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a b s t r a c t

We study the spreading of contagious diseases in a population of constant size using susceptible-infective-
recovered (SIR) models described in terms of ordinary differential equations (ODEs) and probabilistic
cellular automata (PCA). In the PCA model, each individual (represented by a cell in the lattice) is mainly
locally connected to others. We investigate how the topological properties of the random network rep-
resenting contacts among individuals influence the transient behavior and the permanent regime of the
epidemiological system described by ODE and PCA. Our main conclusions are: (1) the basic reproduction
number (commonly called R0) related to a disease propagation in a population cannot be uniquely deter-
mined from some features of transient behavior of the infective group; (2) R0 cannot be associated to a
unique combination of clustering coefficient and average shortest path length characterizing the contact
Epidemiology
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network. We discuss how these results can embarrass the specification of control strategies for combating
disease propagations.
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. Introduction

Models based on probabilistic cellular automata (PCA) have been
mployed for investigating the spreading of contagious diseases
e.g. Ahmed et al., 1998; Doran and Laffan, 2005; Fuentes and
uperman, 1999; Monteiro et al., 2006a, 2007; Sirakoulis et al.,
000; Yakowitz et al., 1990). In these epidemiological studies, the
opulation is divided in three groups, as in the classical SIR model
roposed by Kermack and McKendrick in 1927 (e.g. Anderson and
ay, 1992; Murray, 2003): the group S represents the individuals

hat are susceptible and thus subjected to the infection; the group I
s formed by the individuals that are infected and can transmit the
isease for susceptible ones; and the group R is composed by the

ndividuals that are recovered. Equivalences with models based on
rdinary differential equations (ODEs) are explored in some works

e.g. Ahmed et al., 1998; Fuentes and Kuperman, 1999; Monteiro
t al., 2006a, 2007), since ODE are a mean-field approximation for
CA if the three groups (S, I and R) are homogeneously distributed
n space.
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In PCA models, in order to represent an infection process with a
short-range character, each cell in the lattice (usually corresponding
to an individual in the population) interacts with two (e.g. Ahmed
et al., 1998), four (e.g. Yakowitz et al., 1990) or eight surrounding
neighbors (e.g. Doran and Laffan, 2005; Fuentes and Kuperman,
1999; Monteiro et al., 2006a, 2007; Sirakoulis et al., 2000). In fact,
disease-causing contacts form a connection network among indi-
viduals and the assumption of a topology in which the couplings
are local and regular is just a first approximation. When long-
range interactions are also taken into account, random coupling
topologies are frequently employed (e.g. Boccaletti et al., 2006;
Kleczkowski and Grenfell, 1999; Newmann, 2002) and relations
among topological properties and features of the epidemiological
dynamics (for instance, the number of infective individuals in the
permanent regime) are investigated (e.g. Hartvigsen et al., 2007;
Pautasso and Jeger, 2008; Xu et al., 2006). Besides differences in
the coupling topology, variations usually found in epidemiological
studies based on PCA include: the use of non-isotropic lattices (e.g.
Kansal et al., 2000); the consideration of more than one individual
living in each lattice cell (e.g. Doran and Laffan, 2005); the absence
of the recovered group for modelling diseases where the cure does

not confer immunity (e.g. Fuentes and Kuperman, 1999); the inclu-
sion of a latent group composed by infected individuals, but not yet
infective ones (e.g. Ward et al., 2007), etc.

In this work, the random contact network is formed by C con-
nections starting from each cell (individual) in the PCA lattice to

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:pedro.schimit@poli.usp.br
mailto:luizm@mackenzie.br
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dx.doi.org/10.1016/j.ecolmodel.2009.01.014
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Fig. 1. Degree distribution for 1 ≤ r ≤ 15 and C = 8. The vertical axis indicates the

tions, which facilitates the disease propagation. Fig. 4 evidences
that this length decreases with increasing values of r and/or C.

The influence of these topological parameters in the disease
propagation are investigated in Section 4. In the next section,
P.H.T. Schimit, L.H.A. Monteiro / Eco

ther cells pertaining to the square matrix of size 2r + 1 centered in
uch a cell; i.e., C connections start from the cell occupying the cen-
ral position of its neighborhood matrix (two or more connections
etween the same two cells are allowed) and r is the maximum
adius where a connection can be made. Of course, such a cell
an receive connections starting from other cells, hence its actual
umber of neighbors is commonly greater than C. The case r = 1

ncluding all eight surrounding cells is called the Moore neighbor-
ood of unitary radius (e.g. Wolfram, 1994). We assume that the
robability qi of settling a connection between the central cell and
ny cell pertaining to the layer i is given by

i = r + 1 − i

r2 + r −
∑r

j=1j
(1)

here i = 1, 2, . . . , r and the layer i is formed by the cells with
oore radius equal to i. For instance, for r = 3, then q1 = 1/2,

2 = 1/3, q3 = 1/6. Thus, the probability of connecting the central
ell to any of the 8 cells forming the layer i = 1 is 1/2, to any of the 16
ells forming the layer i = 2 is 1/3, and to any of the 24 cells forming
he layer i = 3 is 1/6. In this random network, the cells are mainly
ocally connected. Such a topology (already used as coupling model
f neural networks by Monteiro et al., 2006b) can present “high”
lustering coefficient cc (here “high” means cc � C/N, where N is
he number of cells constituting the lattice) and “small” average
hortest path length l (here “small” means l ∼ ln(N)/ ln(C)) as the
raphs called small-worlds (Watts and Strogatz, 1998). The main
ifference is that, in a small-world network, any cell has the same
robability of receiving a rewired connection; in our network, this
robability is given by qi, which depends on the maximum radius r
nd on the distance i between the cells that may be connected.

A key parameter in epidemiological investigations, already
ound in the 19th-century scientific literature (Nishiura and Inaba,
007), is the basic reproduction (reproductive) number R0 defined
s the expected number of secondary cases generated by one pri-
ary case of infection in a totally susceptible and sufficiently large

opulation (e.g. Anderson and May, 1992; Murray, 2003). This
arameter characterizes the transmission intensity of a particular
isease in a particular population and it is interpreted as a threshold
riterium: if R0 > 1, the number of infected individuals increases
nd there occurs outbreak and/or persistence of the disease; if
0 < 1, the number of infected individuals declines and the dis-
ase eventually disappears. Hence, determining the value of such
parameter is important to predict the temporal evolution of a

isease in a population. Here we study the relations among R0, the
arameters r and C and the topological properties of the contact net-
ork generated by Eq. (1) and discuss how these results can affect

he specification of strategies for controlling disease spreadings.
This manuscript is organized as follows. In Section 2, topological

roperties of the random connection network created by Eq. (1)
re numerically investigated. In Section 3, the PCA model and the
orresponding ODE model are described and analytical relations
etween them are derived. In Section 4, the influence of the contact
etwork on the epidemiological dynamics is numerically examined.

n Section 5, the relevance of this study is discussed.

. Features of the PCA contact network

In the PCA model, individuals live in a toroidal surface: a square
atrix formed by n × n = N cells with periodic boundary conditions

that is, the top edge of the matrix contacts the bottom edge and the

eft edge contacts the right edge; thus, a torus embedded in a three-
imensional space is formed from a two-dimensional plan in order
o eliminate edge effects). In this section, the figures present aver-
ge results obtained in ten contact networks formed by Eq. (1) for
= 200 (the results are not qualitatively different for other values
percentage of the 40,000 (200 × 200) cells presenting the number of connections
shown in the horizontal axis. For instance, for r = 2, then about 20% of cells have 10
connections. By increasing the value of r, the distribution peak decreases, and the
distribution width and the average value increase.

of n). Random networks are usually characterized by the degree
distribution and two topological parameters (e.g. Barabasi, 2003;
Boccaletti et al., 2006; Bollobàs, 2001): the clustering coefficient
and the average shortest path length.

The degree distribution expresses how the number of connec-
tions per cell varies on the lattice. Figs. 1 and 2, which exhibit
the percentage of cells with a given number of connections,
show that by increasing the values of r and/or C, the distribution
peak decreases and the distribution width and the average value
increase.

The clustering coefficient is the typical number of connections
existing between cells pertaining to a neighborhood of a cell divided
by the total number of connections that could possibly exist. The
higher this coefficient, the quicker the disease can spread into the
neighborhood. Fig. 3 shows that this coefficient increases with C
and tends to decrease with r.

The average shortest path length is the average shortest distance
between any two cells composing the lattice. If this path length is
small, then two cells are usually connected by just a few connec-
Fig. 2. Degree distribution for r = 5 and 2 ≤ C ≤ 20. By increasing the value of C,
the distribution peak decreases, and the distribution width and the average value
increase.
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ig. 3. Clustering coefficient for 1 ≤ r ≤ 15 and 2 ≤ C ≤ 20. The value of r appears in
he horizontal axis and the value of C in the right edge. This topological parameter
ends to decrease with r and it increases with C.

he epidemiological models based on PCA and ODE are pre-
ented.

. PCA and ODE approaches

Each cell in the PCA lattice represents an individual that can
e in one of three states: S, I or R. The time evolution of this
opulation is ruled by the following set of probabilities of state tran-
itions. At each time step, there is a probability Pi of a S-cell being
nfected according to Pi(v) = (1 − e−kv), where v is the number of
onnections with infective neighbors and k is a parameter related
o the disease infectivity (observe that Pi is a monotone increas-
ng function of v, and that Pi(0) = 0, but Pi(v /= 0) < 1). Each I-cell
as probability Pc per time step of becoming cured and probability
d per time step of dying because of the disease. At each itera-
ion, recovered cells may die due to other causes with probability
n. When infective and recovered individuals die, susceptible ones
eplace them. Therefore, the total number of individuals N = n2

emains constant; an appropriate assumption for modelling dis-
ases spreading quickly and/or populations where the deaths are

alanced by the births. The states of all cells are simultaneously
pdated throughout a simulation.

This PCA model is a variation of the model proposed by Monteiro
t al. (2006a). There an I-cell could also die by other causes and

ig. 4. Average shortest path length for 1 ≤ r ≤ 15 and 2 ≤ C ≤ 20. The value of r is
iven in the horizontal axis and the value of C in the right edge. This topological
arameter decreases with r and/or C.
l Modelling 220 (2009) 1034–1042

the neighborhood of a cell was restricted to its eight surrounding
cells. Here an I-cell can die only because of the disease and the
connections with other cells are determined by applying Eq. (1) at
each time step. Thus, the neighbors may not be local and may not
be the same from one time step to another.

If S, I and R-individuals are homogeneously distributed over
the space, then this PCA can be represented by the following ODE
model:

dS(t)
dt

= −aS(t)I(t) + cI(t) + eR(t)

dI(t)
dt

= aS(t)I(t) − bI(t) − cI(t)

dR(t)
dt

= bI(t) − eR(t)

(2)

where a is the infection rate constant; b is the recovering rate con-
stant; c is the death rate constant related to the disease; e is the
death rate constant related to other causes. Because dS(t)/dt +
dI(t)/dt + dR(t)/dt = 0, the total number of individuals remains
constant, thus: S(t) + I(t) + R(t) = N.

The stationary solutions (S∗, I∗, R∗) (where S∗, I∗ and R∗ are
constants satisfying dS(t)/dt = 0, dI(t)/dt = 0, dR(t)/dt = 0 for any
instant t) of Eq. (2) are

S∗

N
= 1; I∗ = 0; R∗ = 0 (3)

and

S∗

N
= 1

R0
;

I∗

N
= e

e + b

(
1 − 1

R0

)
;

R∗

N
= b

e + b

(
1 − 1

R0

)
(4)

where

R0 ≡ aN

b + c
(5)

Stability analysis of Eq. (2)(Monteiro et al., 2006a, 2007) reveals
that the disease-free stationary state given by Eq. (3) is asymptoti-
cally stable if R0 < 1 and unstable if R0 > 1; the endemic stationary
state given by Eq. (4) is unstable if R0 < 1 and asymptotically stable
if R0 > 1. For this ODE model, the bifurcation parameter R0 defined
by Eq. (5) corresponds to the basic reproduction number. In fact,
each different epidemiological model yields a different expression
to R0 (e.g. Piqueira et al., 2004).

Because the ODE model is a mean-field approximation for the
PCA model, the values of the epidemiological parameters a, b, c and
e can be estimated from PCA simulations by the following expres-
sions obtained from Eq. (2):

a � �I(t)S→I

S(t)I(t)�t
b � �R(t)I→R

I(t)�t
c �

(
1 − �R(t)I→R

I(t)�t

)
�S(t)I→S

I(t)�t

e � �S(t)R→S

R(t)�t
(6)

where �I(t)S→I/�t is the increase per time step of infective individ-
uals due to the contamination process; �R(t)I→R/�t is the increase
per time step of recovered individuals due to the healing process;
�S(t)I→S/�t is the increase per time step of susceptible individu-
als due to the death caused by the disease; and �S(t)R→S/�t is the
increase per time step of susceptible individuals due to the death for
other causes. By assuming that the probability of a state transition
at each iteration can be estimated from the relative frequency of its
occurrence, then P̄i � �I(t)S→I/[�tS(t)]; Pc � �R(t)I→R/[�tI(t)];
Pd � �S(t)I→S/[�tI(t)]; Pn � �S(t)R→S/[�tR(t)]. Therefore:

∑

a � P̄i

I(t)
≡ v

Pi(v)Sv

I(t)
∑

v

Sv

b � Pc c � (1 − Pc)Pd e � Pn (7)
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Fig. 5. PCA (left) and ODE (right) simulations for C = 2 and r = 1. As R0 < 1, the disease-free stationary state is reached in the permanent regime.
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Fig. 7 shows the asymptotically stable stationary solutions in
function of R0. As predicted from the ODE analyses, the disease only
persists in the PCA simulations if R0 > 1.
Fig. 6. PCA (left) and ODE (right) simulations for C = 10 and r = 50. A

here Sv is the number of susceptible cells with v connections to
nfective neighbors. The expression for the parameter c is due to the
act that, at the time step t, an infective cell is firstly tested if it will
e cured (with probability Pc) at t + 1; if not cured, then it is tested

f will be dead (with probability Pd) at t + 1.
Thus, the epidemiological parameters b, c and e appearing in the

inear terms of Eq. (2) are related to the probabilities of recovering
nd dying. The value of a is related to the average infection proba-
ility P̄i and it is the unique epidemiological parameter influenced
y r and C.

By using Eq. (6), simulations with the PCA model can be per-
ormed for estimating the values of the parameters a, b, c and

appearing in the ODE model, in order to obtain similar evolu-
ions of S(t), I(t) and R(t) in both approaches. Average values of
hese four epidemiological parameters are calculated by taking
nto account the last 20 time steps of a PCA simulation (when
he system already reached its permanent regime). Then, these
verage values are substituted in Eq. (2), which are numerically
olved.

Figs. 5(left) and 6(left) show the dynamical behaviors of the
CA for n = 200, k = 1, Pc = 60%, Pd = 30%, Pn = 10%; Figs. 5(right)
nd 6(right) exhibit the temporal evolutions of the corresponding

DE with the parameter values determined by Eq. (6). At t = 0,
, I and R-cells are randomly distributed according to the propor-
ions S(0)/N = 99.5%, I(0)/N = 0.5%, R(0)/N = 0%. In Fig. 5(left), for
= 2 and r = 1 the corresponding numerical value of the basic

eproduction number obtained from Eqs. (5) and (6) is R0 � 0.97;
1, the endemic stationary state is reached in the permanent regime.

in Fig. 6(left) for C = 10 and r = 50, R0 � 6.31. Observe the good
agreement between the two approaches.
Fig. 7. Asymptotically stable values of S∗/N, I∗/N and R∗/N in function of R0 obtained
from Eqs. (3) and (4) for the same epidemiological parameter values used in
Figs. 5 and 6 (i.e., b = 0.6, c = 0.12, e = 0.1).
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Fig. 8. R0 for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 20. The higher the value of r and/or C, the
higher R0.
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Fig. 10. I∗/N for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 20. In the permanent regime, the infective
group increases with r and/or C.

F
t

ig. 9. S∗/N for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 20. In the permanent regime, the susceptible
roup decreases with r and/or C.

. Influence of the contact network on the disease
ynamics
The aim here is to understand how the values of r, C and the
wo topological parameters described in Section 2 affect R0, the
ermanent regime and the transient behavior of the PCA model. In
his section, all figures show average results obtained in ten sim-

ig. 12. Maximum peak of I(t)/N in the PCA model for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 12 (left) 1
hen reaches a saturation value, and there is a value of C for which this transient feature a
Fig. 11. R∗/N for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 20. In the permanent regime, the recovered
group increases with r and/or C.

ulations with the same epidemiological parameter values used in
Figs. 5–7. Thus, R0 changes because r and/or C (and consequently
a) vary. In each simulation, S, I and R-cells in the PCA lattice are
randomly distributed at t = 0 respecting the proportions used in
Figs. 5–7. Hence, the numerical values of the initial conditions are

the same, but the corresponding geographical distributions may be
altered from one simulation to another. And, from a time step to
another, the neighborhood of each cell is recreated by following Eq.
(1). Other sets of epidemiological parameter values (for instance,

4 ≤ C ≤ 20 (right). The highest concentration of I(t)/N initially increases with r and
ttains its maximum.
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times; therefore, these transitory features alone cannot be adequate
ig. 13. Peak instant of I(t)/N in the PCA model for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 12. The
nstant corresponding to the highest concentration of I(t)/N decreases with C, and
here is a value of r (usually a low value) for which this transient feature reaches its

aximum.

= 0.5, Pc = 80%, Pd = 10%, Pn = 10%) and/or initial conditions (for
nstance, S(0)/N = 99%, I(0)/N = 1%, R(0)/N = 0%) were tested, and
he results were qualitatively the same as reported below.

Fig. 8 presents R0 in function of r and C for 1 ≤ r ≤ 100 and 2 ≤
≤ 20 (the disease frequently disappears for C = 1 and any r, and
= 2 and r = 1; for the other values of C and r it usually persists).
otice that R0 increases with r and/or C (because a increases with
and/or C) and reaches a limit. Thus, the increase of the number of
ontacts (obtained from the parameter C) and the increase of the
rea where these contacts are made (related to the parameter r)
elp to support the persistence of a disease in a population.

Figs. 9–11 illustrate the asymptotically stable stationary concen-
rations of S, I and R in function of r and C for 1 ≤ r ≤ 100 and
≤ C ≤ 20. The values of I∗/N and R∗/N grow with increases in
and/or C; the value of S∗/N diminishes. Observe that all these

tationary concentrations attain limit values when the interac-
ions among individuals are amplified. Observe also that densely
onnected populations present higher infective and recovered indi-
iduals than sparsely coupled populations.

Figs. 12–14 are related to some features of the transient behav-

or of I(t) in the PCA model. These features are: the maximum
eak, the instant when this peak occurs, and the settling time (here
efined as the first time instant T where the average value of I(t)

n T − 5 ≤ t ≤ T + 5 does not vary more than 3% of its stationary

ig. 14. Settling time of I(t)/N in the PCA model for 1 ≤ r ≤ 100 and 2 ≤ C ≤ 12. The
nterval time needed for the system reaching its permanent regime tends to decrease

ith C, and there is a value of r (usually a low value) for which this transient feature
ttains its maximum.
Fig. 15. Maximum peak of I(t)/N in the PCA model in terms of R0. Notice that a
particular value of this transient feature can correspond to different values of R0.

value). Fig. 12 shows that the maximum peak increases with r and
it increases with C until C = 12; from C = 14 to C = 20, this peak
decreases as C grows. This is an interesting result because a lower
maximum peak cannot be due to a less infectious disease or a more
resistant population; it can be caused by increasing the number
of connections beyond a critical value. Figs. 13 and 14 reveal that,
after an initial growing, the peak instant and the settling time tend
to decrease as r grows. The values of both these transitory features
diminish when C increases.

The relation between maximum peak of I(t) and R0 is far from
being trivial, as shown in Fig. 15; however, there is a tendency of
increasing. Figs. 16 and 17 reveal that the peak instant and the set-
tling time of I(t) depend on R0 in a similar way that they depend
on r (Figs. 13 and 14). Thus, these both features initially increase
with R0 and then, after a critical number, they decrease and satu-
rate. Figs. 16 and 17 show that (for the epidemiological parameter
values used in these simulations) a disease with R0 � 1 and another
with R0 ∼= 3 can present similar peak instants and similar settling
for distinguishing them in terms of R0.
Fig. 8 shows that the number R0 increases with r and/or C

(according to Eq. (5) R0 is proportional to the epidemiological

Fig. 16. Peak instant of I(t)/N in the PCA model in terms of R0. Observe that a
particular value of this transient feature can correspond to distinct values of R0.
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ig. 17. Settling time of I(t)/N in the PCA model in terms of R0. Notice that a particular
alue of this transient feature can correspond to unalike values of R0.

arameter a, which increases with r and/or C). Because the clus-
ering coefficient and the average shortest path length vary with r
nd C as exhibited by Figs. 3 and 4, it is interesting to understand
ow these two topological parameters are related to R0.

The relation between clustering coefficient and R0 is illustrated
n Fig. 18. For a fixed value of C, this coefficient decreases with R0
ecause higher values of R0 are due to higher values of r. Thus,
y increasing the area where the contacts are made and keeping
xed the number of connections, the clustering coefficient must
iminish, because connections between cells composing the neigh-
orhood of a particular cell become more rare. The higher this fixed
alue of C, the higher the value of this coefficient. For a fixed value
f r, the clustering coefficient increases with R0 because higher val-
es of R0 are due to higher values of C. Therefore, by increasing the
umber of connections and keeping fixed the area where they are
ade, the clustering coefficient must increase, because more links
etween cells composing the neighborhood of a particular cell can
e established. The higher this fixed value of r, the smaller the value
f this coefficient.

Fig. 19 reveals that the average shortest path length decreases
ith the value of R0, either by increasing the number of connections

ig. 18. Clustering coefficient in function of R0 for some fixed values of r and C. By
eeping C constant, this coefficient decreases with R0 because higher values of R0

orrespond to higher values of r. By keeping r constant, this coefficient increases
ith R0 because higher values of R0 correspond to higher values of C.
Fig. 19. Average shortest path length in function of R0 for some fixed values of r
and C. By keeping C constant, this length decreases with R0 because higher values of
R0 correspond to higher values of r. By keeping r constant, this length also tends to
decrease with R0 because higher values of R0 correspond to higher values of C.

or the neighborhood area. Higher values of r and/or C imply smaller
path lengths between two cells.

Figs. 18 and 19 show that a same value of R0 is compatible with
distinct values of clustering coefficient (cc) and average shortest
path length (l) for a given disease. For instance, a disease charac-
terized by R0 = 3 is compatible with a network with cc � 0.36 and
l � 68 and with another network with cc � 0.05 and l � 17.

5. Discussion

The random coupling topology described by Eq. (1) is function of
the parameters r (related to the area where connections between
cells can be made) and C (expressing the number of connections
starting from each cell). Fig. 8 shows that R0, a bifurcation parame-
ter in the dynamical system jargon, increases with r and/or C. When
this parameter is above a critical value (1, by definition), then the
model used for deriving the analytical expression for R0 predicts
that the disease will spread in the population. There are reports
about severe epidemics occurred in slave ships during the 19th
century (e.g. Watts, 1999). This is a historic example illustrating
the influence of C on disease spreadings. Slaves had a very limited
value of r, but the increase of C caused by gathering them in a ship
increased the value of R0 of such a population, which made easier
the propagation of diseases. Cases illustrating the influence of r in
disease propagations can also be easily found. For instance, sail-
ing ships developed mainly from the 13th century amplified the
human mobility on the world; consequently, the value of r and the
incidence of epidemics. A classical example is the devastation of the
Aztec population by smallpox in the 16th century after the Spanish
invasion (e.g. Watts, 1999).

Beyond the predictive power of R0 (questioned by some authors,
e.g. Alves et al., 2003; Cross et al., 2007), its numerical value is
important because it gives hints of the effort required to contain
a disease spreading. For instance, Bauch and Earn (2004) proposed
a game theoretical framework to analyze, in function of R0, how the
morbidity risk perception associated to voluntary vaccination poli-
cies influence the course of epidemics. Shulgin et al. (1998) used a
SIR model based in ODE to determine, in terms of R0, the minimum
percentage p of susceptible individuals that must be vaccinated to
eradicate a contagious disease; they found p = (R0 − 1)/R0. This

expression was also derived by Huang (2008) from a SEIR model
(where E represents the exposed (latent) group), who applied it
for calculating the critical vaccination level associated to 21 well-
known infectious diseases. A similar expression was obtained by
Farrington (2003) considering the vaccine efficacy.
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The value of R0 can be unambiguously determined from the
symptotical stable stationary concentrations (as shown in Fig. 7);
owever, public health departments cannot wait for the SIR sys-
em reaching its permanent regime to specify the control strategies.
hus, there are attempts of estimating the value of R0 from the
ransient features of I(t) (e.g., Roberts and Heesterbeek, 2007). For
nstance, the classical SIR model can be obtained from Eq. (2) by
mposing c = 0 and e = 0. In this model based on differential equa-
ions by supposing that the groups of S, I and R are homogeneously

ixed, R0 ≡ aS(0)/b and the maximum peak of I(t), Imax, is given
y (e.g. Murray, 2003):

Imax

N
= 1 − S(0)

NR0
[ln(R0) + 1] � 1 − 1

R0
[ln(R0) + 1] (8)

Thus, in this model R0 is directly related to the normalized value
f the maximum peak (assuming that S(0) � N, i.e., almost all popu-
ation is initially susceptible). By using a model taking into account
he spatial relations among the individuals, here we found that
he maximum peak of I(t), the corresponding peak instant and the
ettling time may not be appropriate for estimating R0.

We also showed that a same value of R0 can be associated
o networks with distinct values of clustering coefficient and
verage shortest path length. This result can affect the evalua-
ion of the effectiveness concerning different strategies employed
or controlling a disease spreading. For instance, Lipsitch et al.
2003) and Zhang (2007) studied the transmission dynamics of
he severe acute respiratory syndrome (SARS) by using mathe-

atical models that do not explicitly consider the geographical
ocalizations of the individuals, and they concluded that R0 ≈ 3 in
he absence of control measures. Because distinct values of topo-
ogical properties can produce the same value of R0 in a model
onsiderating the spatial structure of the contact network, it is
ifficult to evaluate the effective contribution of each control mea-
ure, like isolations of SARS cases, quarantine of their asymptomatic
ontacts and restrictions on long-range population movement.
f course, all these interventions decrease (r and C, and conse-
uently) R0 and help to reduce the transmission. However, the
eight of each intervention in the global result is far from being
nderstood, possibly because the correspondences among R0 and
he topological properties of the contact network are not one-to-
ne. Another example: Chen et al. (2006) quantified the impact
f distinct control measures (such as filtration, isolation, vaccina-
ion) in containing the propagation of indoor airborne infections
like chickenpox, influenza, measles, SARS); however, they did not
ake into account the contact network. These authors proposed
o explicitly consider this network in their model, in order to get

ore accurate predictions. Based in our results, we do agree with
hem.

Let a contagious disease and a host population be characterized
y the epidemiological and topological parameters k, b, c, e, r and
(according to our SIR models). Future works should try to answer

he following questions:

1) Can this disease be eradicated by isolating a fraction F of I-
individuals? Or, is there a critical value Fc < 1 so that if the
fraction F = Fc of the I-individuals is isolated, then the dis-
ease is eradicated? In other words, is this unique procedure
enough to reduce the effective value of R0 (that is, the value
of R0 for a disease propagating in a population employing con-
trol measures) below 1? Observe that isolation means strong
reduction in the values of r and C for I-individuals and, conse-

quently, alteration in the topological properties of the contact
network.

2) Preventive attitudes (as the use of masks against airborne infec-
tions or condoms against sexually transmitted diseases) alter
the coupling topology of the S-individuals. Can this disease be
l Modelling 220 (2009) 1034–1042 1041

eradicated if a fraction F of S-individuals have preventive atti-
tudes? Is there a critical value Fc < 1 so that if the fraction F = Fc

of the S-individuals takes precaution measures, then the disease
is eradicated? In other words, the effective value of R0 can be
decreased below 1 only with these attitudes?

(3) Our simulations showed that random contact networks with
distinct topological parameter values can result in the same
value of R0 for the same disease. One can wonder if the two
control strategies mentioned in the items (1) and (2) when
separately applied against a particular disease would lead to
networks with distinct topological features but with similar
values of R0.

(4) Which of these two strategies can reduce R0 below 1 requiring
the lowest value of Fc?

(5) Vaccination is frequently modelled either as a conversion of
S-individuals to R-individuals or as a decreasing in the birth
rate of S-individuals (e.g. Bauch and Earn, 2004; Shulgin et al.,
1998). Thus, this control strategy seems not be directly related
to changes in the topological properties of the contact network.
However, if there exists a vaccine against the disease under anal-
ysis, what is the optimum combination among these strategies
(isolation, prevention, vaccination) in order to eradicate such
a disease? Here “optimum” can be interpreted as lowest cost
and/or highest quality of life.
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