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In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME)
that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single
molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact
algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie’s algorithm can be approximated
via the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation
time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate
equations (RRE). For complex multiscale systems, hybrid simulations are increasingly proposed to combine the advantages of
stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac
and skeletal muscle cells). The properties of these cells are well described and they express many common calcium-dependent
signaling pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and

their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.

1. Introduction

Ca’" is a vital second messenger in many cell types. The
ubiquitous appearance as well as its often crucial role in
functional important signaling pathways are the reasons for
the great scientific interest in Ca?* dynamics. Oscillations
in the typically low-intracellular Ca?* concentration carry
information which is processed (filtered) via signal cascades
(e.g., calmodulin-dependent pathways) to induce a variety
of cellular responses on different spatiotemporal scales (e.g.,
muscle contraction [1], fertilization [2], and regulation of
gene expression [3]).

Oscillations are induced by sequences of random calcium
“puffs” or “sparks” that are highly localized Ca®* release
events from intracellular Ca?* stores (sarcoplasmic and
endoplasmatic reticulum) [4]. However, the link between the
dynamics of individual molecules involved in microdomain
Ca?* dynamics (e.g., Ca?* channels) and the resulting cellular
responses are not completely understood yet. This is where
computational simulation algorithms come into play. The
great number of biological functions as well as the simple

structure of Ca?" ions are the reason for its well-described
chemical and physical properties. Those circumstances make
the in silico examination of Ca** dynamics very promising.
Microdomains controlled by Ca** channels play an impor-
tant role in the context of Ca’" oscillations and waves [5].
For an accurate model of these domains, we have to consider
stochastic processes at the mesoscopic level. Many regulatory
and signaling processes are only inadequately described by
deterministic simulation approaches [6].

An often used exemplary cell type in this context is given
by striated muscle cells (e.g., cardiac and skeletal muscle
cells) where a large amount of electrophysiological, biochem-
ical, and ultrastructural data exists. Furthermore, these cells
express many of the ubiquitous calcium-dependent signaling
pathways which make it easy to transfer the methods and
results to other cell types.

2. Background

Every chemical system is defined by a set of properties. First
of all, there are N chemical species, S = {Si,...,Sx}, in
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the system volume Q. The state vector x(t) = (x1(¢),...,
xn(t)) denotes the number of molecules xx(t), k = 1,...,N
of each species S at time ¢ in Q. Events define transitions
between different system states, where an event is any
biophysical process which is characterized by a rate constant.
It is possible to derive an event propensity a; by its stochastic
rate constant ¢; and the stoichiometric coefficients of the
underlying process. A chemical system contains M events
R = {Ry,..., Ry} which are represented through a state
changevectorv; = (dj1,...,djn), j = 1,..., M, where com-
ponent d;; denotes the change in the number of molecules
Si due to the event R;. Even more complex processes, which
do not affect x(¢), but other system properties, can easily
be considered, for instance, voltage-gated ion channels have
been introduced into stochastic simulation algorithms. To
introduce the continuously varying membrane potential
regulating the channel, its effect on the subunit transition
rates was modeled as a time-varying stochastic event rate
[10]. In the following, we exemplify the calculation of some
relevant event propensities.

2.1. Reaction Events. aj(x,t) = cjhj(x,t), where hj(x,t)
denotes the number of possible molecular combinations
available for reaction R; at time t.

For first- and second-order reactions, the stochastic rate
constants ¢; are calculated from the macroscopic reaction
rate constants k; as ¢; = k; for monomolecular reactions
and as ¢; = k;/Q for bimolecular reactions given the system
volume Q).

2.2. Diffusion Events. ax(x,t) = ckxx(t), where xx(t) denotes
the number of molecules of the diffusing species k at time .

¢k = Di/A, where Dy denotes the specific diffusion
coefficient and A the diffusion area.

2.3. Channel Gating. Channel gating, that is, subunit transi-
tions, are naturally described by a discrete stochastic process.
Their biological properties force us to differentiate between
ligand-gated and voltage-gated ion channels.

The interaction of ligands and channel subunits can be
modeled as ordinary reaction events. Keeping track of the
subunit states and depending on the gating scheme, we can
decide whether the channel is in an open state or not.

The introduction of voltage-gated ion channels is more
complex and requires a characteristic function, representing
the membrane potential. The transition rates between the
open/close states of the channels are based on the actual
function value.

2.4. Channel Conductance. lon permeation through a chan-
nel protein is modeled by translating the electrical conduc-
tance to a rate constant which can then be transformed into
a permeation probability.

¢j = In/(e - zZion), where e is the elementary charge and
Zion 18 the charge of the permeating ion. I, denotes the mean
current of the channel in C/s.

All further considerations assume a well-stirred chem-
ical system, and the velocities and positions of individual
molecules in Q are ignored. This assumption is based on
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the fact that nonreactive molecular collisions that lead to a
mixing of the system are far more likely than the occurrence
of reactive events. This leads to uniformly randomized
positions and thermally randomized velocities throughout
the system volume (Maxwell-Boltzmann distribution) [7].

All simulation strategies can finally be derived from the
chemical master equation (CME). The CME is a differential
(or difference) equation that describes the time evolution
of the probability density P(x,t) that is the multivariate
distribution of the state vector x(t). Using the notation
introduced above, the CME reads

S

0:P(x,t) = Z [aj (x - Vj, t)P(x - Vj, t) —aj(x,1)P(x, t)].
j=1
(1)

In words, (1) states that the change in P(x,t) is calculated
as the net probability flow conveyed by the flows from state
X —V;j to x (via event R;) and the reverse flows out of state x.

3. The Gillespie Algorithm

While the simulation of the Brownian motion of all
individual molecules would provide an accurate model of
Ca’" dynamics, the computational effort is very high to
examine signaling pathways on an adequate spatiotemporal
scale. Increasing system volume and increasing numbers of
molecules lead to extreme increases in computation time.
Gillespie’s algorithm is an alternative to accurately simulate
small system volumes under the assumption of a well stirred
system. Sample paths generated using this approach are
samples of a multivariate Markov process. This means that
given a system state x(f), the state x(¢ + 7) at any future
time ¢ + 7 only depends on x(¢) and not on the previous
history of the system. Transitions between system states
are performed by generating independent, exponentially
distributed waiting times 7; for each possible event R;
(according to the event propensities) and choosing the
event with the minimum waiting time. The computational
procedure is the same for all event types R;. It uses the
current event propensity a;(x, t) and a uniformly distributed
random variable r ~ U[0, 1]:

—logr

Tj = a; (x,t)" (2)

Equation (2) leads to exponentially distributed waiting
times 7 which are characteristic for Markov processes. After
selection of the event R; with the smallest 7-value 7;, the
current simulation time f is advanced to t « t + 715,
and the system state is changed to x(t) — x(¢) + v;. To
improve the computational performance, the Gibson-Bruck
algorithm introduced a dependency graph which leads to an
efficient update rule where only those reaction propensities
are updated that are influenced by the last reaction realized.
A reaction R, depends on a reaction R, if one of the educts
of R, is changed by reaction R, [8]. A complete overview
of improvements of the classical Gillespie algorithm can be
found in the literature [9].
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The algorithm reads as follows.

(0) Initialization: to initialize the system, set the initial
number of each species S; to x(¢) = x(ty), t = tp, and
calculate the waiting times 7;, j = 1,..., M for each
event R;.

(1) Event selection: select the event R; that minimizes the
associated 7-value (2).

(2) Update time and state: increment the system time ¢ —
t + 7j and change the state vector according to R; :
x(t+1;) = x(t) +v;.

(3) Exit condition: if (t+7; > Tax) then Exit, where Tiax
is the maximum simulation time.

(4) Update: recalculate 7-values of related events as
stored in the dependency graph.

(5) Go to step 1.

The Gillespie algorithm quickly meets its limits when
systems with increasing system volumes Q) and large numbers
of implemented events are simulated. In particular, the
presence of different time scales can decrease the efficiency
crucially (e.g., diffusion events outnumber Ca®" buffer
association/dissociation events by far [10]). The r-leaping
method, which is introduced in the next paragraph, partially
solves these problems.

4. The 7-Leaping Method

Frequently, it is not necessary to track all individual events
explicitly because event propensities do not change signifi-
cantly in a certain time interval of length 7. Using the classical
Gillespie algorithm, this fact leads to a high computational
effort which is not always necessary in terms of accuracy.
The 7-leaping method takes advantage of this observation
by evaluating how many times each event R; will occur
in the discrete time interval [t,¢ + 7). To apply the -
leaping method to model systems, it is necessary to find
an appropriate T value for every simulation step. The so-
called leaping condition requires the time interval to be small
enough to assure that no propensity function a; undergoes
an appreciable change. This is traditionally accomplished by
bounding A;a;(x, t) to the product of a defined error control
parameter € and the sum of all propensity functions ag [9]:

Araj(x,t) < € - ap(x,1). (3)

Considering chemical reaction systems exhibiting a wide
range of temporal scales, this approach might lead to
inaccuracies due to the high variability of the involved event
propensities. To satisfy the leap condition in such cases,
Cao et al. [11] suggested a new 7-selection procedure which
bounds the relative changes in a; by a fixed factor €. A
detailed discussion of different 7-selection procedures can be
found in the literature [11].

In this context, a;(x)7 denotes the average occurrence
of Rj in [t,t + 7), which is adequately approximated by

a Poisson-distributed random variable &;(a;j(x), 7). This
approach leads to the 7-leaping approximation which reads

M

x(t+7) = x(1) + > vi&; (a;(x0)7). (4)

j=1

Poisson random variables are unbounded and some reaction
networks can produce the impossible scenario of negative
copy numbers for certain chemical species. Especially, small
reactant populations with copy numbers close to zero are
affected by this. Different solutions have been proposed
to solve this problem. Tian and Burrage [12] developed
an alternative by replacing the Poisson-distributed random
variable by a binomial random variable which can be
bounded by the actual number of reactants of each species.

Cao et al. [11] introduced the modified (nonnegative)
Poisson 7-leaping approach. It is based on the idea of
subdividing the set of all events into critical and noncritical
events depending on their risk to induce negative reaction
species populations in [¢,t + 7). Simulating critical events
with the classical Gillespie algorithm and non-critical events
using 7-leaping, the probability of negative molecule counts
becomes nearly zero.

5. The Chemical Langevin Equation

The approximation of the event count occurring in a
carefully chosen time interval [f,t + 7) can be taken a step
further. If a chemical reaction system not just fulfills (a) the
leaping condition but also satisfies (b) a;j7 > 1, forall j €
[1,M], the Poisson-distributed random variable &; can be
approximated by a normally (Gaussian-) distributed random
variable with mean and variance equal to a;(x)7:

& (aj (X)T) ~ N(aj(x)‘r, a; (X)T). (5)

With the linear combination theorem of random variables
and (4), we can derivate the “white noise form” of the
Langevin equation:

M M
x(t+dt) = x(¢t) + Evjaj(x(t))dt + Zvj yaj(x(t))dB(1),
j=1 =1
(6)

where at dB(t) denotes a temporally uncorrelated Gaussian
white noise process (the increments of a Brownian motion
B(t)).

The CLE approach implies some notable consequences.
First, the integration time interval dtis fixed. Second, due
to the transformation of the Poisson to a Gaussian random
variable, the resulting molecule counts become real values
rather than integers. The change of the state vector x(t)
is dependent on a deterministic part (first sum of (6)),
and a stochastic part (second sum of (6)). When the
number of reactants tends to infinity, the stochastic term
can be neglected compared to the deterministic part, and (6)
reduces to the deterministic reaction rate equation approach.
This extrapolation provides the link between conventional



deterministic chemical kinetics and the stochastic approach.
A complete derivation of the CLE can be found in the
literature [13].

Furthermore, the theory of stochastic processes allows
a transformation of the Langevin equation to an associated
Fokker-Planck equation (FPE) that describes the temporal
evolution of the probability density P(x,t) [14]. The FPE
method has been applied to calcium dynamics in the dyadic
cleft of cardiomyocytes [15]. Given that researchers are
often more interested in explicit sample paths of a model
than in probability distributions, the CLE approach is more
common.

6. Hybrid Simulations

The simulation of complex chemical systems, including a
set of events with a high variability of propensity functions,
often cannot be conveniently approximated by the CLE.
The resulting loss in accuracy ignores important events
on slow temporal scales that affect the evolution of the
whole system (e.g., ion channels). A promising way to
avoid the high computational effort of the classical Gillespie
algorithm while achieving a satisfying degree of accuracy is
Hybrid simulation algorithms that combine deterministic and
stochastic approaches.

Radiger et al. [16] successfully proposed a hybrid
stochastic and deterministic approach for the simulation
of Ca?* blips, describing the state transitions between the
subunits of an IP3;R calcium channel with the classical
Gillespie algorithm and the surrounding Ca?"-dynamics
(buffering, diffusion) as a deterministic process. Similar
approaches have been introduced by Stern et al. [17] and
Greenstein and Winslow [18] using cardiac and skeletal
muscle cells as model systems. Kalantzis [19] and Choi et
al. [20] proposed hybrid algorithms that switch adaptively
between the classical Gillespie algorithm, the 7-leaping
method, and the chemical Langevin equation. Skupin et
al. introduced a spatially resolved multiscale model which
combines detailed stochastic channel gating on the scale of
a channel cluster with a linearized spatial bidomain model to
integrate them on a microscopic scale [21].

7. Conclusion

High-resolution confocal laser microscopy and mathemati-
cal models of calcium signaling showed that stochastic effects
can be essential for intracellular information processing. At
the same time, we observe a continuous improvement in
data quality through advanced measurement techniques and
increasing accuracy and availability of physical and chemical
properties of signaling molecules. Thus, stochastic simula-
tion approaches are increasingly used to simulate subcellular
signaling pathways. New tendencies in developing integrated
simulation algorithms that case-dependently switch between
different approaches are very promising and may provide
efficient solutions for the simulation of large systems with
complex event interactions. Most importantly, future work
has to prove the validity of those approaches on different
spatiotemporal scales.
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The degree of stochasticity necessary to model Ca**
microdomains is still discussed. Tanskanen et al. [22] as
well as Hake and Lines [23] both proposed two different
models of the cardiac dyadic cleft, using different algorithms.
The dyadic cleft is a functionally important microdomain in
cardiac myocytes where the process of excitation-contraction
coupling takes place. This microdomain is located between
the sarcolemma and the endoplasmic reticulum membrane
and is characterized by steep Ca’'-concentration gradients
and atoliter volumes. The interaction between L type calcium
channels (LCC) and clusters of Ryanodine receptor calcium
channels is the key event of this process. Tanskanen et al.
[22] introduced a model using a spatially resolved Markov
process, taking into account the positions of individual Ca*-
ions, dyadic proteins, the membrane surface charges, and
channel gating [22]. They conclude that the full stochasticity
of their approach is necessary for an exact description
of the dyad. On the other hand, Hake and Lines [23]
also used the dyadic cleft as the structural basis of their
work. Comparing a hybrid model, combining a deterministic
continuous model with stochastic receptor gating and a
fully stochastic Random Walk (RW) approach, they conclude
that under certain limitations of the simulation parameters,
the deterministic approach reproduces the RW results suffi-
ciently well. Thurley and Falcke [24] recently used a hybrid
simulation approach to study the relation of robustness
and sensitivity of calcium-dependent subcellular pathways
based on the statistical properties of interspike intervals. Even
though there is a high diversity of deterministic, stochastic,
and hybrid simulation strategies, the specifying system
parameters are equal. The open source community has
consistently developed the System Biology Markup Language
(SBML) [25] which defines a universal XML file format to
ensure the interchangeability of model definitions between
different software packages. Therefore, one of the major goals
of future efforts should be a support of the SBML or an
equivalent file format to help with the advance of a flexible,
barrier-free system biology community.
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