 3A), we see FEEMS fits a model where all of the edge weights on the graph nearly equal the

mean value, hence all the edge weights are colored white in the relative log-scale. In this case,

FEEMS is fitting a relatively homogeneous migration model where all the estimated edge weights

get assigned nearly the same value on the graph. As we sequentially lower the penalty parameter,

(Figure 3B,C,D) the fitted graph begins to appear more complex and heterogeneous as expected

(discussed further below). Figure 3E shows the cross-validation error for a pre-defined grid of l val-

ues (also see Appendix 1—figure 6 for visualizations of the fitted versus genetic distance on the full

dataset).

The cross-validation approach finds the optimal value of l to be 2.06. This solution visually

appears to have a moderate level of regularization and aligns with several known landscape features

(Figure 4). Spatial features in the FEEMS visualization qualitatively matches the structure plot output

from ADMIXTURE using K ¼ 6 (Appendix 1—figure 10). We add labels on the figure to highlight a

number of pertinent features: (A) St. Lawrence Island, (B) the coastal islands and mountain ranges in

British Columbia, (C) the boundary of Boreal Forest and Tundra eco-regions in the Shield Taiga, (D)

Queen Elizabeth Islands, (E) Hudson Bay, and (F) Baffin Island. Many of these features were

described in Schweizer et al., 2016 by interpretation of ADMIXTURE, PCA, and FST statistics.

FEEMS is able to succinctly provide an interpretable view of these data in a single visualization.

Indeed many of these geographic features plausibly impact gray wolf dispersal and population his-

tory (Schweizer et al., 2016).

Comparison to EEMS
We also ran EEMS on the same gray wolf dataset. We used default parameters provided by EEMS

but set the number of burn-in iterations to 20� 10
6, MCMC iterations to 50� 10

6, and thinning inter-

vals to 2000. We were unable to run EEMS in a reasonable run time (� 3 days) for the dense spatial

grid of 1207 nodes so we ran EEMS and FEEMS on a sparser graph with 307 nodes.

We find that FEEMS is multiple orders of magnitude faster than EEMS, even when running multi-

ple runs of FEEMS for different regularization settings on both the sparse and dense graphs

(Table 1). We note that constructing the graph and fitting the model with very low regularization

parameters are the most computationally demanding steps in running FEEMS.

We find that many of the same geographic features that have reduced or enhanced gene-flow

are concordant between the two methods. The EEMS visualization, qualitatively, best matches solu-

tions of FEEMS with lower l values (Figure 4, Appendix 1—figure 11); however, based on the

ADMIXTURE results, visual inspection in relation to known geographical features and inspection of
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the observed vs fitted dissimilarity values (Appendix 1—figures 14, 22), we find these solutions to

be less satisfying compared to the FEEMS solution found with l chosen by leave-one-out cross-vali-

dation. We note that in many of the EEMS runs the MCMC appears to not have converged (based

on visual inspection of trace plots) even after a large number of iterations.

Discussion
FEEMS is a fast approach that provides an interpretable view of spatial population structure in real

datasets and simulations. We want to emphasize that beyond being a fast optimization approach for

inferring population structure, our parameterization of the likelihood opens up a number of exciting

new directions for improving spatial population genetic inference. Notably, one major difference

between EEMS and FEEMS is that in FEEMS each edge weight is assigned its own parameter to be

estimated, whereas in EEMS each node is assigned a parameter and each edge is constrained to be

the average effective migration between the nodes it connects (see Materials and methods and

Appendix 1 ‘Edge versus node parameterization’ for details). The node-based parameterization in

EEMS makes it difficult to incorporate anisotropy and asymmeteric migration (Lundgren and Ralph,

2019). As we have shown here, FEEMS’s simple and novel parameterization already has potential to

fit anisotropic migration (as shown in coalescent simulations) and may be extendable to other more

complex migration processes (such as long-range migration, see below).

Figure 3. The fit of FEEMS to the North American gray wolf dataset for different choices of the smoothing regularization parameter l: (A) l ¼ 100, (B)

l ¼ 2:06, (C) l ¼ 0:04, and (D) l ¼ 0:0008. As expected, when l decreases from large to small (A–D), the fitted graph becomes less smooth and

eventually over-fits to the data, revealing a patchy surface in (D), whereas earlier in the regularization path FEEMS fits a homogeneous surface with all

edge weights having nearly the same fitted value, as in (A). (E) shows the mean square error between predicted and held-out allele frequencies output

by running leave-one-out cross-validation to select the smoothness parameter l. The cross-validation error is minimized over a pre-selected grid at an

intermediate value of l ¼ 2:06 as shown in (B).
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One general challenge, which is not unique to this method, is selecting the tuning parameters

controlling the strength of regularization (l in our case). A natural approach is to use cross-valida-

tion, which estimates the out-of-sample fit of FEEMS for a particular choice of l. We used leave-one-

out cross-validation, leaving one sampled population out at a time, and find such an approach works

well based on the coalescent simulations and application to the North American wolf data. That

said, we sometimes found high variability in the selected solution when we used cross-validation

with fewer folds (e.g. five-fold versus leave-one-out, results not shown). We expect this happens

when the number of sampled populations is small relative to the complexity of the gene flow land-

scape, and we recommend using leave-one-out cross-validation in general. We also find it useful to

Figure 4. FEEMS applied to a population genetic dataset of North American gray wolves: We show the fit of FEEMS applied to a previously published

dataset of North American gray wolves. Leave-one-out cross-validation (at the level of sampled nodes) was used to select the smoothness parameter

l ¼ 2:06. We show the fitted parameters in log-scale with lower effective migration shown in orange and higher effective migration shown in blue. The

bold text letters highlights a number of known geographic features that could have plausibly influenced wolf migration over time: (A) St. Lawrence

Island, (B) Coastal mountain ranges in British Columbia, (C) The boundary of Boreal Forest and Tundra eco-regions in the Shield Taiga, (D) Queen

Elizabeth Islands, (E) Hudson Bay, and (F) Baffin Island. We also display two insets to help interpret the results and compare them to EEMS. In the top

left inset we show a map of sample coordinates colored by an ecotype label provided by Schweizer et al., 2016. These labels were devised using a

combination of genetic and ecological information for 94 ‘un-admixed’ gray wolf samples, and the remaining samples were labeled ‘Other’. We can see

these ecotype labels align well with the visualization output provided by FEEMS. In the right inset, we display a visualization of the posterior mean

effective migration rates from EEMS.
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fit FEEMS to a sequential grid of regularization parameters and to look at what features are consis-

tent or vary across multiple fits. Informally, one can gain an indication of the strongest features in

the data by looking at the order they appear in the regularization path that is, what features over-

come the strong penalization of smoothness in the data and that are highly supported by the likeli-

hood. For example, early in the regularization path, we see regions of reduced gene-flow occurring

in the west coast of Canada that presumably correspond to Coastal mountain ranges and islands in

British Columbia (Figure 3B) and this reduced gene-flow appears throughout more flexible fits with

lower l.

An important caveat is that the objective function we optimize is non-convex so any visualization

output by FEEMS should be considered a local optimum and, keeping in mind that with different ini-

tialization one could get different results. That said, for the datasets investigated, we found the out-

put visualizations were not sensitive to initialization, and thus our default setting is constant

initialization fitted under an homogeneous isolation by distance model (See Materials and methods).

When comparing to EEMS, we found FEEMS to be much faster (Table 1). While this is encourag-

ing, care must be taken because the goals and outputs of FEEMS and EEMS have a number of differ-

ences. FEEMS fits a sequential grid of solutions for different regularization parameters, whereas

EEMS infers a posterior distribution and outputs the posterior mean as a point estimate. FEEMS is

not a Bayesian method and unlike EEMS, which explores the entire landscape of the posterior distri-

bution, FEEMS returns a particular point estimate: a local minimum point of the optimization land-

scape. Setting the prior hyper-parameters in EEMS act somewhat like a choice of the tuning

parameter l, except that EEMS uses hierarchical priors that in principle allow for exploration of mul-

tiple scales of spatial structure in a single run, but requires potentially long computation times for

adequate MCMC convergence.

Like EEMS, FEEMS is based on an assumed underlying spatial graph of populations exchanging

gene flow with neighboring populations. While the inferred migration rates explain the data under

an assumed model, it is important for users and readers of FEEMS results to keep in mind the range

and density of the chosen grid when interpreting results. We note that using a denser grid has the

two potential advantages of providing improved approximation for continuously distributed species,

as well as a more flexible model space to fit the data.

Depending on the scale of the analysis and the life history of the species, the process of assuming

and assigning a single geographic location for each individual is a potential limitation of the model-

ing framework used here. For instance, the North American wolves studied here are understood to

be generally territorial with individual ranges that are on the scale of 103 km2 (Burch et al., 2005),

which is small relative to the greater than 106 km2 scale of our analysis. Thus, modeling individual

wolves with single locations may not generally be problematic. However, at the boundary of the

Boreal forest and Tundra, there are wolves with larger annual ranges and seasonal migrations that

track caribou herds roughly north-south over distances of 1000 km (Musiani et al., 2007), and the

wolves in the study were sampled in the winter (Musiani et al., 2007; Schweizer et al., 2016). If the

samples were instead obtained in the summer, the position of the inferred low migration feature

near the boundary of the Boreal Forest (marked ’C’ in Figure 4) would presumably shift northward.

Table 1. Runtimes for FEEMS and EEMS on the North American gray wolf dataset.

We show a table of runtimes for FEEMS and EEMS for two different grid densities, a sparse grid with

307 nodes and a dense grid with 1207 nodes. The second row shows the FEEMS run-times for apply-

ing leave-one-out cross-validation to select l. The third row shows the run-times when applying

FEEMS at the best l value selected using cross-validation. FEEMS is orders of magnitude faster than

EEMS, even when using cross-validation to select l. Runtimes are based on computation using Intel

Xeon E5-2680v4 2.4 GHz CPUs with 5 Gb RAM reserved using the University of Chicago Midway2

cluster.

Method Sparse grid (run-time) Dense grid (run-time)

EEMS 27.43 hr N/A

FEEMS (Cross-validation) 10 min 32 s 1.03 hr

FEEMS (Best l) 1.23 s 4.08 s
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The general cautionary lesson is that one must be careful when interpreting these maps to consider

the life history of dispersal for the organism under study during the interpretation of results. Extend-

ing the methodology to incorporate knowledge of uncertainty in position or known dispersal may be

an interesting direction for future work.

One natural extension to FEEMS, pertinent to a number of biological systems, is incorporating

long-range migration (Pickrell and Pritchard, 2012; Bradburd et al., 2016). In this work, we have

used a triangular lattice embedded in geographic space and enforced smoothness in nearby edge

weights through penalizing their squared differences (see Materials and methods). We could imagine

changing the structure of the graph by adding edges to allow for long-range connections; however,

our current regularization scheme would not be appropriate for this setting. Instead, we could imag-

ine adding an additional penalty to the objective, which would only allow a few long range connec-

tions to be tolerated. This could be considered to be a combination of two existing approaches for

graph-based inference, graphical lasso (GLASSO) and graph Laplacian smoothing, combining the

smoothness assumption for nearby connections and the sparsity assumption for long-range connec-

tions (Friedman et al., 2008; Wang et al., 2016). Another potential methodological avenue to

incorporate long-range migration is to use a ‘greedy’ approach. We could imagine adding long-

range edges one a time, guided by re-fitting the spatial model and taking a data-driven approach to

select particular long-range edges to include. The proposed greedy approach could be considered

to be a spatial graph analog of TreeMix (Pickrell and Pritchard, 2012).

Another interesting extension would be to incorporate asymmetric migration into the framework

of resistance distance and Gaussian Markov Random Field based models. FEEMS, like EEMS, used a

likelihood that is based on resistance distances, which are limited in their ability to model asymmetric

migration (Lundgren and Ralph, 2019). Recently, Hanks, 2015 developed a promising new frame-

work for deriving the stationary distribution of a continuous time stochastic process with asymmetric

migration on a spatial graph. Interestingly, the expected distance of this process has similarities to

the resistance distance-based models, in that it depends on the pseudo-inverse of a function of the

graph Laplacian. Hanks, 2015 used MCMC to estimate the effect of known covariates on the edge

weights of the spatial graph. Future work could adapt this framework into the penalized optimization

approach we have considered here, where adjacent edge weights are encouraged to be smooth.

Finally, when interpreted as mechanistic rather than statistical models, both EEMS and FEEMS

implicitly assume time-stationarity, so the estimated migration parameters should be considered to

be ‘effective’ in the sense of being averaged over time in a reality where migration rates are dynamic

and changing (Pickrell and Reich, 2014). The MAPS method is one recent advance that utilizes long

stretches of shared haplotypes between pairs of individuals to perform Bayesian inference of time

varying migration rates and population sizes (Al-Asadi et al., 2019). With the growing ability to

extract high quality DNA from ancient samples, another exciting future direction would be to apply

FEEMS to ancient DNA datasets over different time transects in the same focal geographic region to

elucidate changing migration histories (Mathieson et al., 2018). There are a number of technical

challenges in ancient DNA data that make this a difficult problem, particularly high levels of missing

and low-coverage data. Our modeling approach could be potentially more robust, in that it takes

allele frequencies as input, which may be estimable from dozens of ancient samples at the same spa-

tial location, in spite of high degrees of missingness (Korneliussen et al., 2014).

In closing, we look back to a review titled ‘How Can We Infer Geography and History from Gene

Frequencies?’ published in 1982 (Felsenstein, 1982). In this review, Felsenstein laid out fundamental

open problems in statistical inference in population genetic data, a few of which we restate as they

are particularly motivating for our work:

. For any given covariance matrix, is there a corresponding migration matrix which would be
expected to lead to it? If so, how can we find it?

. How can we characterize the set of possible migration matrices which are compatible with a
given set of observed covariances?

. How can we confine our attention to migration patterns which are consistent with the known
geometric co-ordinates of the populations?

. How can we make valid statistical estimates of parameters of stepping stone models?
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The methods developed here aim to help address these longstanding problems in statistical pop-

ulation genetics and to provide a foundation for future work to elucidate the role of geography and

dispersal in ecological and evolutionary processes.

Materials and methods

Model description
See Appendix 1 ‘Mathematical notation’ for a detailed description of the notation used to describe

the model. To visualize and model spatial patterns in a given population genetic dataset, FEEMS

uses an undirected graph, G ¼ ðV; EÞ with Vj j ¼ d, where nodes represent sub-populations and edge

weights ðwk‘Þðk;‘Þ2E represent the level of gene-flow between sub-populations k and ‘. For computa-

tional convenience, we assume G is a highly sparse graph, specifically a triangular grid that is embed-

ded in geographic space around the sample coordinates. We observe a genotype matrix, Y 2 R
n�p,

with n rows representing individuals and p columns representing SNPs. We imagine diploid individu-

als are sampled on the nodes of G so that yijðkÞ 2 f0; 1; 2g records the count of some arbitrarily pre-

defined allele in individual i, SNP j, on node k 2 V. We assume a commonly used simple Binomial

sampling model for the genotypes:

yijðkÞj fjðkÞ~Binomial 2; fjðkÞ
� �

; (1)

where conditional on fjðkÞ for all j;k, the yijðkÞ’s are independent. We then estimate an allele fre-

quency at each node and SNP by maximum likelihood:

bfjðkÞ ¼
Pnk

i¼1
yijðkÞ

2nk
;

where nk is the number of individuals sampled at node k. We estimate allele frequencies at o of the

observed nodes out of d total nodes on the graph. From Equation (1), the estimated frequency in a

particular sub-population, conditional on the latent allele frequency, will approximately follow a

Gaussian distribution:

bfjðkÞj fjðkÞ~N fjðkÞ;
fjðkÞ 1� fjðkÞ

� �

2nk

� �
:

Using vector notation, we represent the joint model of estimated allele frequencies as:

bf jj f j ~N o Af j;diag df ;n
� �� �

; (2)

where bf j is a o� 1 vector of estimated allele frequencies at observed nodes, f j is a d� 1 vector of

latent allele frequencies at all the nodes (both observed and unobserved), and A is a o� d node

assignment matrix where Ak‘ ¼ 1 if the kth estimated allele frequency comes from sub-population ‘

and Ak‘ ¼ 0 otherwise; and diagðdf ;nÞ denotes a o� o diagonal matrix whose diagonal elements corre-

sponds to the appropriate variance term at observed nodes.

To summarize, we estimate allele frequencies from a subset of nodes on the graph and define

latent allele frequencies for all the nodes of the graph. The assignment matrix A maps these latent

allele frequencies to our observations. Our summary statistics (the data) are thus ðbF; nÞ where bF is a

o� p matrix of estimated allele frequencies and n is a o� 1 vector of sample sizes for every observed

node. We assume the latent allele frequencies come from a Gaussian Markov Random Field:

f j ~N d �j1;�jð1��jÞL
†

� �
; (3)

where L is the graph Laplacian, † represents the pseudo-inverse operator, and �j represents the

average allele frequency across all of the sub-populations. Note that the multiplication by the SNP-

specific factor �jð1��jÞ ensures that the variance of the latent allele frequencies vanishes as the

average allele frequency approaches to 0 or 1. One interpretation of this model is that the expected

squared Euclidean distance between latent allele frequencies on the graph, after being re-scaled by
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�jð1��jÞ, is exactly the resistance distance of an electrical circuit (McRae, 2006; Hanks and Hooten,

2013):

E fjðkÞ� fjð‘Þ
� �2h i

�jð1��jÞ
¼ rk‘; where rk‘ ¼ ðok � o‘Þ

>
L†ðok � o‘Þ ¼ L†

kk � 2L†

k‘ þL†

‘‘;

where oi is a one-hot vector (i.e. storing a 1 in element i and zeros elsewhere). It is known that the

resistance distance rk‘ is equivalent to the expected commute time between nodes k and ‘ of a ran-

dom walker on the weighted graph G (Chandra et al., 1996). Additionally, the model (Equation 3)

forms a Markov random field, and thus any latent allele frequency fjðkÞ is conditionally independent

of all other allele frequencies given its neighbors which are encoded by nonzero elements of L (Laur-

itzen, 1996; Koller and Friedman, 2009). Since we use a triangular grid embedded in geographic

space to define the graph G, the pattern of nonzero elements is prefixed by the structure of the

sparse traingular grid.

Using the law of total variance formula, we can derive from (Equations 2, 3) an analytic form for

the marginal likelihood. Before proceeding, however, we further approximate the model by assum-

ing 1

2
fjðkÞð1� fjðkÞÞ »s2�jð1� �jÞ for all j and k (see Appendix 1 ‘Estimating the edge weights under

the exact likelihood model’ for the data model without this approximation). This assumption is

mainly for computational purposes and may be a coarse approximation in general. On the other

hand, the assumption is not too strong if we exclude SNPs with extremely rare allele frequencies,

and more importantly, we find it leads to a good empirical performance, both statistically and com-

putationally. With this approximation, the residual variance parameter s2 is still unknown and needs

to be estimated.

Under (Equation 2, 3), the law of total variance formula leads to specific formulas for the mean

and variance structure as given in (Equation 4). With those results, we arrive at the following approx-

imate marginal likelihood:

bf j ~N o �j1;�jð1��jÞ � AL†A>þs2diag n�1
� �� �� �

; (4)

where diagðn�1Þ is a o� o diagonal matrix computed from the sample sizes at observed nodes. We

note the marginal distribution of bfj is not necessarily a Gaussian distribution; however, we use a

Gaussian approximation to facilitate computation.

To remove the SNP means we transform the estimated frequencies by a contrast matrix,

C 2 R
ðo�1Þ�o, that is orthogonal to the one-vector:

Cbf j ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jð1��jÞ

q
�N o�1 0;CAL†A>C> þs2Cdiag n�1

� �
C>

� �
: (5)

Let bS¼ 1

p
bFs
bF>
s be the o� o sample covariance matrix of estimated allele frequencies after re-scal-

ing, that is, bFs is a matrix formed by rescaling the columns of bF by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�jð1� b�jÞ

p
, where b�j is an esti-

mate of the average allele frequency (see above). We can then express the model in terms of the

transformed sample covariance matrix:

p �CbSC>
~Wo�1 CAL†A>C> þs2Cdiag n�1

� �
C>;p

� �
; (6)

where Wp denotes a Wishart distribution with p degrees of freedom. Note we can equivalently use

the sample squared Euclidean distance (often refereed to as a genetic distance) as a summary statis-

tic: letting bD be the genetic distance matrix with bDk‘ ¼
Pp

j¼1
ðbfjðkÞ�bfjð‘ÞÞ2=p � b�jð1� b�jÞ, we have

bD¼ 1diagðbSÞ> þdiagðbSÞ1> � 2bS;

and so

CbDC> ¼�2CbSC>;

using the fact that the contrast matrix C is orthogonal to the one-vector. Thus, we can use the same
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spatial covariance model implied by the allele frequencies once we project the distances on to the

space of contrasts:

�
p

2
�CbDC>

~Wo�1 CAL†A>C>þs2Cdiag n�1
� �

C>;p
� �

:

Overall, the negative log-likelihood function implied by our spatial model is the following (ignor-

ing constant terms):

‘ðw;s2;CbSC>Þ ¼ p � tr CAL†A>C> þs2Cdiagðn�1ÞC>
� ��1

CbSC>
� �

�p � logdet CAL†A>C> þs2Cdiagðn�1ÞC>
� ��1

;
(7)

where w2R
m is a vectorized form of the non-zero lower-triangular entries of the weighted adjacency

matrix W (recall that the graph Laplacian is completely defined by the edge weights,

L¼ diagðW1Þ�W, so there is an implicit dependency here). Since the graph is a triangular lattice, we

only need to consider the non-zero entries to save computational time, that is, not all sub-popula-

tions are connected to each other.

We note our model (Equation 6) assumes that the p SNPs are independent. This assumption is

unlikely to hold when datasets are analyzed with SNPs that statistically covary (linkage disequilib-

rium). However, we note that the degree of freedom parameter does not affect the point estimate

produced by FEEMS because it is treated as a constant term in the log-likelihood function.

One key difference between EEMS (Petkova et al., 2016) and FEEMS is how the edge weights

are parameterized. In EEMS, each node is given an effective migration parameter mk for node k 2 V

and the edge weight is parameterized as the average between the nodes it connects, that is,

wk‘ ¼ ðmk þ m‘Þ=2 for ðk; ‘Þ 2 E. FEEMS, on the other hand, assigns a parameter to every nonzero

edge-weight. The former has fewer parameters, with the specific consequence that it only allows

isotropy and imposes an additional degree of similarity among edge weights; instead, in the latter,

the edge weights are free to vary apart from the regularization imposed by the penalty. See Appen-

dix 1 ‘Edge versus node parameterization’ and Appendix 1—figures 15, 17 for more details.

Penalty description
As mentioned previously, we would like to encourage that nearby edge weights on the graph have

similar values to each other. This can be performed by penalizing differences between all edges con-

nected to the same node, that is, spatially adjacent edges:

fl;aðwÞ ¼
l

2

X

i2V

X

k;‘2EðiÞ

logðeawik � 1Þ� logðeawi‘ � 1Þð Þ2;

where, as before, EðiÞ denotes the set of edges that is connected to node i. (As mentioned earlier, in

practice we choose a¼ 1=bw0, where bw0 is the solution for the ‘constant-w’ model, but we use the

free parameter a here for full generality.) The function x7! logðex � 1Þ (on positive values x2 ð0;¥Þ) is

approximately equal to x, for x much larger than 1, and is approximately equal to logðxÞ, for x much

smaller than 1. This means that our penalty function effectively penalizes differences on the log scale

for edges ði;kÞ and ði; ‘Þ with very small weights, but penalizes differences on the original non-log

scale for edges with large weights. Using a logarithmic-scale penalty for edges with low weights

(rather than simply penalizing ðwik �wi‘Þ
2) leads to smooth graphs for small edge values, and thus

allow for an additional degree of flexibility across orders of magnitude of edge weights. The penalty

parameter, l, controls the overall contribution of the penalty to the objective function. It is conve-

nient to write the penalty in matrix-vector form which we will use throughout:

fl;aðwÞ ¼
l

2
D logðeaw � 1Þk k2

2
; (8)

where D is a signed graph incidence matrix derived from a unweighted graph denoting if pairs of

edges are connected to the same node. Specifically, in this expression, we treat w as a vector of

length jEj (i.e. the number of edges), and apply the function w 7! logðeaw � 1Þ entrywise to this vector.

For each pair adjacent edges ði;kÞ and ði; ‘Þ in the graph, there is a corresponding row of D with the
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value +1 in the entry corresponding to edge ði;kÞ, a �1 in the entry corresponding to edge ði; ‘Þ, and

0’s elsewhere.

One might wonder whether it is possible to use the ‘1 norm in the penalty form Equation (8) in

place of the ‘2 norm. While it is known that the ‘1 norm might increase local adaptivity and better

capture the sharp changes of the underlying structure of the latent allele frequencies (e.g.

Wang et al., 2016), in our case, we found an inferior performance when using the ‘1 norm over the

‘2 norm—in particular, our primary application of interest is the regime of highly missing nodes,

that is, o � d, in which case the global smoothing seems somewhat necessary to encourage stable

recovery of the edge weights at regions with sparsely observed nodes (see Appendix 1 ‘Smooth

penalty with ‘1norm’). In addition, adding the penalty fl;aðwÞ allows us to implement faster algo-

rithms to solve the optimization problem due to the differentiability of the ‘2 norm, and as a result,

it leads to better overall computational savings and a simpler implementation.

Optimization
Putting Equation (7) and Equation (8) together, we infer the migration edge weights bw by minimiz-

ing the following penalized negative log-likelihood function:

bw ¼
l�w�u

argmin ‘ðw;s2;CbSC>Þþfl;aðwÞ

¼
l�w�u

argmin p � tr CAL†A>C>þs2Cdiagðn�1ÞC>
� ��1

CbSC>
� �h

�p � logdet CAL†A>C> þs2Cdiagðn�1ÞC>
� ��1

þ
l

2
D logðeaw� 1Þk k2

2

�
;

(9)

where l;u2R
m
þ represent respectively the entrywise lower- and upper bounds on w, that is, we con-

strain the lower- and upper bound of the edge weights to l and u throughout the optimization.

When no prior information is available on the range of the edge weights, we often set l¼ 0 and

u¼þ¥.

One advantage of the formulation of Equation 9 is the use of the vector form parameterization

w 2 R
m
þ of the symmetric weighted adjacency matrix W 2 R

d�d
þ . In our triangular graph G ¼ ðV; EÞ, the

number of non-zero lower-triangular entries is m ¼ OðdÞ � d2, so working directly on the space of

vector parameterization saves computational cost. In addition, this avoids the symmetry constraint

imposed on the adjacency matrix W, hence making optimization easier (Kalofolias, 2016).

We solve the optimization problem using a constrained quasi-Newton optimization algorithm,

specifically L-BFGS implemented in scipy (Byrd et al., 1995; Virtanen et al., 2020) (RRID:SCR_

008058). Since our objective Equation 9 is non-convex, the L-BFGS algorithm is guaranteed to con-

verge only to a local minimum. Even so, we empirically observe that local minima starting from dif-

ferent initial points are qualitatively similar to each other across many datasets. The L-BFGS

algorithm requires gradient and objective values as inputs. Note the naive computation of the objec-

tive Equation 9 is computationally prohibitive because inverting the graph Laplacian has complexity

Oðd3Þ. We take advantage of the sparsity of the graph and specific structure of the problem to effi-

ciently compute gradient and objective values. In theory, our implementation has computational

complexity of Oðdoþ o3Þ per iteration which, in the setting of o � d, is substantially smaller than

Oðd3Þ. It is possible to achieve Oðdoþ o3Þ per-iteration complexity by using a solver that is specially

designed for a sparse Laplacian system. In our work, we use sparse Cholesky factorization which may

slightly slow down the per-iteration complexity (See Appendix Material for the details of the gradi-

ent and objective computation).

Estimating the residual variance and edge weights under the null model
For estimating the residual variance parameter s2, we first estimate it via maximum likelihood assum-

ing homogeneous isolation by distance. This corresponds to the scenario where every edge-weight

in the graph is given the exact same unknown parameter value w0. Under this model, we only have

two unknown parameters w0 and the residual variance s2. We estimate these two parameters by

jointly optimizing the marginal likelihood using a Nelder-Mead algorithm implemented in scipy

(Virtanen et al., 2020) (RRID:SCR_008058). This requires only likelihood computations which are

efficient due to the sparse nature of the graph. This optimization routine outputs an estimate of the
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residual variance bs2 and the null edge weight bw0, which can be used to construct Wðbw0Þ and in turn

Lðbw0Þ.

One strategy we found effective is to fit the model of homogeneous isolation by distance and

then fix the estimated residual variance bs2 throughout later fits of the more flexible penalized mod-

els—See Appendix 1 ‘Jointly estimating the residual variance and edge weights’. Additionally, we

find that initializing the edge weights to bw0 to be a useful and intuitive strategy to set the initial val-

ues for the entries of w to the correct scale.

Leave-one-out cross-validation to select tuning parameters
FEEMS estimates one set of graph edge weights for each setting of the tuning parameters l and a

which control the smoothness of the fitted edge weights. Figure 3 shows that the estimated migra-

tion surfaces vary substantially depending on the particular choices of the tuning parameters, and

indeed, due to the large fraction of unobserved nodes, it can highly over-fit the observed data

unless regularized accordingly. To address the issue of selecting the tuning parameters, we propose

using leave-one-out cross-validation to assess each fitted model’s generalization ability at held out

locations.

To simplify the notation, we write the model Equation 4 for the estimated allele frequencies in

SNP j as

bf j ~N o mj;Sj

� �
;

where

mj ¼ �j1 and Sj ¼ �jð1��jÞ � AL†A> þs2diag n�1
� �� �

: (10)

For each fold, we hold out one node from the set of observed nodes in the graph and use the

rest of the nodes to fit FEEMS across a sequential grid of regularization parameters. Note that our

objective function is non-convex, so the algorithm converges to different local minima for different

regularization parameters, even with the same initial value bw0. To stabilize the cross-validation proce-

dure, we recommend using a warm start strategy in which one solves the problem for the largest

value of regularization parameters first and use this solution to initialize the algorithm at the next

largest value of regularization parameters, and so on. Empirically, we find that using warm starts

gives far more reliable model selection than with cold starts, where the problems over the sequence

of parameters are solved independently with same initial value bw0. We suspect that the poor perfor-

mance of leave-one-out cross-validation without warm starts is attributed to spatial dependency of

allele frequencies and the large fraction of unobserved nodes. Without loss of generality, we assume

that the last node has been held out. Re-writing the distribution of the observed frequencies accord-

ing to the split of observed nodes,

bf j ¼
bf trj
bf valj

 !
~N o

mtr
j

�val
j

� �
;

Str
j Scov

j

S
cov>
j Sval

j

 ! !
;

the conditional mean of the observed frequency bf valj on the held out node, given the rest, is given by

bf val;predj ¼E bf valj j bf trj
h i

¼ �val
j þScov

j
>Str

j
�1ðbf trj �mtr

j Þ:

Using this formula, we can predict allele frequencies at held out locations using the fitted graph

bL¼ bLðl;aÞ for each setting of tuning parameters l and a. Note that in Equation (10), the parame-

ters �j and s are also unknown, and we use an estimate of the average allele frequency b�j and the

estimated residual variance bs from the ‘constant-w’ model (they are not dependent on l and a).

Then we select the tuning parameters l and a that output the minimum prediction error averaged

over all SNPs 1

p

P
j
bf val;predj �bf valj









2

2

, averaged over all the held out nodes (with o observed nodes in

total). As mentioned earlier, in practice we choose a¼ 1=bw0 and hence we can use the leave-one-out

cross-validation to search for l only, which allows us to avoid the computational cost of searching

over the two-dimensional parameter space.
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Comparison between FEEMS and EEMS models
At a high level, we can summarize the differences between FEEMS and EEMS as follows: (1) the like-

lihood functions of FEEMS and EEMS are slightly different as a function of the graph Laplacian L; (2)

the migration rates are parameterized in terms of edge weights or in terms of node weights; and (3)

EEMS is based on Bayesian inference and thus chooses a prior and studies the posterior distribution,

while FEEMS is an optimization-based approach and thus chooses a penalty function and minimizes

the penalized log-likelihood (in particular, the EEMS prior and the FEEMS penalty are both aiming

for locally constant type migration surfaces). The last two points were already discussed in the above

sections, so here we focus on the difference of the likelihoods between the two methods.

FEEMS develops the spatial model for the genetic differentiation through Gaussian Markov Ran-

dom Field, but the resulting likelihood has similarities to EEMS (Petkova et al., 2016) which consid-

ers the pairwise coalescent times. Using our notation, we can write the EEMS model as

�
n

2
�CbD�C>

~Wo�1 s� �C
1

2
AL†A> þdiag Aqð Þ

� �
C>;n

� �
; (11)

where n 2 ½o� 1;p� is the effective degree of freedom, s�>0 is the scale nuisance parameter, and q is

a d� 1 vector of the within-sub-population coalescent rates. bD� represents the genetic distance

matrix without re-scaling, where the ðk; ‘Þ-th element is given by bD$

k‘ ¼
Pp

j¼1
ðbfjðkÞ�bfjð‘ÞÞ2=p. That is,

unlike FEEMS, EEMS does not consider the SNP-specific re-scaling factor �jð1��jÞ to account for

the vanishing variance of the observed allele frequencies as the average allele frequency approaches

to 0 or 1.

In Equation (11), the effective degree of freedom n is introduced to account for the dependency

across SNPs in close proximity. Because EEMS uses a hierarchical Bayesian model to infer the effec-

tive migration rates, n is being estimated alongside other model parameters. On the other hand,

FEEMS uses an optimization-based approach and the degrees of freedom has no influence on the

point estimate of the migration rates. Besides the effective degree of freedom and the SNP-specific

re-scaling by �jð1� �jÞ, the EEMS and FEEMS likelihoods are equivalent up to constant factors, as

long as only one individual is observed per node and the residual variance s2 is allowed to vary

across nodes—See Appendix 1 ‘Jointly estimating the residual variance and edge weights’ for

details. The constant factors, such as s�, can be effectively absorbed into the unknown model

parameters L and q and therefore they do not affect the estimation of effective migration rates, up

to constant factors.

Data description and quality control
We analyzed a population genetic dataset of North American gray wolves previously published in

Schweizer et al., 2016. For this, we downloaded plink (RRID:SCR_001757) formatted files and spa-

tial coordinates from https://doi.org/10.5061/dryad.c9b25. We removed all SNPs with minor allele

frequency less than 5% and with missingness greater then 10%, resulting in a final set of 111 individ-

uals and 17,729 SNPs.

Population structure analyses
We fit the Pritchard, Donnelly, and Stephens model (PSD) and ran principal components analysis on

the genotype matrix of North American gray wolves (Price et al., 2006; Pritchard et al., 2000). For

the PSD model, we used the ADMIXTURE software (RRID:SCR_001263) on the un-normalized gen-

otypes, running five replicates per choice of K, from K ¼ 2 to K ¼ 8 (Alexander et al., 2009). For

each K, we choose the one that achieved the highest likelihood to visualize. For PCA, we centered

and scaled the genotype matrix and then ran sklearn (RRID:SCR_019053) implementation of

PCA, truncated to compute 50 eigenvectors.

Grid construction
To create a dense triangular lattice around the sample locations, we first define an outer boundary

polygon. As a default, we construct the lattice by creating a convex hull around the sample points

and manually trimming the polygon to adhere to the geography of the study organism and balanc-

ing the sample point range with the extent of local geography using the following website https://
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www.keene.edu/campus/maps/tool/. We often do not exclude internal ‘holes’ in the habitat (e.g.

water features for terrestrial animals), and let the model instead fit effective migration rates for those

features to the extent they lead to elevated differentiation. We also emphasize the importance of

defining the lattice for FEEMS as well as EEMS and suggest this should be carefully curated with

prior biological knowledge about the system.

To ensure edges cover an equal area over the entire region, we downloaded and intersected a

uniform grid defined on the spherical shape of earth (Sahr et al., 2003). These defined grids are

pre-computed at a number of different resolutions, allowing a user to test FEEMS at different grid

densities which is an important feature to explore.

Code availability
The code to reproduce the results of this paper and more can be found at https://github.com/jhmar-

cus/feems-analysis (Marcus and Ha, 2021a, copy archived at swh:1:rev:f2d7330f25f8a11124d-

b09000918ae38ae00d4a7, Marcus and Ha, 2021b). A python (RRID:SCR_008394) package

implementing the method can be found at https://github.com/Novembrelab/feems.
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Appendix 1

Mathematical notation
We denote matrices using bold capital letters A. Bold lowercase letters are vectors a, and non-bold

lowercase letters are scalars a. We denote by A�1 and A† the inverse and (Moore-Penrose) pseudo-

inverse of A, respectively. We use y ~Npðm;SÞ to express that the random vector y is modeled as a p-

dimensional multivariate Gaussian distribution with fixed parameters m and S and use the conditional

notation yjm ~Npðm;SÞ if m is random.

A graph is a pair G ¼ ðV; EÞ, where V denotes a set of nodes or vertices and E � V � V denotes a

set of edges. Throughout we assume the graph G is undirected, weighted, and contains no self

loops, that is, ðk; ‘Þ 2 E () ð‘; kÞ 2 E and ðk; kÞ=2E and each edge ðk; ‘Þ 2 E is given a weight

wk‘ ¼ w‘k>0. We write W to indicate the symmetric weighted adjacency matrix, that is,

Wk‘ ¼
wk‘; if ðk; ‘Þ 2 E,
0; otherwise.

�

w2R
m is a vectorized form of the non-zero lower-triangular entries of W where m¼ Ej j=2 is the num-

ber of non-zero lower triangular elements. We denote by L¼ diagðW1Þ�W the graph Laplacian.

Gradient computation
In practice, we make a change of variable from w 2 R

m
þ to z ¼ logðwÞ 2 R

m and the algorithm is

applied to the transformed objective function:

‘ðexpðzÞ;s2;CbSC>Þþfl;aðexpðzÞÞ ¼ e‘ðz;s2;CbSC>Þþ efl;aðzÞ:

After the change of variable, the objective value remains the same, whereas it follows from the

chain rule that rðe‘ðzÞþ efl;aðzÞÞ ¼rð‘ðwÞþfl;aðwÞÞ�w where � indicates the Hadamard product or

elementwise product—for notational convenience, we drop the dependency of ‘ on the quantities

s2 and CbSC>. Furthermore, the computation of rfl;aðwÞ is relatively straightforward, so in the rest

of this section, we discuss only the computation of the gradient of the negative log-likelihood func-

tion with respect to w, that is, r‘ðwÞ.

Recall, by definition, the graph Laplacian L implicitly depends on the variable w through

L ¼ diagðW1Þ �W. Throughout we assume the first o rows and columns of L correspond to the

observed nodes. With this assumption, our node assignment matrix has block structure

A ¼ ½Io�o j 0o�ðd�oÞ�. To simplify some of the equations appearing later, we introduce the notation:

we define

Lfull :¼ Lþ
11>

d
; S :¼AL�1

fullA
> þs2diagðn�1Þ; (12)

and

M :¼C> ðCSCÞ�1ðCbSCÞðCSCÞ�1 �ðCSCÞ�1

� �
C:

Applying the chain rule and matrix derivatives, we can calculate:

r‘ðwÞ ¼
q‘ðwÞ

qvecðLÞ
�
qvecðLÞ

qw>
;

where vec is the vectorization operator and q‘=qvecðLÞ and qvecðLÞ=qw> are 1� d2 vector and d2� d

matrix, respectively, given by

q‘ðwÞ

qvecðLÞ
¼ p � vec L�1

fullA
>MAL

�1;>
full

� �
;
qvecðLÞ

qw>
¼ S�T: (13)

Here, S and T are linear operators that satisfy Sw¼ diagðW1Þ and Tw¼W. Note S and T both

have OðdÞ many nonzero entries, so we can perform sparse matrix multiplication to efficiently
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compute the matrix-vector multiplication q‘=qvecðLÞ � ðS�TÞ. On the other hand, the computation of

q‘=qvecðLÞ is more challenging as it requires inverting the full d� d matrix Lfull. Next, we develop a

procedure that efficiently computes q‘=qvecðLÞ. We proceed by dividing the task into multiple steps.

1. Computing S
�1

Recalling the block structure A ¼ ½Io�o j 0o�ðd�oÞ� of the node assignment matrix, we can write S as:

S¼ L�1

full

� �
o�o

þs2diagðn�1Þ;

where L�1

full

� �
o�o

denotes the o� o upper-left block of L�1

full. Following Petkova et al., 2016, the

inverse S�1
has the form

S
�1 ¼Xþs�2diagðnÞ; (14)

for some matrix X 2R
o�o. Equating SS�1 ¼ I, it follows that

L�1

full

� �
o�o

þs2diagðn�1Þ
h i

Xþs�2diagðnÞ
� �

¼ I

() L�1

full

� �
o�o

þs2diagðn�1Þ
h i

X¼�s�2 L�1

full

� �
o�o

diagðnÞ:

(15)

Therefore, S
�1

can be obtained by solving the o� o linear system Equation (15) and plugging the

solution into Equation (14). The challenge here is to compute L�1

full

� �
o�o

without matrix inversion of

the full-dimensional Lfull.

2. Computing L�1

full

� �
o�o

Let Lfull;o�o be the o� o block matrix corresponding to the observed nodes of Lfull, and similarly let

Lfull;ðd�oÞ�ðd�oÞ and Lfull;o�ðd�oÞ ¼ L>
full;ðd�oÞ�o be the corresponding block matrices of Lfull, respectively.

The inverse of L�1

full

� �
o�o

is then given by the Schur complement of Lfull;ðd�oÞ�ðd�oÞ in L:

L�1

full

� �
o�o

h i�1

¼ Lfull;o�o �Lfull;o�ðd�oÞ Lfull;ðd�oÞ�ðd�oÞ

� ��1
Lfull;ðd�oÞ�o: (16)

See also Hanks and Hooten, 2013, Petkova et al., 2016. Since every term in Equation (16) has

sparse + rank-1 structure, the matrix multiplications can be performed fast. In addition, for the term

Lfull;ðd�oÞ�ðd�oÞ

� ��1
, we can use the Sherman-Morrison formula so that the inverse is given explicitly by

Lfull;ðd�oÞ�ðd�oÞ

� ��1
¼ Lðd�oÞ�ðd�oÞþ

11>

d

� ��1

¼ L�1

ðd�oÞ�ðd�oÞ�
1

dþ 1>L�1

ðd�oÞ�ðd�oÞ1
L�1

ðd�oÞ�ðd�oÞ11
>L�1

ðd�oÞ�ðd�oÞ:

Hence, in order to compute Lfull;ðd�oÞ�ðd�oÞ

� ��1
Lfull;ðd�oÞ�o, we need to solve two systems of linear

equations:

Lðd�oÞ�ðd�oÞU¼ Lfull;ðd�oÞ�o and Lðd�oÞ�ðd�oÞu¼ 1:

Note that the matrix Lðd�oÞ�ðd�oÞ is sparse, so both systems can be solved efficiently by performing

sparse Cholesky factorization on Lðd�oÞ�ðd�oÞ (Hanks and Hooten, 2013). Alternatively, one can

implement fast Laplacian solvers (Vishnoi, 2013) that solve the Laplacian system in time nearly linear

in the dimension OðdÞ. After we obtain L�1

full

� �
o�o

h i�1

via sparse + rank-1 matrix multiplication and

sparse Cholesky factorization, we can invert the o� o matrix to get L�1

full

� �
o�o

.
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3. Computing L�1

full

� �
d�o

We write

L�1

full

� �
d�o

¼
L�1

full

� �
o�o

L�1

full

� �
ðd�oÞ�o

" #
:

Using the inversion of the matrix in a block form, the ðd� oÞ� o block component is given by

L�1

full

� �
ðd�oÞ�o

¼� Lfull;ðd�oÞ�ðd�oÞ

� ��1
Lfull;ðd�oÞ�o|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðAÞ

L�1

full

� �
o�0|fflfflfflfflffl{zfflfflfflfflffl}

ðBÞ

(17)

Since each of the two terms (A) and (B) has been already computed in the previous step, there is

no need to recompute them. In total, it requires a ðd� oÞ� o matrix and o� o matrix multiplication.

4. Computing the full gradient

Going back to the expression of r‘ðwÞ in Equation (13), and noting the block structure of the

assignment matrix A, we have:

q‘ðwÞ

qvecðLÞ
¼ p � vec L�1

full

� �
d�o

M L�1

full

� �>
d�o

� �
:

Define P1 ¼ 1 1>S
�1
1

� ��1

1>S
�1

which acts as a sort of projection to the space of constant vectors

with respect to the inner product hx;yi ¼ x>S
�1
y. Using the identity I�P1 ¼SC>ðCSC>Þ�1

C (McCul-

lagh, 2009), then we can write M in terms of P1:

M ¼S
�1

I�P1ð ÞbSS�1
I�P1ð Þ�S�1

I�P1ð Þ: (18)

Since P1 is a rank-1 matrix, this expression of M allows easier computation. Finally we can put

together Equation (14), Equation (15), Equation (17), and Equation (18), to compute the gradient

of the negative log-likelihood function with respect to the graph Laplacian.

Objective computation
The graph Laplacian L is orthogonal to the one vector 1, so using the notation introduced in Equa-

tion (12), we can express our objective function as

‘ðwÞþfl;aðwÞ ¼ p � tr CSC>
� ��1

CbSC>
� �

� p � logdet CSCð Þ�1þ
l

2
D logðeaw � 1Þk k2

2
:

With the identity I�P1 ¼SC>ðCSC>Þ�1
C, the trace term is:

tr CSC>
� ��1

CbSC>
� �

¼ tr C> CSC>
� ��1

CbS
� �

¼ tr S
�1ðI�P1ÞbS

� �
:

The matrix inside the trace has been constructed in the gradient computation, see Equation (18).

In terms of the determinant, we use the same approach considered in Petkova et al., 2016—in par-

ticular, concatenating C> and 1, the matrix ½C> j 1� is orthogonal, so it can be shown that

detðSÞ ¼
detð1>1ÞdetðCSC>Þ

detðCC>Þdetð1>S�1
1Þ

:

Rearranging terms and using the fact detðU�1Þ ¼ detðUÞ�1 for any matrix U, we obtain:

detðCSC>Þ�1 ¼
detð1>1ÞdetðS�1Þ

detðCC>Þdetð1>S�1
1Þ

¼
o

1>S�1
1
detðS�1Þ:

We have computed S
�1

in Equation (14), so each of the terms above can be computed without

any additional matrix multiplications. Finally, the signed graph incidence matrix D defined on the
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edges of the graph is, by construction, highly sparse with OðdÞ many nonzero entries. Hence we

implement sparse matrix multiplication to evaluate the penalty function fl;aðwÞ while avoiding the

full-dimensional matrix-vector product.

Estimating the edge weights under the exact likelihood model

When we developed the FEEMS model, we used the approximation 1

2
fjðkÞð1� fjðkÞÞ »s2�jð1� �jÞ for

all SNPs j and all nodes k (see Equation 4) and estimated the residual variance s2 under the homo-

geneous isolation by distance model. The primary reason of using this approximation was primarily

computational. While the approximation is not too strong if SNPs with rare allele frequencies are

excluded, it is also critical that the estimation quality of the migration rates is not affected. In this

subsection we introduce the inferring procedure of the migration rates under the exact likellihood

model and compare it with FEEMS.

Note that without approximation, we can calculate the exact analytical form for the marginal like-

lihood of the estimated frequency as follows (after removing the SNP means):

Cbf j ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jð1��jÞ

q
�N o�1 0;CAL†A>C> þCdiagðn�1ÞAdiag

1�L
†

kk

2

� �d

k¼1

 !
A>C>

 !
; (19)

where fakg
d
k¼1

represents the vector a¼ ða1; . . . ;adÞ. Compared to the model Equation (5), this

expression does not introduce the unknown residual variance parameter s2 and instead each node

has its own residual parameter given by ð1�L
†

kkÞ=2. Because the residual parameters must be posi-

tive, this means that we have to search for the graphs that ensure L
†

kk � 1 for all nodes k. With that

said, we can consider the following constrained optimization problem:

bw¼
l�w�u

argmin ‘exactðw;CbSC>Þþfl;aðwÞ : L
†

kk � 1 for all k 2 V
n o

; (20)

where ‘exact is the negative log-likelihood function based on Equation (19) and fl;a is the smooth

penalty function defined earlier. The main difficulty of solving Equation (20) is that enforcing the

constraint L†kk � 1 for all nodes k 2 V, requires full computation of the pseudo-inverse of a d� d matrix

L which is computationally demanding. We instead relax the constraint and consider the following

form as a proxy for optimization Equation (20):

bw¼
l�w�u

argmin ‘exactðw;CbSC>Þþfl;aðwÞ : L
†

kk � 1 for all observed nodes k
n o

: (21)

Note that the constraint L†kk � 1 is now placed at the observed nodes only, which can lead to

computational savings if o� d. The problem Equation (21) can be solved efficiently using any gradi-

ent-based algorithms where we can calculate the gradient of ‘exact with respect to L as

q‘exactðwÞ

qvecðLÞ
¼ p �vec L�1

fullA
>MAL

�1;>
full

� �
� p �diagðMÞ>diagðð2nÞ�1ÞN;

where M is a o� o matrix defined in Equation (18), and N is a o� d2 matrix whose rows correspond

to the observed subsets of the rows of the d2� d2 matrix L�1

full
L�1

full.

Appendix 1—figure 12 shows the result when the penalized maximum likelihood Equation (21)

is applied to the North American wolf dataset with a setting of l ¼ 2:06 (the same value of l as given

in Figure 4) and a ¼ 1=bw0, where bw0 is the solution for the ‘constant-w’ model. We can see that the

resulting estimated migration surfaces are qualitatively similar to that shown in Figure 4. We also

observed similar results between FEEMS and the penalized maximum likelihood Equation (21)

across multiple datasets. On the other hand, we found that at the fitted surface the residual varian-

ces 1� L†kk are not always positive because the constraints are enforced only at the observed nodes.

This is problematic because it can cause the model to be ill-defined at the unobserved nodes and

make the algorithm numerically unstable. Note that FEEMS avoids this issue by decoupling the resid-

ual variance parameter s2 from the graph-related parameters w. The resulting model Equation (6)
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also has more resemblance to spatial coalescent model used in EEMS (Petkova et al., 2016), and

we thus recommend using FEEMS as a primary method for inferring migration rates.

Jointly estimating the residual variance and edge weights

One simple strategy we have used throughout the paper was to fit s2 first under a model of homo-

geneous isolation by distance and prefix the estimated residual variance to the resulting bs2 for later

fits of the effective migration rates. Alternatively, we can consider estimating the unknown residual

variance simultaneously with the edge weights, instead of prefixing it from the estimation of the null

model—the hope here is to simultaneously correct the model misspecification and allow for improv-

ing model fit to the data. To develop the framework for simultaneous estimation of the residual vari-

ance and edge weights, let us consider a model that generalizes both Equation (6) and

Equation (19), that is,

p �CbSC>
~Wo�1 CAL†A>C> þCdiagðn�1ÞAdiag s2

� �
A>C>;p

� �
; (22)

where s2 is a d� 1 vector of node specific residual variance parameters, that is, each deme has its

own residual parameter sk. If the parameters sk’s are assumed to be the same across nodes, this

reduces to the FEEMS model Equation (6) while setting sk ¼ ð1�L†

kkÞ=2 gives the model Equa-

tion (19). Then we solve the following optimization problem

bw;bs2 ¼
l�w�u;s2>0

argmin ‘jointðw;s
2;CbSC>Þþfl;aðwÞ;

where ‘joint is the negative log-likelihood function based on Equation (22). Note that the residual

variances and edge weights are both searched in the optimization for finding the optimal solutions.

To solve the problem, we can use the quasi-newton algorithm for optimizing the objective function.

Appendix 1—figure 13 shows the fitted graphs with different strategies of estimating the resid-

ual variances. Appendix 1—figure 13A shows the result when the model has a single residual vari-

ance s2, and Appendix 1—figure 13B shows the result when the residual variances are allowed to

vary across nodes. In both cases, estimating the residual variances jointly with the edge weights

yields similar and comparable outputs to the default setting of prefixing it from the null model (Fig-

ure 4), except that we can further observe reduced effective migration around Queen Elizabeth

Islands as shown in Appendix 1—figure 13B. In EEMS, in order to estimate the genetic diversity

parameters for every spatial location, which play a similar role as the residual variances in FEEMS, a

Voronoi-tessellation prior is placed to encourage sharing of information across adjacent nodes and

prevent over-fitting. Similarly, we can place the spatial smooth penalty on the residual variances (i.e.

fl;a defined on the variable s2Þ, but it introduces additional hyperparameters to tune, without sub-

stantially improving the model’s fit to the data. In this work, we choose to fit the single residual vari-

ance s2 under the null model and prefix it as a simple but effective strategy with apparent good

empirical performance.

Edge versus node parameterization
One of the novel features of FEEMS is its ability to directly fit the edge weights of the graph that

best suit the data. This direct edge parameterization may increase the risk of model’s overfitting,

but also allows for more flexible estimation of migration histories. Furthermore, as seen in Figure 2

and Appendix 1—figure 2, it has potential to recover anisotropic migration processes. This is in

contrast to EEMS wherein every spatial node is assigned an effective migration parameter mk and a

migration rate on each edge joining nodes k and ‘ is given by the average effective migration

wk‘ ¼ ðmk þ m‘Þ=2. Not surprisingly, by assigning each edge to be the average of connected nodes, a

form of implicit spatial regularization is imposed because multiple edges connected to the same

node would average that node’s parameter value. In some cases, this has the desirable property of

imposing an additional degree of similarity across edge weights, but at the same time it also restricts

the model’s capacity to capture a richer set of structure present in the data (e.g. Petkova et al.,

2016, Supplementary Figure 2). To be concrete, Appendix 1—figure 15 displays two different fits

of FEEMS based on edge parameterization (Appendix 1—figure 15A) and node parameterization
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(Appendix 1—figure 15B), run on a previously published dataset of human genetic variation from

Africa (see Peter et al., 2020 for details on the description of the dataset). Running FEEMS with a

node-based parameterization is straightforward in our framework—all we have to do is to reparame-

terize the edge weights by the average effective migration and solve the corresponding optimization

problem (Optimization) with respect to m. It is evident from the results that FEEMS with edge

parameterization exhibits subtle correlations that exist between the annotated demes in the figure,

whereas node parameterization fails to recover them. We also compare the model fit of FEEMS to

the observed genetic distance (Appendix 1—figure 16) and find that edge-based parameterization

provides a better fit to the African dataset. Appendix 1—figure 17 further demonstrates that in the

coalescent simulations with anisotropic migration, the node parameterization is unable to recover

the ground truth of the underlying migration rates even when the nodes are fully observed.

Smooth penalty with ‘1 norm
FEEMS’s primary optimization objective (see Equation 9) is:

l�w�u
Minimize ‘ðw;s

2;CbSC>Þþfl;aðwÞ;

where the spatial smoothness penalty is given by an ‘2-based penalty function:

fl;aðwÞ ¼
l
2
D logðeaw� 1Þk k2

2
. It is well known that an ‘1-based penalty can lead to a better local adap-

tive fitting and structural recovery than ‘2-based penaltyies (Wang et al., 2016), but at the cost of

handling non-smooth objective functions that are often computationally more challenging. In a spa-

tial genetic dataset, one major challenge is to deal with the relatively sparse sampling design where

there are many unobserved nodes on the graph. In this statistically challenging scenario, we found

that an ‘2-based penalty allows for more accurate and reliable estimation of the geographic

features.

Specifically, writing f
‘1
l;aðwÞ ¼ l D logðeaw � 1Þk k

1
, we considered the alternate following composite

objective function:

‘ðw;s2;CbSC>Þþf
‘1
l;aðwÞ: (23)

To solve Equation (23), we apply linearized alternating direction method of multipliers (ADMM)

(Boyd, 2010), a variant of the standard ADMM algorithm, that iteratively optimizes the augmented

Lagrangian over the primal and dual variables. The derivation of the algorithm is a standard calcula-

tion so we omit the detailed description of the algorithm. As opposed to the common belief about

the effectiveness of the ‘1 norm for structural recovery, the recovered graph of FEEMS using ‘1-

based smooth penalty shows less accurate reconstruction of the migration patterns, especially when

the sampling design has many locations with missing data on the graph (Appendix 1—figure 18A,

Appendix 1—figure 19H). We can see that the ‘1-based penalty function is not able to accurately

estimate edge weights at regions with little data, partially due to its local adaptation, in contrast to

the ‘2-based method that considers regularization more globally. This suggests that in order to use

the ‘1 penalty f
‘1
l;aðwÞ in the presence of many missing nodes, one may need an additional degree of

regularization that encourages global smoothness of the graph’s edge weights, such as a combina-

tion of f‘1
l;aðwÞ and fl;aðwÞ (in the same spirit as elastic net [Zou and Hastie, 2005]), or f‘1

l;aðwÞ on

top of node-based parameterization (see Appendix 1—figure 18B).

Coalescent simulations with weak migration
In Figure 2, we evaluated FEEMS by applying it to ‘out-of-model’ coalescent simulations. In these

simulations, we generated genotype data under a coalescent model with structured meta-popula-

tions organized on a spatial triangular lattice. In a relatively ‘strong’ heterogeneous migration sce-

nario (Figure 2D,E,F), we set the coalescent migration rate to be an order of magnitude lower (10-

fold) in the center of the spatial grid than on the left and right regions, emulating a depression in

gene-flow caused, for example, by a mountain range or body of water. The variation in migration

rates should create a spatially varying covariance structure in the genetic variation data. To get a

sense of the level of genetic divergence implied by this simulation setting, we visualized Wright’s
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fixation index (FST , Patterson’s estimator [Patterson et al., 2012]) plotted against the geographic

distance between nodes (Appendix 1—figure 20). We see in the strong heterogeneous migration

simulation there is a clear signal of two clusters of data points (Appendix 1—figure 20B). These

clusters correspond to pairwise FST comparisons of two nodes on the same side of the central

depression in gene flow, where gene-flow roughly follows a homogeneous ‘isolation-by-distance’

like pattern, or two nodes across the central depression where gene-flow is reduced, hence increas-

ing the expected FST between such nodes.

While simulating this strong reduction of gene-flow provides an illustrative and clear example

where FEEMS has a lot of signal for accurate inference, we wanted to understand the qualitative per-

formance of FEEMS in an less idealized scenario with weaker signal. To this end, we performed coa-

lescent simulations with only a 25% reduction of gene-flow in the center of the habitat

(Appendix 1—figure 21). In Appendix 1—figure 21A, when all the nodes are observed on the spa-

tial graph, FEEMS is still able to detect this subtle reduction of gene-flow. While FEEMS is able to

detect this signal, there remain particularly erroneous estimates among the lower than average edge

weights, implying the fit could benefit from additional smoothing by increasing the level regulariza-

tion on the smoothness penalty. In contrast to the strong heterogeneous migration simulations, we

see that the pairwise FST in this weak migration scenario does not obviously show a ‘clustering’ like

effect in the data (Appendix 1—figure 20A). The average FST between all pairs of demes is approxi-

mately three times lower (mean FST ¼ :1175 for the weak heterogeneity simulation versus mean FST

= 0.3411 for the strong heterogeneity simulation). When the nodes are sparsely observed on the

graph in this weak migration simulation, we see that the FEEMS output is overly smooth (Appen-

dix 1—figure 21B). In the absence of data and thus a weak signal for spatial variation in migration, a

smooth visualization is arguably a sensible outcome given the regularization acts like a prior distribu-

tion favoring spatial homogeneity in levels of effective migration.

In practice, weak population structure can be more accurately dissected when increasing the

number of informative SNPs included in the analysis (Novembre and Peter, 2016). In conjunction

with running FEEMS, we recommend for users to create exploratory visualizations such as vario-

grams and PCA bi-plots to assess the level of population structure in their data, and to consider the

number of SNPs used in the analysis.

Appendix 1—figure 1. Visualization of grid construction and node assignment: (A) Map of sample

coordinates (black points) from a dataset of gray wolves from North America. The input to FEEMS

are latitude and longitude coordinates as well as genotype data for each sample. (B) Map of sample

coordinates with an example dense spatial grid. The nodes of the grid represent sub-populations

and the edges represent local gene-flow between adjacent sub-populations. (C) Individuals are

Appendix 1—figure 1 continued on next page
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Appendix 1—figure 1 continued

assigned to nearby nodes (sub-populations) and summary statistics (e.g. allele frequencies) are

computed for each observed location.

Appendix 1—figure 2. Application of FEEMS to an extended set of coalescent simulations: We dis-

play an extended set of coalescent simulations with multiple migration scenarios and sampling

designs. The sample sizes across the grid are represented by the size of the gray dots at each node.

The migration rates are obtained by solving FEEMS objective function Equation 9 where the the

smoothness parameter l was selected using leave-one-out cross-validation. (A, F, K) display the

ground truth of the underlying migration rates. (B, G, L) shows simulations where there is no missing

data on the graph. (C, H, M) shows simulations with sparse observations and nodes missing at

random. (D, I, N) shows simulations of biased sampling where there are no samples from the center

of the simulated habitat. (E, J, O) shows simulations of biased sampling where there are only

samples on the right side of the habitat.
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Appendix 1—figure 3. Application of FEEMS to a heterogeneous migration scenario with a ‘missing

at random’ sampling design: We run FEEMS on coalescent simulation with a non-homogeneous pro-

cess while varying hyperparameters l (rows) and a (columns). We randomly sample individuals for

20% of nodes. When l grows, the fitted graph becomes overall smoother, whereas a effectively

controls the degree of similarity among low migration rates.

Appendix 1—figure 4. Application of FEEMS to an anisotropic migration scenario with a ‘missing at

random’ sampling design: We run FEEMS on coalescent simulation with an anisotropic process while

varying hyperparameters l (rows) and a (columns). We randomly sample individuals for 20% of

nodes. When l grows, the fitted graph becomes overall smoother, whereas a effectively controls

the degree of similarity among low migration rates.
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Appendix 1—figure 5. SNP and individual quality control. (A) displays a visualization of the sample

site frequency spectrum. Specifically, we display a histogram of minor allele frequencies across all

SNPs. We see a relatively uniform histogram which reflects the ascertainment of common SNPs on

the array that was designed to genotype gray wolf samples. (B) visualization of allele frequencies

plotted against genotype frequencies. Each point represents a different SNP and the colors

represent the three possible genotype values. The black dashed lines display the expectation as

predicted from a simple binomial sampling model i.e., Hardy-Weinberg equilibrium. (C) displays a

histogram of the missingness fraction per SNP. We observe the missingness tends to be relatively

low for each SNP. (D) displays a histogram of the missingness fraction per sample. Generally, the

missingness tends to be low for each sample.
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Appendix 1—figure 6. Comparing predictions of observed genetic distances: We display different

predictions of observed genetic distances using geographic distance or the fitted genetic distance

output by FEEMS. (A) The x-axis displays the geographic distance between two individuals, as

measured by the great circle distance (haversine distance). The y-axis displays the squared Euclidean

distance between two individuals averaged over all SNPs. (B–D) The x-axis displays the fitted

genetic distance as predicted by the FEEMS model and y-axis displays the squared Euclidean

distance between two sub-populations averaged over all SNPs. For (B–D), we display the fit of l

getting subsequently smaller, l ¼ 100; 2:06; 0:04 (the same values of l used in Figure 3A,B,C), and as

expected the fit appears better because we tolerate more complex surfaces and we are not

evaluating the fit on out-of-sample data.
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Appendix 1—figure 7. Summary of top axes of genotypic variation: We display a visual summary of

Principal Components Analysis (PCA) applied to the normalized genotype matrix from the North

American gray wolf dataset. (A–D) displays PC bi-plots of the top seven PCs plotted against each

other. The colors represent predefined ecotypes defined in Schweizer et al., 2016. We can see that

the top PCs delineate these predefined ecotypes. (E) shows a ‘scree’ plot with the proportion of

variance explained for each of the top 50 PCs. As expected by genetic data (Patterson et al.,

2006), the eigenvalues of the genotype matrix tend to be spread over many PCs.
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Appendix 1—figure 8. Relationship between top axes of genetic variation and latitude: In each sub-

panel, we plot the PC value against latitude for each sample in gray the wolf dataset. We see many

of the top PCs are significantly correlated with latitude as tested by linear regression.
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Appendix 1—figure 9. Relationship between top axes of genetic variation and longitude: In each

sub-panel, we plot the PC value against longitude for each sample in the gray wolf dataset. We see

many of the top PCs are significantly correlated with longitude as tested by linear regression.
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Appendix 1—figure 10. Summary of ADMIXTURE results: (A–G) Visualization of ADMIXTURE results

for K ¼ 2 to K ¼ 8. We display admixture fractions for each sample as colored slices of the pie chart

on the map. For each K, we ran five replicate runs of ADMIXTURE and in this visualization, we

display the solution that achieves the highest likelihood amongst the replicates. The ADMIXTURE

results qualitatively reveal a spatial signal in the data as admixture fractions tend to be spatially

clustered.
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Appendix 1—figure 11. Application of EEMS to the North American gray wolf dataset: We display

a visualization of EEMS applied to the North American gray wolf dataset. The more orange colors

represent lower than average effective migration on the log-scale and the more blue colors

represent higher than average effective migration on the log-scale. The results of EEMS are

qualitatively similar to FEEMS when lower regularization penalties are applied.

Appendix 1—figure 12. Application of FEEMS on the North American gray wolf dataset with an

exact likelihood model: We display the fit of FEEMS based on the formulation Equation (21) to the

North American gray wolf dataset. This fit corresponds to a setting of tuning parameters at l ¼ 2:06

and a ¼ 1=bw0. Additionally, we set the lower bound of the edge weights to l ¼ 10
�6, to ensure that

the diagonal elements of L does not become too small—this has an implicit effect on L†kk, preventing

it from blowing up at unobserved nodes. The more orange colors represent lower than average

effective migration on the log-scale and the more blue colors represent higher than average

effective migration on the log-scale. Visually, the result is comparable to that of the FEEMS fit

(Figure 4) based on the approximate formulation (Optimization).
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Appendix 1—figure 13. Application of FEEMS on the North American gray wolf dataset with joint

estimation of the residual variances and graph’s edge weights: We show visualizations of fits of

FEEMS to the North American gray wolf dataset when the residual variances and edge weights of

the graph are jointly estimated. Both fits correspond to a setting of tuning parameters at l ¼ 2:06

and a ¼ 1=bw0. (A) displays the estimated effective migration surfaces where every deme shares a

single residual parameter s. (B) displays the estimated effective migration surfaces where each node

has its own residual parameter sk. Both approaches yield similar results to the procedure that

prefixes s from the homogeneous isolation by distance model (Figure 4). The node-specific residual

parameters may allow for more flexible graphs to be fitted, and we can further observe reduced

effective migration around C (Queen Elizabeth Islands) in (B).

Appendix 1—figure 14. Relationship between fitted versus observed genetic dissimilarities on the

North American gray wolf dataset: We display scatter plots of fitted genetic distance versus

observed genetic distance from FEEMS fits on the gray wolf dataset. (A) Corresponds to the result

shown in Figure 4. (B) Corresponds to the result shown in Appendix 1—figure 13B. The x-axis

displays the fitted genetic distance as predicted by the FEEMS model and y-axis displays the

squared Euclidean distance between two sub-populations averaged over all SNPs. The simple linear

regression fit is shown in orange dashed lines and R2 is given.
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Appendix 1—figure 15. Application of FEEMS to a dataset of human genetic variation from Africa

with different parameterization: We display visualizations of FEEMS to a dataset of human genetic

variation from Africa with different parameterization of the graph’s edge weights. See Peter et al.,

2020 for the description of the dataset. (A) displays the recovered graph under the edge

parameterization. (B) displays the recovered graph under the node parameterization. Both

parameterization have their own regularization parameters l and a, but these parameters are not on

the same scale. We set l ¼ 0:2 and a ¼ 0:02 for the node parameterization which is seen to yield

similar results to those in Peter et al., 2020. For the edge parameterization, we set l ¼ 0:5 and a ¼

0:05 so that the resulting graph reveals similar geographic structure to the node parameterization.

We also set the lower bound l ¼ 10
�6. From the plots, it is worth noting two important distinctions:

(1) We see the migration surfaces shown in (B) recover sharper edge features while the migration

surfaces in (A) are overall smoother. This is attributed to the fact that node parameterization has its

own additional regularization effect on the edge weights, and in order to achieve similar degree of

regularization strength for the edge parameterization, it needs a higher regularization parameters,

which results in more blurring edges than the node parameterization. (2) When measuring

correlation of the estimated allele frequencies among nodes, we find that Deme B is the node with

the second highest correlation to Deme A, whereas Deme C (and nearby demes) is not as much

correlated to Deme A compared to Deme B. Panel (A) reflects this feature by exhibiting a corridor

between Deme A and Deme B and reduced gene-flow beneath that corridor. This reduced gene-

flow disappears in (B), even if the regularization parameters are varied over a range of values.

Additionally, Deme D is most highly correlated to Deme E, F, and G, and this is implicated by a

long-range corridor connecting those demes appearing in Panel (A) while not shown in (B). These

results suggest that the form of the node parameterization is perhaps too strong and in this case

limits the model’s ability to capture desirable geographic features that are subtle to detect.
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Appendix 1—figure 16. Relationship between fitted versus observed genetic dissimilarities on a

dataset of human genetic variation from Africa: We display scatter plots of fitted genetic distance

versus observed genetic distance from FEEMS fits on the African dataset. (A) Corresponds to the

result shown in Appendix 1—figure 15A. (B) Corresponds to the result shown in Appendix 1—

figure 15B. The x-axis displays the fitted genetic distance as predicted by the FEEMS model and

y-axis displays the squared Euclidean distance between two sub-populations averaged over all

SNPs. The simple linear regression fit is shown in orange dashed lines and R2 is given.
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Appendix 1—figure 17. Application of FEEMS based on node parameterization to an extended set

of coalescent simulations: We display an extended set of coalescent simulations with the same

migration scenarios and sampling designs as Appendix 1—figure 2. The sample sizes across the

grid are represented by the size of the gray dots at each node. The migration rates are obtained by

solving the FEEMS objective function (Optimization) with node parameterization where the

regularization parameters are specified at l ¼ 5 and a ¼ 0:01. (A, F, K) display the ground truth of

the underlying migration rates. (B, G, L) shows simulations where there is no missing data on the

graph. (C, H, M) shows simulations with sparse observations and nodes missing at random. (D, I, N)

shows simulations of biased sampling where there are no samples from the center of the simulated

habitat. (E, J, O) shows simulations of biased sampling where there are only samples on the right

side of the habitat.
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Appendix 1—figure 18. Application of ‘1-norm-based FEEMS to a dataset of human genetic varia-

tion from Africa: We display visualizations of FEEMS to a dataset of human genetic variation from

Africa with the ‘1-based penalty function. See Peter et al., 2020 for the description of the dataset.

(A) displays the recovered graph under the edge parameterization with ‘1 norm based penalty

where the regularization parameters are specified at l ¼ 0:05 and a ¼ 5. (B) displays the recovered

graph under the node parameterization with ‘1 norm-based penalty where the regularization

parameters are specified at l ¼ 0:05 and a ¼ 1. To minimize the objective Equation (23), linearized

ADMM is applied with 20,000 number of iterations. The lower bound is set to be l ¼ 10
�6 for both

parameterizations. Note that due to the high degrees of missingness, the estimated effective

migration surfaces using solely ‘1-based penalty exhibit many likely artifacts (e.g. high migration

edges forming long paths, seen in panel A) unless an additional regularization is added to

encourage global smoothness of the edge weights, such as a combination of ‘1 norm penalty

function and node parameterization as shown in (B).
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Appendix 1—figure 19. Application of ‘1-norm-based FEEMS to an extended set of coalescent sim-

ulations: We display an extended set of coalescent simulations with the same migration scenarios

and sampling designs as Appendix 1—figure 2. The sample sizes across the grid are represented

by the size of the gray dots at each node. The migration rates are obtained by solving ‘1 norm

based FEEMS objective Equation (23) where the regularization parameters are specified at l ¼ 5

and a ¼ 0:01. (A, F, K) display the ground truth of the underlying migration rates. (B, G, L) shows

simulations where there is no missing data on the graph. (C, H, M) shows simulations with sparse

observations and nodes missing at random. (D, I, N) shows simulations of biased sampling where

there are no samples from the center of the simulated habitat. (E, J, O) shows simulations of biased

sampling where there are only samples on the right side of the habitat.
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Appendix 1—figure 20. Comparing pairwise Fst between strong and weak heterogeneous migra-

tion coalescent simulations: We visualize of the relationship between geographic distance and esti-

mated pairwise Fst (genetic distance) between nodes on the spatial grid for a weak heterogeneous

migration simulation (A) and a strong heterogeneous migration (B). As expected the average Fst is

lower for the weak migration setting, and we observe a clear clustering like effect in the data for the

strong heterogeneous migration simulation. This strong clustering effect can be attributed to

pairwise comparisons of nodes across the region of reduced gene flow. Distances between nodes

were set to one in the simulation, and so the units of geographic distance here are in units of the

inter-node distance.
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Appendix 1—figure 21. Applications of FEEMS to weak migration coalescent simulations: We visu-

alize the FEEMS fit to coalescent simulations with weak heterogeneous migration. The coalescent

migration rate in the center of the habitat is set to be 25% lower than the left or right regions. Note

that the color-scale limits are set to 10
�:15 and 10

:15, respectively. The top panel shows the fit when

all the nodes of the spatial graph are observed, whereas the bottom panel shows the fit when a

sparse subset of nodes are observed. We see that FEEMS can still detect a signal of heterogeneity

by displaying reduced gene-flow in the center of the habitat in the top panel. When we observe only

a few nodes, in this weak migration setting, the FEEMS visualization looks overly smooth.
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Appendix 1—figure 22. EEMS fitted versus observed genetic dissimilarities from the North Ameri-

can gray wolf dataset: We visualize fitted versus observed genetic dissimilarities corresponding to

the EEMS visualization run on the North American gray wolf dataset in Figure 4. EEMS was run on a

sparse grid with 307 nodes due to long run-times on the dense grid. Generally there is good

concordance between the fitted and observed dissimilarities except for a small set of points whose

fitted genetic dissimilarity over-estimates the observed dissimilarity, implying a relatively poorly fit

for these points. Note, we do not see these poorly fit points in visualizations of the fitted versus

observed distances when using FEEMS (see Appendix 1—figure 6).
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