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Soil parameters are crucial aspects in increasing agricultural production. Even though Bangladesh 
is heavily dependent on agriculture, little research has been done regarding its automation. And 
a vital aspect of agricultural automation is predicting soil parameters. Generally, sensors relating 
to soil parameters are quite expensive and are often done in a controlled environment such 
as a greenhouse. However, a large scale implementation of such expensive sensors is not very 
feasible. This work tries to find an inexpensive solution towards predicting soil parameters such 
as soil moisture and temperature, both of which are crucial to the growth of crops. We focus on 
finding a robust relation between the above mentioned soil parameters with the nearby weather 
parameters such as humidity and temperature, irrespective of the weather. We apply different 
machine learning models like multilayer perceptron (MLP), random forest, etc. to predict the 
soil parameters, given the humidity and temperature of the surrounding environment. For all the 
experiments we have used a custom made dataset, which contains around 9000 datapoints of 
soil moisture & temperature, ambient humidity & temperature. The data has been collected in 
an uncontrolled agriculture bed via inexpensive sensors. Our results show that XGBoost regressor 
achieves the best results with an R2 score of 0.93 and 0.99 for soil moisture and soil temperature 
data respectively. This suggests very high correlation between the weather parameters and soil 
parameters. The model also portrayed a very low root mean squared error and mean absolute 
error of 0.037 & 0.015 for soil moisture and 0.001 & 0.0008 for soil temperature. Our results 
show that it is indeed possible to find the soil parameters from the corresponding weather, which 
will have great impact on mass agricultural automation. The dataset has been made publicly 
available at https://github .com /Nadimulhaque0403 /Soil _parameter _prediction _dataset.

1. Introduction

With the profound expansion of humanity and the escalating food requirements, agriculture has persistently stood as one of the 
most coveted domains throughout history. Given the prevalence of hunger, famine, and drought worldwide, the pressing necessity for 
agricultural advancements remains unabated. Moreover, these advancements have invariably walked hand in hand with the progress 
of science and technology. In this era characterized by automation, a dire need arises for the complete automation of the agricultural 
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realm. It can be confidently asserted that a fully automated agricultural system stands as the sole means to satisfy the escalating 
demands not only for food but also for adequate nutrition of our vast population. While diverse approaches have been undertaken to 
automate the agricultural sector, significant strides towards a fully automated agricultural system, encompassing soil preparation to 
crop harvesting without any human intervention, have been scarce. This challenge predominantly arises from persistent hurdles in 
accurately sensing and monitoring soil parameters [1–3].

Ensuring optimal soil quality stands as a fundamental aspect in achieving a bountiful harvest, serving as the cornerstone of 
agricultural production [4]. To uphold this quality, continuous monitoring of crucial soil parameters is imperative. Among these 
parameters, soil moisture and soil temperature play a pivotal role in crop growth. However, the sensors employed for monitoring 
such parameters tend to be costly, rendering comprehensive soil parameter monitoring in vast agricultural expanses a formidable 
challenge. As a result, a more viable solution emerges in the form of externally controlling soil parameters within controlled environ-
ments like greenhouses. Nevertheless, this approach proves impractical when considering large-scale agricultural automation. The 
financial burden alone would be substantial, and the consequential global climate impact would be profound [5,6]. While rooftop 
greenhouses exhibit fewer environmental drawbacks compared to traditional counterparts [7], their applicability remains limited. 
With environmental conditions progressively deteriorating, the pursuit of sustainable agriculture becomes increasingly arduous. 
Hence, it becomes crucial to explore alternative solutions, particularly for mass agriculture. One potential avenue lies in automating 
the agricultural process, even in open, uncontrolled fields.

As delineated earlier, the primary hurdle in achieving an automated agricultural system lies in effectively monitoring and con-
trolling soil parameters. Traditionally, farmers have relied on manual methods, often relying on intuition and weather conditions. 
While this approach has its limitations, the prevailing alternative of greenhouses proves detrimental and unsustainable. Thus, inte-
grating artificial intelligence to leverage weather data for accurate and swift predictions would constitute a significant and crucial 
step towards automating agriculture in open fields.

To emulate human farmers, it becomes essential to amass a vast database encompassing weather patterns and subsequent changes 
in soil parameters, compensating for decades of experiential knowledge. While assembling a dataset of comparable magnitude poses 
a formidable challenge, testing the hypothesis on a smaller scale with minimal data offers a viable approach. Accordingly, this work 
adopts a preferred methodology centered around a small agricultural bed, where extensive data collection occurs, encompassing soil 
temperature, moisture, weather temperature, and humidity.

This research aspires to contribute to the augmentation of agricultural production in Bangladesh, offering an accessible and 
affordable approach to predicting soil parameters. The central focus of this research is to:

1. Use inexpensive sensors to collect weather data to make predicting soil parameters affordable and accessible to farmers in 
regions with limited resources.

2. Utilize soil parameters such as moisture and temperature using nearby weather parameters such as humidity and temperature. 
This can help farmers make informed decisions about irrigation and fertilization, which can lead to increased crop yield.

2. Related works

In the domain of soil parameter prediction quite a lot of studies have been conducted. We categorize them into three different 
categories and detail how the following key studies have made significant contributions:

Soil Strength and Composition Analysis: Keller et al. [8] presented a mathematical model for describing the stress-strain 
relationship in soils, which is instrumental in comprehending soil degradation. Although their work did not yield an automatic 
predictor, it laid the groundwork for the development of such predictive models.

Sirsat et al. [9] conducted research aimed at classifying soil fertility indices. They utilized parameters like nitrogen dioxide (𝑁2𝑂), 
pH, and elements such as phosphorus pentoxide (𝑃2𝑂5) and iron (Fe). Their approach, employing the Random Forest (RF) algorithm, 
achieved an impressive accuracy rate of 90.65%. This study underscores the potential of machine learning in the analysis of soil 
fertility.

Zhang et al. [10,11] employed a genetic algorithm to predict the compression module of soft clays based on a dataset consisting of 
221 samples from 65 surveys. Their model exhibited a remarkably low mean squared error (MSE) of 0.13 when trained with 10-fold 
cross-validation. However, it is essential to note that their model’s applicability on-site was limited due to site-specific considerations.

Pham et al. [12] harnessed neural networks to predict the consolidation coefficient, leveraging a dataset comprising 188 tests. 
Their model displayed exceptional performance, with an R2 of 0.9973, RMSE of 0.0614, and MAE of 0.0415. This study highlights 
the potential of machine learning for the precise prediction of geotechnical parameters.

Kiran et al. [13] employed probabilistic neural networks to predict shear strength. Their model consistently provided accurate 
predictions, typically within the range of 7% to 14% deviation from actual values. This research contributes to the understanding of 
soil mechanics and the prediction of shear strength.

Morellos et al. [14] sought to estimate total nitrogen, organic carbon, and moisture content in soil. They investigated various 
algorithms, including Principal Component Regression (PCR), Partial Least Square Regression (PLSR), Least Square Support Vector 
Machines (LS-SVM), and Cubist. Their study, based on a dataset of wet soil samples collected from a German village, emphasized the 
superiority of LS-SVM and Cubist methods for accurate soil composition estimation.

Soil Moisture and Nutrient Levels Prediction: Suchithra et al. [15–18] explored the prediction of available phosphorus, potas-
sium, boron, organic carbon, and soil reaction. Leveraging extreme learning machines, they achieved accuracy exceeding 80%, with 
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their best-performing model utilizing a radial basis function (RBF) kernel reaching nearly 90% accuracy. This research underscores 



Heliyon 10 (2024) e28626M.M. Uttsha, A.K.M.N. Haque, T.T. Banna et al.

Table 1

Property of the soil used in the experiments.

Property Description

Particle Composition Approximately 40% sand, 40% silt, 20% clay
Texture Crumbly and easy to work with
Drainage Good drainage and water infiltration
Water Retention Maintains moisture while preventing waterlogging
Nutrient-Holding Capacity Excellent ability to retain and provide nutrients
Fertility High organic matter content for enhanced fertility
Aeration Good aeration, supporting healthy root growth
Agricultural Use Ideal for farming and gardening

the potential of machine learning in agricultural and environmental applications.
Li et al. [19,20] employed extreme learning machines to predict soil moisture, achieving accuracy rates of over 80%. This aligns 
with similar findings by Liu et al. (2014), who also utilized extreme learning machines to predict soil moisture and outperformed 
established algorithms like Support Vector Machines (SVM).
Tizpa et al. [21] proposed a neural network-based approach to predict several soil parameters, including permeability, compaction, 
and shear strength. Their comprehensive dataset, which included grain size distribution, permeability, Atterberg limits, and com-
paction data, yielded accurate predictions within a 95% confidence interval.

Smartphone-Based Soil Analysis: Yang et al. [1,22] introduced a cost-effective approach for identifying soil organic matter 
using smartphone photos. By preprocessing the data and employing step-wise multiple linear regression and partial least squares 
regression, their results demonstrated the potential of smartphone photos for accurate soil analysis. However, they noted that the 
reliability of smartphone capabilities remains a concern.

While these studies have significantly contributed to soil parameter prediction, it is worth noting that none have explored the 
correlation between weather parameters and soil conditions. This research seeks to bridge this gap by constructing a comprehensive 
database that integrates weather data, specifically temperature and humidity, along with corresponding soil temperature and mois-
ture measurements. Subsequently, a neural network model has been developed and trained on this integrated dataset to predict soil 
parameters by leveraging the weather parameters. This novel approach is elaborated upon in the subsequent section of this paper.

3. Methodology

We present our methodologies in four parts. First, we discuss the details of the agriculture bed, the dimensions of it and soil 
properties. We then move onto the details of dataset creation, preprocessing and the machine learning models used to regress the 
soil parameters.

3.1. Agriculture bed

To create a small agriculture bed, a square shaped, steel box was designed with a barrier in between. The bed was approximately 
1.2 m×1.2 m×0.35 m in dimensions. It was filled with soil and eggplants, tomatoes and chillies were planted in it phase by phase. The 
bed was put in a position where it would obtain abundant natural sunlight. The soil was collected from the Rangpur district, from the 
northern region of Bangladesh. The soil collected is locally known as “Doash” or “Bele-Doash” soil, which is more commonly known 
as Loam soil [23,24]. It is a common soil type found within the broader category of Cambisols [25]. In terms of general category soil, 
these soils fall under the floodplain category, which is very commonly found in Bangladesh and covers almost 78.96% of the total 
land area [24]. Cambisols are mineral soils that have experienced some degree of soil horizon development, often characterized by 
the presence of a horizon (a layer of soil) that has undergone weathering processes. Loam soil is one of the most desirable types of 
soil for agricultural purposes due to its balanced mixture of sand, silt, and clay particles. Loam soil is often referred to as the “ideal” 
soil type because it provides a great balance of drainage, water retention, and nutrient-holding capacity [26].

Loam soil has specific properties that make it highly productive for farming and gardening. It consists of approximately 40% sand, 
40% silt, and 20% clay, giving it a near-even distribution of particle sizes. This balance ensures good water infiltration and drainage, 
preventing both waterlogging and excessive drying out. Additionally, loam soil has excellent nutrient-holding capacity, allowing it to 
provide essential minerals and nutrients to plants. Its crumbly texture and good aeration support root growth, and it is generally easy 
to work with. Loam soil is also known for its high organic matter content, which enhances its fertility and overall productivity. It is 
highly versatile and suitable for a wide range of crops and plants, making it a preferred choice for many agricultural and horticultural 
applications. Some of the soil properties are shown in Table 1.

3.2. Creating the dataset

A dataset has been created by collecting both weather data and soil data [27,28] from the agricultural bed, with the help of 
multiple sensors (Fig. 1) connected to a PC (Fig. 1A) through an Integrated Controller Circuit (Fig. 1B) with additional power supply 
(Fig. 1C) for the controller. 4 sensors had been used, weather temperature & humidity sensor (Fig. 1E), soil temperature sensor 
3

(Fig. 1F) and a capacitive soil moisture sensor (Fig. 1D). The sensors for the weather data collection were placed in close proximity 
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Fig. 1. Experimental setup for collecting soil parameter data. A: Control Interface, B: Integrated Controller Circuit, C: Power Supply D: Soil Moisture Sensor, E: 
Temperature and Humidity Sensor and F: Soil Temperature Sensor.

to the agricultural bed [29–31]. The soil moisture sensors were approximately 10 cm long and were inserted 8 cm into the soil itself. 
The soil temperature sensors were 4 cm long are were inserted 3.5 cm in the soil. The soil parameter sensors were placed about 
5-10 cm from the root of the plants and the environmental parameter sensors were placed next to them.

The data has been collected and compiled on an excel file along with the timestamp of the data collection. Data has been collected 
in three different seasons, summer, winter and rainy. The distribution of sensor data according to the seasons are shown in Fig. 2
and 3. More than 9,000 data points have been compiled. The dataset contains the soil temperature value, the raw voltage of the 
capacitive moisture sensor, the weather temperature and humidity along with the season of the data collection.

3.3. Data preprocessing and cleanup

To gain insights into the collected data [32,33], a merging process was initially undertaken, followed by visualization techniques 
to comprehend the interrelationships and characteristics among the various collected fields. To optimize resource utilization and save 
time, the models were trained on a subset of the dataset. Notably, it became evident that the correlations between the fields were 
neither linear nor polynomial, rendering attempts to implement simple linear or polynomial regression models inadequate. These 
models exhibited poor fit and yielded substantial errors.

During the model training process, discrepancies were discovered in certain data points, attributed to sensor connectivity issues 
resulting in negative values where only positive values were expected. Consequently, the non-positive values were cleansed from the 
dataset. Additionally, normalization was applied to the data, as depicted in Figs. 2 and 3. Normalization plays a vital role in achieving 
improved results, given that different features within the dataset may possess distinct scales. By normalizing the data, features are 
rescaled to a common range, facilitating the model’s ability to discern patterns within the data. This normalization process enhances 
model score while reducing the likelihood of overfitting.

3.4. Using different training models

In this study, we employed a variety of machine learning models to analyze and predict soil parameters in an agricultural setting 
[34–37]. These models were selected to explore their performance in capturing the complex relationships within the dataset. We 
initiated our model selection with simpler linear and polynomial regression models. However, upon initial evaluation, it became 
evident that these models did not adequately represent the dataset, as observed from the normalized data plots. Their limited 
capacity to capture the nonlinear and intricate relationships in the data led us to seek more robust alternatives.
Support Vector Regressor (SVR): As the limitations of linear and polynomial regression models became apparent, we turned to the 
SVR [38–40]. SVR displayed a notable improvement in capturing the underlying patterns within the dataset, but we recognized that 
further enhancements were still possible. The initial SVR model achieved an 𝑅2 score of approximately 0.77 for Soil Moisture and 
0.96 for Soil Temperature. It was a significant step forward, but we remained focused on refining our approach.
Multi-Layered Perceptron Regressor (MLPRegressor): To pursue better results and harness the potential of non-linear relationships 
within the data, we employed an MLPregressor, a type of neural network (as shown in Fig. 4). Neural networks are adept at capturing 
complex, non-linear patterns within data. The initial neural network model exhibited remarkable promise, achieving an 𝑅2 score of 
approximately 0.88 for Soil Moisture and 0.99 for Soil Temperature. To improve the performance further, hyperparameter tuning 
and data normalization were explored, as the dataset contained fields with varying value ranges. The neural network performed 
4

optimally when the data was normalized, allowing for a more uniform range of data to be processed.



Heliyon 10 (2024) e28626M.M. Uttsha, A.K.M.N. Haque, T.T. Banna et al.

Fig. 2. Normalized weather temperature (a) and humidity (b) values with respect to soil moisture.

Random Forest (RF) Regressor: RF [41] works by creating an ensemble of decision trees, where each tree independently makes 
predictions. The final prediction is the average (or majority vote) of these individual tree predictions. RF is robust and generally 
performs well without the need for extensive hyperparameter tuning. While RF Regressor did not surpass XGBRegressor in predictive 
score, it still yielded competitive results, making it a viable alternative for specific applications.
Gradient Boosting Regressor (GBRegressor): GBregressor constructs an ensemble of decision trees in a sequential manner. Each new 
tree is trained to correct the errors made by the previous trees, which often leads to highly accurate predictions. Gradient boosting 
[42,43] is widely used in various regression problems and can capture complex patterns in data. The GBregressor showed significant 
promise in our experiments, achieving high correlations among the datasets and capturing intricate patterns. It demonstrated the 
ability to adapt to non-linear relationships and exhibited notable predictive power.
LGBMRegressor: LGBMRegressor is a regression model based on Light Gradient Boosting Method [44], another ensemble learning 
algorithm, designed for efficiency and handling large datasets. It uses a histogram-based approach to build decision trees, which 
speeds up the training process. LightGBM is known for its ability to handle big data and is particularly efficient when it comes to 
categorical features.
XGBRegressor: XGBoost [45] is an ensemble learning algorithm known for its high performance. XGBRegressor is a regression model 
based on XGBoost. It combines multiple decision trees to make predictions. These decision trees are trained sequentially to correct 
the errors made by the previous ones. XGBoost is effective at handling complex relationships in data and is a popular choice for 
various regression tasks. Among the ensemble models, the XGBRegressor emerged as the top performer, consistently delivering the 
highest results. Its predictive score outperformed the other models, making it the preferred choice for our predictive modeling tasks.

By incorporating a diverse set of machine learning models in our analysis, we aimed to ensure a comprehensive exploration of the 
dataset’s intricacies and to develop a reliable predictive model for soil parameters in agricultural contexts. In the subsequent sections, 
5

we present the results of these models, which highlight their respective performances and insights gained from their application.
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Fig. 3. Normalized weather temperature (a) and humidity (b) values with respect to soil temperature.

Fig. 4. MLP regressor model used to train the data.

4. Experiments

4.1. Evaluation metrics

Predicting soil parameters fall under supervised regression tasks. Usually these models are evaluated using regular regression 
metrics such as Root Mean Square Error (RMSE), Coefficient of determination (𝑅2) and Mean Absolute Error (MAE) values.

RMSE: The RMSE is a frequently used measure of the differences between values (sample or population values) predicted by a 
model or an estimator and the values observed. The RMSE of predicted values �̂�𝑡 for times 𝑡 of a regression’s dependent variable 𝑦𝑡, 
with variables observed over 𝑇 times, is computed for 𝑇 different predictions as the square root of the mean of the squares of the 
6

deviations using the equation (1).
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Table 2

Results on the soil moisture and soil temperature data. The best scores are shown in bold.

Model Name
Soil Moisture Soil Temperature

𝑅2 RMSE MAE 𝑅2 RMSE MAE

SVR 0.772083 0.066724 0.051517 0.955363 0.058583 0.049610
RFRegressor 0.923326 0.038701 0.015793 0.999971 0.001506 0.000807

GBRegressor 0.904779 0.043128 0.021427 0.999972 0.001476 0.001005
LGBMRegressor 0.923700 0.038606 0.015898 0.999975 0.001393 0.000885
XGBRegressor 0.926852 0.037800 0.015269 0.999975 0.001398 0.000875
MLPRegressor 0.881328 0.048147 0.028521 0.999947 0.002023 0.001572

RMSE =

√∑𝑇

𝑡=1(�̂�𝑡 − 𝑦𝑡)2

𝑇
(1)

R2: The coefficient of determination (𝑅2) is the proportion of the variation in the dependent variable that is predictable from the 
independent variables. If 𝑆𝑆res is the sum of squares of residuals and 𝑆𝑆tot is the total sum of squares, the coefficient of determination 
can be expressed as the equation (2):

𝑅2 = 1 −
𝑆𝑆res
𝑆𝑆tot

(2)

MAE: The mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. It is 
calculated as the sum of absolute errors divided by the sample size using equation (3):

MAE =
∑𝑛

𝑖=1
||𝑦𝑖 − 𝑥𝑖

||
𝑛

(3)

4.2. Results

Fig. 5 shows the changes the evaluation metrics, R2, RMSE and MAE with the change in training size. The plots show a general 
upward rise for the coefficient of determination for both soil moisture and soil temperature. As a result, the RMSE and MAE values 
decrease as the models get better and better and we see a decrease with training size. The mean R2, RMSE and MAE values for soil 
moisture are shown in Fig. 5. This gives us the best model, XGBRegressor. While the SVR model struggles to learn well, other models 
achieve better results but fall short to the 0.93 coefficient of determination of the XGBRegressor model. This is also mirrored in the 
MAE and RMSE errors where the model achieves the lowest error.

In contrast to soil moisture, which frequently demonstrates notable spatial and temporal fluctuations, soil temperature generally 
exhibits a more stable profile and is predominantly shaped by diurnal and seasonal rhythms. Consequently, the data attributes 
pertaining to soil temperature were comparatively straightforward [46–49]. This is reflected in the evaluation metrics in Fig. 5 as 
well as the mean scores in Table 2. Other than SVR, all other model fits the dataset perfectly and achieves a perfect correlation. The 
errors are also near zero as a result.

The results show a definite correlation between the weather parameters and soil parameters. This indicates that it is indeed 
possible to predict soil parameters such as moisture and temperature from weather humidity and temperature.

4.3. Tuning hyperparameters

After the model was selected, the default hyperparameters of the model were tweaked ever so slightly to increase the score. The 
maximum iteration for convergence was increased to a value of 200000 from the default 200 as the prediction score of the model 
did not converge with small number of iterations. The relu activation function was chosen as it yielded in better performance. The 
adam optimizer [50] had been chosen through trial and error as others did not improve the overall score. The internal hidden layer 
size and the number of neurons in each of the layers were also changed to be over 350 in order to better fit the data. The learning 
rate was reduced 10-folds and some other hyperparameters were also changed slightly. For the regressor based models, learning rate, 
gamma, max depth and regularization terms were tuned.

5. Discussions and future work

The results clearly indicate that there exists a strong correlation between soil and weather parameters. Although all the models 
produce strong and consistent results, XGBRegressor produced the best results. One of the main limitations of this work is that there 
exists a relatively high data imbalance, with more datapoints in winter, compared to the other two. Although data imbalance is 
not as crucial in regression as it is in classification, it can still have a negative effect, especially in neural networks. This could be 
the reason why MLP regressor did not perform up to the mark. Also, we tried to keep the neural network shallow in order for it 
to be usable an automated system operating in real time, which could have limited its potential as well. XGBRegressors however, 
7

are fast and they excel with imbalanced data to begin with. Ensemble learning methods also performed well due to their ability to 
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Fig. 5. (a–b) shows increase in R2 values, (c–d) shows decrease of root mean squared error (RMSE) and (e–f) shows decrease in mean absolute error (MAE) with 
training size.

derive complex relationships between input and output data. Despite the R2 values, all the algorithms exhibit minimal error (Both in 
RMSE and MAE), and represent how accurately we can predict soil parameters with inexpensive ambient temperature and humidity 
sensors.
In future, this experiment will be replicated in a larger, open, agricultural field to ensure the reliability of the model’s performance. 
Some future work based on the limitations of what can be done in this area are as follows:

1. Other factors that affect soil parameters, such as soil type, topography, wind speed and solar radiation can be used to conduct a 
more robust experiment.

2. Our experiments focused on a single test bed. It can be extended to different agricultural beds and regions to test the generaliz-
ability.

3. This experiment can be extended to predict other soil parameters such as pH and nutrient levels.
4. This work can be integrated with an automated irrigation and fertilization system to provide real-time feedback and recommen-

dations to farmers.
5. This can be used to develop a mobile application that can provide farmers with real-time information about soil parameters and 
8

weather conditions based on local regions.
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6. This work can facilitate a fully automated decision support system that can help farmers make informed decisions about irrigation 
and fertilization.

6. Conclusion

The present study endeavors to establish a substantive correlation between critical soil parameters, specifically soil moisture and 
temperature, and ambient factors like temperature and humidity. The findings underscore a robust relationship between soil and 
ambient parameters, indicating a significant association. Employing various machine learning models—XGBRegressor, RFRegressor, 
GBRegressor, LGBMRegressor, and a customized MLP regressor—the research demonstrates consistently low RMSE errors across 
distinct seasonal variations. This capacity to generate precise predictions despite considerable fluctuations in data due to seasonal 
changes holds considerable promise for the advancement of agricultural automation in open-field settings.

The performance of the models, especially amid varying seasonal conditions, signals a potential breakthrough in the realm of 
agricultural automation. This insight offers a departure from conventional methods that involve controlling entire environmental 
conditions, a practice that often exacerbates climate challenges. Instead, the findings present an avenue for sustainable agricultural 
automation, thereby fostering a pathway toward a more promising and environmentally conscious future for agricultural practices. 
This empirical evidence supports the feasibility of leveraging weather-related data for accurate soil parameter predictions, marking 
a pivotal stride towards advancing agricultural automation at scale in uncontrolled agricultural settings.
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