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Abstract: Despite the effectiveness of direct-acting antiviral agents in treating hepatitis C virus (HCV),
cases of treatment failure have been associated with the emergence of resistance-associated substitu-
tions. To better guide clinical decision-making, we developed and validated a near-whole-genome
HCV genotype-independent next-generation sequencing strategy. HCV genotype 1–6 samples
from direct-acting antiviral agent treatment-naïve and -treated HCV-infected individuals were in-
cluded. Viral RNA was extracted using a NucliSens easyMAG and amplified using nested reverse
transcription-polymerase chain reaction. Libraries were prepared using Nextera XT and sequenced
on the Illumina MiSeq sequencing platform. Data were processed by an in-house pipeline (MiCall).
Nucleotide consensus sequences were aligned to reference strain sequences for resistance-associated
substitution identification and compared to NS3, NS5a, and NS5b sequence data obtained from
a validated in-house assay optimized for HCV genotype 1. Sequencing success rates (defined as
achieving >100-fold read coverage) approaching 90% were observed for most genotypes in samples
with a viral load >5 log10 IU/mL. This genotype-independent sequencing method resulted in >99.8%
nucleotide concordance with the genotype 1-optimized method, and 100% agreement in genotype
assignment with paired line probe assay-based genotypes. The assay demonstrated high intra-run
repeatability and inter-run reproducibility at detecting substitutions above 2% prevalence. This study
highlights the performance of a freely available laboratory and bioinformatic approach for reliable
HCV genotyping and resistance-associated substitution detection regardless of genotype.

Keywords: HCV; direct-acting antiviral agent; resistance-associated substitutions; whole-genome
sequencing; genotype-independent

1. Introduction

Hepatitis C virus (HCV) infection is a major public health concern in Canada and
worldwide. In 2015, the World Health Organization (WHO) estimated that 71 million
people globally had chronic HCV infection [1]. Nearly 400,000 die annually from HCV
infection, largely due to liver cirrhosis and hepatocellular carcinoma. Despite an estimated
843,000 individuals being cured in 2015, these estimates are in sharp contrast to the number
of new HCV infections globally (1.75 million). Without appropriate treatment scale-up and
therapeutic monitoring, the global HCV epidemic may continue to expand in severity.

The therapeutic approach towards HCV chronic infection has shifted in recent years
with the advent of oral direct-acting antiviral (DAA) agents. Previously, first-line treat-
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ment options were limited to pegylated interferon-, ribavirin- and first-generation pro-
tease inhibitor-containing regimens [2]. Interferon- and ribavirin-based therapies were
non-specific to HCV and caused moderate to severe side effects universally, while first-
generation protease inhibitors also had moderate to high potential for drug–drug interac-
tions [3]. Newer therapies against specific viral targets use direct-acting antiviral agents
(DAA), small-molecule inhibitors that can be categorized on the basis of their viral targets.
These drug targets are important for viral replication, notably non-structural proteins
NS3/4a, NS5a, and NS5b.

Some DAA-based regimens are genotype-specific, requiring personalized therapy to
ensure genotype coverage by antiviral agents. The recent introduction of pan-genotypic op-
tions (sofosbuvir/velpatasvir, glecaprevir/pibrentasvir) circumvent the need for genotype
identification [4,5]. These pan-genotypic regimens are now recommended by the WHO as
first-line therapy for all adults with HCV infection regardless of genotype [6,7]. With this
highly effective repertoire of DAA medications, overall sustained virologic response rates
have demonstrated >90–95% regardless of HCV genotype, baseline HCV RNA viral loads,
race, HIV coinfection and hepatic fibrosis [8–11].

However, cases of DAA treatment failure have been associated with the emergence
of drug-resistance-associated substitutions (RAS) in all HCV genotypes, detected in both
DAA treatment-naïve and treatment-experienced people [12–15]. The failure to achieve
sustained virologic response through the emergence of RAS is thought to be the result of the
selective pressure of antiviral drugs during treatment or the genetic variation inherent in
the virus itself. As such, the identification of RAS can enable clinicians to personalize DAA
treatment for a given patient, typically through the addition of ribavirin or by extending
therapy duration, thereby enhancing the likelihood of treatment success.

Currently, the use of drug resistance testing in clinical management of HCV differs
slightly between national and international societies. The Canadian Association for the
Study of the Liver (CASL), the European Association for the Study of the Liver (EASL) and
the American Association for the Study of Liver Diseases (AASLD) recommend resistance
testing in select clinical scenarios [16–18]. As most HCV-positive individuals achieve
sustained virologic response, baseline resistance testing is not universally recommended
for all HCV infections [16,17]. RAS identification may be recommended in DAA-treatment-
naïve individuals, though almost solely for genotype 1a and 3 infections, dependent on
treatment status (naïve vs. experienced), the selected treatment regimen and cirrhosis
status. Resistance testing is generally not recommended in patients with other HCV
genotypes (1b, 2, 4, 5 and 6). Drug resistance testing can be considered in cases of treatment
failure and retreatment, though limited data are available on the clinical utility of this
approach. HCV resistance testing nevertheless provides an opportunity to identify RAS,
notably in the case of genotype 1a or 3 infections as well as previously treated patients
who have failed an initial DAA regimen. Such testing can also be used in the context
of epidemiological surveillance of HCV drug resistance to provide valuable insight into
treatment and prevention strategies [19]. Drug resistance testing therefore may continue to
provide decisional support for certain clinical scenarios, such as optimizing second-line
therapy [20].

To our knowledge, there is no commercially available kit to perform HCV drug
resistance testing for all marketed DAAs. For testing, clinicians and/or public health
labs must submit samples to one of the few select labs with in-house developed assays
for clinical HCV RAS identification (e.g., BC Centre for Excellence in HIV/AIDS, Quest
Diagnostics, Labcorp). For instance, HCV clinical specimens in Canada are first submitted
to a provincial public health laboratory, which subsequently refers the sample to the BC
Centre for Excellence for HIV/AIDS for HCV drug resistance testing. Currently, there are a
small number of whole-genome sequencing approaches published for HCV, though these
have widely variable performance and uses, may not have been fully validated with clinical
isolates and may be technically incompatible with certain HCV genotypes or impractical for
clinical use [21–30]. Bioinformatic challenges also represent a notable hurdle in this field,
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which currently lacks a standardized approach to analyzing next-generation sequencing
data. Few open-source software for genome sequencing and drug resistance testing are
available, with alternatives typically presenting with technical and financial barriers to
their use.

We therefore developed and validated a near-whole genome, HCV genotype-independent
sequencing assay using the MiSeq platform (Illumina) to identify RAS that may be associ-
ated with treatment failure. This assay also allows for HCV genotype classification using
genomic data in lieu of conventional probe-based assays. The results produced by this
assay can help guide clinicians and patients when making treatment decisions in specific
clinical scenarios, as outlined by treatment guidelines. Other public health laboratories
globally can adopt this HCV drug resistance assay, for which an associated bioinformatic
pipeline is available specifically for generating HCV drug resistance reports.

2. Materials and Methods
2.1. Study Population

Sample sets for each assay performance parameter are outlined in Table 1. Briefly, HCV-
positive samples used to develop and validate this near whole genome, HCV genotype-
independent assay were sourced from Merck from the C-WORTHY trial (NCT01717326/
Protocol PN035) and the Vancouver Injection Drug Users Study (VIDUS) [31,32]. Samples
included specimens from treatment-naïve HCV-infected individuals, as well as DAA-
treated persons who did not achieve sustained virologic response at 12 weeks post-
treatment. All HCV-positive samples were tested for genotype (GT) 1–6 by sample
providers themselves using the VERSANT HCV Genotype 2.0 line probe assay (LiPA;
Siemens, Erlangen, Germany).

Table 1. Specimen characteristics for assessing individual assay validation parameters.

Test No. of
Samples

Replicates per
Sample

HCV pVL log10
(IU/mL),

Median (Range)

Genotypes
(LiPA Assay)

Accuracy 93 2 6.8 (3.0–7.6)

1a (n = 78)
1b (n = 10)
1e (n = 3)
2b (n = 2)

Repeatability 4 12 6.5 (6.1–7.3) 1a (n = 3)
1b (n = 1)

Reproducibility 12 5 6.5 (6.0–7.7)
1a (n = 10)
1b (n = 1)
3 (n = 1)

Sensitivity (viral load)
& Genotype coverage 148 1 6.1 (3.0–7.6)

1a (n = 78)
1b (n = 10)
1e (n = 3)
2b (n = 2)
4 (n = 8)
5 (n = 5)
6 (n = 5)

Unknown (n = 37)
Sensitivity (minor

species) 95 2 NA Unknown (n = 95)

Specificity-Negatives 5 3 NA NA
HCV, Hepatitis C Virus; pVL, plasma viral load; IU, international units; LiPA, line probe assay; NA, not available.
Dashes indicate no data were available for the associated parameter.

2.2. PCR Amplification

Viral RNA was extracted from 500 µL of plasma on a NucliSENS easyMag RNA/DNA
Extractor (bioMérieux, Montréal, QC, Canada) according to manufacturer’s protocol. Ex-
tracted nucleic acids were eluted in 60 µL of elution buffer and stored at −20 ◦C until
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reverse-transcription-polymerase chain reaction (RT-PCR). A negative control (DEPC-
treated water) was included in each run.

Nucleic acids underwent RT-PCR using SuperScript III Reverse Transcriptase (18080-
044, Invitrogen, Carlsbad, CA, USA), followed by a nested PCR using Klentaq LA (110,
DNA Polymerase Technology Inc., St. Louis, MO, USA) to amplify the HCV genome in
two fragments (Figure 1).

Figure 1. HCV genome map. A schematic representation of the HCV genome depicting coverage of the genotype-
independent, near-whole genome sequencing method wherein the genome is amplified in two fragments then sequenced in
parallel.

Firstly, one near-whole-genome amplicon (“WG amplicon”) was generated spanning
the HCV Core to NS5b codon 336 (GT1a_H77 genome coordinates 342 to 8610). To cover
the remaining NS5b portion, a smaller, partially-overlapping amplicon (“MiDi amplicon”)
was designed spanning NS5b codons 228 to the 3′ end of NS5b (H77 genome coordinates
7829 to 9377). Nested PCR products were visualized by agarose gel electrophoresis to
confirm successful amplification prior to library generation. Amplicons were normalized
and purified using AMPure XP magnetic beads (A63880, Beckman Coulter, Mississauga,
ON, Canada). Purified amplicon concentrations were quantified using the Invitrogen
Quant-iT Picogreen dsDNA assay (P7589, Invitrogen, Carlsbad, CA, USA) and diluted
to 1 ng/µL. Note that the amplicons were processed separately until the pooling of the
amplicon libraries in preparation for sequencing. Primers for reverse transcription and
amplification steps are included in the Supplementary Materials (Laboratory Protocol,
Table S1).

2.3. Library Preparation

Individual libraries for each amplicon (MiDi and WG amplicons) were prepared using
the Nextera XT DNA Library Preparation Kit (FC-131-1024, Illumina) and Nextera XT
Index Kits (FC-131-1002, Illumina) for amplicon tagmentation and dual-index barcoding,
respectively. Libraries were prepared according to manufacturer protocols, with a modified
tagmentation step. Here, 40% working volumes were used for the tagmentation reagents
with 2 ng of DNA as input (see Supplementary Materials–Methods). Indexed amplicons
for each target were pooled and purified using AMPure XP beads, and the pooled library
was diluted to 1.3 ng/µL. The WG and MiDi pooled libraries were then combined at a
roughly 7:1 ratio, based on the approximate amplicon length. Note that the WG and MiDi
amplicons from the same samples are not tagged with the same indices; unique index
tag combinations are used for each amplicon, allowing for the assessment of sequence
concordance in the overlapping regions. The Illumina PhiX control library was then added
at 10% ratio to the sample DNA libraries and sequenced on the Illumina MiSeq platform
using the 2 × 250 bp MiSeq Reagent Kit v2 (MS-102-2003, Illumina, San Diego, CA, USA).
A complete standard operating procedure outlining the laboratory protocol for this assay
is available in the Supplementary Materials.

2.4. Data Processing

Raw short-read MiSeq data were processed by an in-house pipeline designed for
rapidly evolving RNA viruses (MiCall v6.8, available at https://github.com/cfe-lab/
MiCall and on Illumina BaseSpace Sequence Hub). Briefly, the MiCall pipeline uses

https://github.com/cfe-lab/MiCall
https://github.com/cfe-lab/MiCall
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bowtie2 to construct consensus sequences and estimate nucleotide frequencies following
several steps: (1) initial read mapping to a set of HCV reference genome “seed” sequences,
(2) sample-specific reference construction, remapping and reconstruction, (3) an iterative
mapping process using sample-specific references, and (4) consensus sequence genera-
tion [33]. Given the extreme intra- and inter-genotype sequence diversity displayed by
HCV, multiple reference sequences are used in the pipeline to maximize the number of
individual MiSeq reads that are successfully mapped to a reference.

Firstly, paired-end reads are mapped to 57 HCV genotype/subtype reference se-
quences curated by the Los Alamos National Laboratory HCV Sequence Database [34].
After this preliminary mapping stage, HCV genotype references having ≥10 mapped reads
are retained. Multiple different reference genotypes (e.g., GT1a, GT1b, GT2b) may be
selected during this preliminary mapping; however, if more than one “seed” reference
from the same genotype (e.g., GT1a, GT1b) is retained, only the seed with the most mapped
reads is retained for that genotype.

Secondly, for each retained reference sequence, mapped reads are collapsed into a
sample-specific reference that retains the genotype identity of the original “seed” Los
Alamos reference. All reads are then remapped to each constructed sample-specific refer-
ence, which are then reconstructed using newly mapped reads.

Thirdly, reference-building and re-mapping described in the last step occurs iteratively
until ≥95% of reads map to the sample-specific reference, or no additional reads are
mapped in additional rounds of re-mapping. As this process continues and additional
reads are mapped, it is expected that individual sample-specific references may diverge
away from their initial “seed” reference sequence. For example, it is possible for a GT2b
sample-specific reference to sufficiently change to more closely resemble a GT1a reference
as re-mapping occurs, and new reads are iteratively incorporated. To address this, each
iteration includes a genotype check for each sample-specific reference. Briefly, a genetic
distance metric (Levenshtein distance) is computed between sample-specific references
and all Los Alamos reference sequences. In instances where sample-specific references
have drifted to more closely resemble another genotype than the “seed” genotype, the
sample-specific reference is excluded. For instance, the GT2b sample-specific reference
could be excluded here, and a more suitable GT1a sample-specific reference is retained
for reference-building and re-mapping. In instances where the sample-specific references
do not drift away from the expected genotype, they are all retained through to the end
of the pipeline. Should this occur, the pipeline outputs multiple consensus sequences
from a single sample, one per sample-specific reference. Paired-end reads are merged,
and error correction rules are applied; corrections included discarding nucleotides with a
quality score <15 and resolving mismatching base calls in overlapping reads by retaining
the higher quality base.

Lastly, all paired-end reads are used to generate nucleotide consensus sequences at
various nucleotide prevalence thresholds (1%, 2%, 5%, 10%, 20%, 25%); nucleotide mixtures
were called when two or more bases were present above the prevalence cutoff. Amino acid
frequencies and sequences were translated directly from paired-end reads and used for
RAS analysis. Finally, the MiCall pipeline merges sequence data from the two amplicons
WG and MiDi to generate single, near-full genome sequences. The software resolves the
overlapping region between the WG and MiDi amplicons by retaining only the data from
the amplicon with the greatest coverage. The genotype of the final assembled consensus is
inferred again by calculating the shortest Levenshtein distance to the Los Alamos reference
set. The resulting dataset covers the near whole-genome of HCV. To demonstrate that both
amplicons generate concordant sequence data, we examined nucleotide agreement and
RAS quantification within the overlapping segment of both products.

2.5. Quality Control Criteria

MiCall incorporates a final quality control step that verifies sequence coverage check at
key resistance-associated positions. Samples with >1000-fold coverage at all RAS positions
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are automatically approved. Sequences with lower read coverage (100 to 999 reads) at
≥1 RAS position are flagged for manual review. Any sequences with fewer than 100 reads
at any RAS position are considered to have failed and are excluded from downstream data
analyses. Additionally, at least one of the sample’s gene regions (e.g., NS3, NS5a, or NS5b)
must have at least 100-fold coverage at all RAS positions or will be deemed a failure.

2.6. Genotype Inference & RAS

For analytical purposes, sample genotypes were inferred from one of two sources,
MiSeq genomic sequence data and LiPA assay results. Where sequencing was successful,
genotypes were inferred according to the data processing outlined above. In instances
where no MiSeq sequence was generated during this validation and HCV genotypes could
not be inferred, viral classification was based on the LiPA assay genotype performed by
the sample provider. Note that all genotypes listed in Table 1 are LiPA-based results.

Based on the inferred genotype, nucleotide consensus sequences were aligned to
appropriate United States Food and Drug Administration (FDA) reference strain sequences
for downstream identification of RAS and indels (Supplementary Materials Table S2). RAS
positions were restricted to positions and substitutions listed in Supplementary Materials
Table S3, adapted from known resistance-associated mutations at the time of analysis [35].

2.7. Assessment of Assay Performance

Performance metrics similar to our previous validation were used to assess assay
quality between replicates and/or laboratory methods: (1) the concordance of nucleotide
base calls, (2) the concordance of amino acid residue calls, (3) the quantification of RAS
prevalence [36] and (4) sequencing success.

Concordance is defined as the proportion of nucleotide or amino acid sequence
agreement between all nucleotides or amino acids sequenced across all samples. In cases
of compatible discordances, (i.e., where one sequence observed a nucleotide or amino acid
mixture whereas the other sequence observed a single component thereof, e.g., nucleotides
Y vs. C), they were weighed identically as complete discordances. These concordance
metrics were assessed using consensus sequences generated from specific nucleotide
prevalence cutoffs.

Sequencing success was calculated as the proportion of sequences having met MiCall
quality control criteria outlined above, requiring a minimum 100-fold coverage at all
RAS-associated positions in NS3, NS5a and NS5b.

Unless otherwise stated, analyses were performed individually for NS3, NS5a and
NS5b gene segments and used a 20% nucleotide or amino acid prevalence threshold for
mixture calling, where applicable. A 20% cutoff was selected to mimic Sanger sequencing
detection thresholds and is well above the expected minimum detected level [37]. In
analyses where sequence data were generated from multiple sample replicates, and no gold-
standard sample reference sequence was available, a consensus sequence was constructed
from all available replicates for use as a comparator. Nucleotides and amino acids appearing
in ≥20% of replicate sequences were included as mixtures in the consensus. In addition to
the metrics described above, we also assessed concordance in the detection of all nucleotide
substitutions across the genome at their respective prevalence.

2.7.1. Accuracy

Accuracy, the level of agreement between a new test and a reference test, was assessed
by comparing newly generated sequences to data obtained from a previously validated in-
house assay optimized for HCV GT1 on the same Illumina MiSeq platform [36]. Duplicates
of 93 samples were used here, consisting mostly of GT1 samples.

2.7.2. Precision

Precision refers to the ability of an assay to reproduce its result, whether within or
between tests. Repeatability (intra-run variability) was assessed using 12 replicates of
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four GT1 HCV-positive samples, processed together through amplification and sequenced
in a single MiSeq run. Reproducibility (inter-assay variability) was assessed using five
replicates of 12 samples (n = 11 GT1, n = 1 GT3), with each set of replicates processed
separately in five PCR batches and sequenced on five separate days. To assess sequencing
precision, sequences obtained from individual replicates were compared for concordance
against a consensus sequence constructed from all available replicate sequences.

2.7.3. Sensitivity

Sensitivity refers to the ability to reliably detect an analyte with acceptable precision.
We assessed the HCV viral load limit of detection with two sample sets: (1) the same GT1
samples used for accuracy measurement (n = 93) and (2) a set of largely GT3-6 samples
(n = 55).

The ability to reliably detect low prevalence substitutions or minority variants was
assessed using two replicates of 95 clinical samples of multiple genotypes.

2.7.4. Specificity

Analytical specificity refers to the ability of an assay to detect only the intended target
and the lack of interference from other analytes. Specificity was assessed in two ways:
(1) HCV-negative samples were assayed separately in triplicate and (2) a negative control
(DEPC-treated water) was included in all runs for this validation and during routine clinical
runs for months following this validation. We did not study interfering substances (e.g.,
hemoglobin, bilirubin, triglycerides, etc.) since our method of RNA extraction has been
shown not to be affected by these substances [38]. In addition, we did not assess substances
that may otherwise inhibit or interfere with RT-PCR amplification as these were previously
assessed during the validation of an HCV whole-genome NGS method designed for GT1
infections [36,39]. It is reasonable to assume that the prior results would apply to the
genotype-independent method as well given the minimal differences between the assays.

2.7.5. Genotype Spectrum

The genotype spectrum of our assay was evaluated using the same GT1 (n = 93) and
GT3-6 samples (n = 55) described above for accuracy and sensitivity. Laboratory staff were
blinded to the expected, previously determined probe-based genotype for 37 (67%) of the
GT3-6 samples.

3. Results
3.1. Accuracy

A total of 93 samples (predominantly GT1a) were processed in duplicate by the
genotype-independent and GT1-optimized methods and used to assess accuracy, using
the latter as the reference comparator. The amplification and sequencing of all three genes
(NS3, NS5a and NS5b) in at least one replicate was successful for 88 (94.6%) and 85 (91.4%)
samples by the genotype-independent and GT-1-optimized methods, respectively. For
method comparisons, 85 samples (89.2%) had available data at all three genes by at least
one replicate for both assays. In instances wherein a method generated sequence data by
both replicates, only the first replicate’s data was analyzed for that respective method.

As the GT1-optimized assay was designed to amplify and sequence GT1a and GT1b
specimens, sequence comparisons between methods were restricted to the successfully
sequenced samples of the same genotype, leaving 83 samples for comparison of all three
genes. The genotype-independent HCV method showed 99.85%, 99.86% and 99.90%
nucleotide concordance with the HCV GT1-optimized NGS method in NS3, NS5a and
NS5b, respectively, using a 20% mixed base-calling threshold. Sequence discordances
represented 0.14% of the total bases compared (n = 489/352,418) and were entirely due
to nucleotide mixtures identified by one method and not the other; no incompatible
nucleotide discordances were observed. Importantly, neither method was systematically
biased towards identifying minority variants. While the genotype-independent method
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identified a marginally larger proportion of the discrepant mixtures (n = 288; 58.9%), overall
agreement in mixture calling was very high (Cohen’s κ = 0.94). Nucleotide concordance
matrices between the two NGS methods, as well as between replicates of the genotype-
independent method are presented in the Supplementary Materials (Figures S1 and S2).
Amino acid sequences were nearly identical for each gene, achieving≥99.92% concordance.

RAS quantification was assessed for samples with >1000-fold coverage for both repli-
cates in both assays. Samples with no detectable RAS at >2% prevalence by either NGS
method were excluded. Overall we observed a strong linear correlation between the RAS
population prevalence observed by both methods (R2 > 0.99) for NS3 and NS5a (Figure 2A).
A systematic bias in amplifying specific RAS was not observed (Figure 2B). Linear regres-
sion could not be performed reliably for NS5b, but amino acid substitutions at positions
159, 282 and 320 were highly conserved (near 100% prevalence for all residues).

Figure 2. Accuracy of RAS quantification using the genotype-independent sequencing method compared to a genotype
1-optimized assay. Accuracy for NS3 and NS5a was assessed by the comparison of amino acid substitution frequencies at
predefined, resistance-associated position as determined by our previously validated genotype 1-optimized and genotype-
independent assays. Each point represents one possible RAS; note that positions with multiple possible amino acid residues
are represented as separate data points. (A) Amino acid prevalence is compared between both sequencing methods for
the same samples. (B) The difference in RAS frequencies between both sequencing methods as a function of mean RAS
prevalence. The two red dotted lines represent the 95% limits of agreement.

3.2. Precision

Both the reproducibility and repeatability of all possible amino acid substitutions
across NS3, NS5b and NS5a were evaluated in the same manner. Precision metrics assessed
the genotype-independent assay’s ability to detect nucleotide and amino acid substitutions
consistently and quantitatively between replicates of a sample. For sequence concordance
analyses, individual replicate sequences were compared to a sample consensus sequence
constructed from the replicate sequences, using a 20% cutoff for mixture-calling.

We also assessed amino acid substitution detection at various prevalence categories.
For each amino acid substitution, the mean prevalence across sequencing replicates was
calculated and binned into <1%, 1–2%, 2–5%, 5–10%, 10–20% and >20% groups. The variant
detection rate was then defined as the percent of sequenced replicates in which the amino
acid was detected with a frequency above one of two minimum frequency thresholds: a
2% prevalence threshold was used to assess the potential for NGS sequencing to detect
minority variants, while a 20% threshold was used to mimic Sanger sequencing detection
limits.
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3.3. Repeatability

Repeatability (intra-run variability) was assessed using 12 replicates of four GT1 HCV-
positive samples. Nearly all replicates (42/48, 87.5%) were successfully sequenced by
the genotype-independent method at all three genes, NS3, NS5a, NS5b. Note that five of
the observed replicate sequencing failures were in NS5b by a single sample. Nucleotide
and amino acid concordance relative to the consensus sequences was high for all sam-
ples; median nucleotide and amino acid concordance was above ≥99.90% and ≥99.93%
respectively, across NS3, NS5a and NS5b.

At a 2% cut-off for mixture calling, the amino acid substitutions with a mean preva-
lence >5% were detected in 100% of the replicates in NS3, NS5A and NS5B. (Figure 3A). For
substitutions with a mean prevalence between 2% and 5%, the repeatability of detection for
NS3 and NS5A was ~80%; lower repeatability (~50%) was observed in NS5B. As expected,
there was a significant drop in the detection rates at mean prevalence around or below
the 2% variant threshold. Substitutions present below 1% mean prevalence were correctly
identified as conserved positions with only a few outliers. In the same analysis using a 20%
prevalence threshold, substitutions present above 20% mean prevalence were detected in
nearly all replicates with less than 0.01% outliers (Supplementary Materials Figure S3A).

Figure 3. Repeatability and reproducibility of amino acid substitutions in NS3, NS5a and NS5b. Substitutions observed at a
prevalence ≥2% in a given replicate were considered “detected”. Variant detection rate (defined as the % of replicates per
sample, in which a substitution was detected) is categorized by the mean prevalence of a substitution across all replicates
of a sample. Replicate testing of each sample began from the same RNA extract; all steps beginning from the RT-PCR
were repeated. Numbers indicated on the top of each graph represent the total number of substitutions in each bin. (A)
Repeatability of amino acid substitutions was determined using four samples (3 GT1a, 1 GT1b) in 12 replicates processed on
a single MiSeq run. (B) The reproducibility of amino acid substitutions was determined using 12 samples (10 GT1a, 1 GT1b,
1 GT3) in 5 replicates processed on separate days on five separate MiSeq runs.

3.4. Reproducibility

Reproducibility (inter-run variability) was assessed using five replicates of 12 samples
and displayed similar results as the repeatability metric. With a single exception, all
replicates were successfully sequenced at NS3, NS5a and NS5b (59/60, 98.3%); in one
instance, NS5b was not sequenced in one replicate while the remaining genes were analyzed
successfully. The median nucleotide and amino acid sequence concordance relative to the
consensus sequence was ≥99.86% and ≥99.90%, respectively, for NS3, NS5a and NS5b.
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Nearly 100 of all amino acid substitutions with mean prevalence >5% were repro-
ducibly identified at the 2% detection threshold (Figure 3B). Reproducibility was lower for
substitutions with a mean prevalence between 2 and 5%, 60% in NS3 and NS5A, and 40%
in NS5B. The detection of substitutions with mean prevalence at or below 2% was low as
expected, given these residues likely have true frequencies below 2%. Conserved amino
acids (<1% mean prevalence) were also identified correctly, with few exceptions. As with
the repeatability analysis, we repeated this analysis using a 20% prevalence cut-off for mix-
tures (Supplementary Materials Figure S3B). Substitutions present above 20% prevalence
were detected in most inter-assay replicates but with a greater number of outliers compared
to intra-assay replicates. Although a 2% cutoff enables the detection of low prevalence
substitutions or minority variants (i.e., <20% prevalence), stochastic effects introduced
through RNA extraction, the sampling of small volumes or in RT-PCR efficiency result in
the reduced reproducibility of detecting amino acid substitutions when present below 5%
prevalence.

3.5. Sensitivity–Viral Load

To assess the ability of the genotype-independent assay to reliably amplify and se-
quence the HCV virus of different genotypes, we evaluated the PCR and sequencing
success rate 146 samples consisting of GT 1 to 6 samples. No GT2 samples were available
at the time of assessing this validation parameter.

Nearly all GT1 samples with a viral load >5.5 log10 IU/mL were successfully se-
quenced (n = 85/86, 98.8%; Table 2). A sequencing success rate of 20–50% was obtained for
samples with a viral load <5.5 log10 IU/mL. However, only a total of seven samples were
tested, four of which have a viral load in the 3-4 log range. Similarly, GT3-6 samples with a
viral load >5.5 log10 IU/mL were all successfully sequenced (17/17, 100%). In the 23 GT3-6
samples with a viral load between 5.1 and 5.5 log10 IU/mL, NS3 and NS5A sequences were
obtained in 20 (87%) of the samples, whereas NS5b sequence was generated in only 15 (65%)
samples. The drop in sequencing success rates in NS5B is likely due to decreased coverage
within NS5b beyond the WG amplicon, primarily in proximity to the amplification primer
site. Only half of GT3-6 samples with viral load <5.0 log10 IU/mL could be amplified and
sequenced. Based on these results, the lower limit of detection was determined to be at
>5.0 log10 IU/mL.

Table 2. Sequencing success of the genotype-independent NGS assay in GT1 and GT3-6 sample sets stratified by viral load
category.

Genotype 1 (n = 93) Genotypes 3–6 (n = 53) ˆ

HCV pVL log10
(IU/mL) NS3 NS5A NS5B NS3 NS5A NS5B

>7 23/23 (100%) 23/23 (100%) 23/23 (100%) 2/2 (100%) 2/2 (100%) 2/2 (100%)
6.6–7.0 32/33 (97%) 32/33 (97%) 32/33 (97%) 1/1 (100%) 1/1 (100%) 1/1 (100%)
6.1–6.5 14/14 (100%) 14/14 (100%) 14/14 (100%) 4/4 (100%) 4/4 (100%) 4/4 (100%)
5.6–6.0 16/16 (100%) 16/16 (100%) 16/16 (100%) 10/10 (100%) 10/10 (100%) 10/10 (100%)
5.1–5.5 1/2 (50%) 1/2 (50%) 1/2 (50%) 20/23 (87%) 20/23 (87%) 15/23 (65%)

<5 1/5 (20%) 2/5 (40%) 1/5 (20%) 7/13 (7/54%) 7/13 (54%) 7/13 (54%)

HCV, hepatitis C virus; pVL, plasma viral load; IU, international units. Genotypes were inferred through sequence analysis or in the
absence of sequence data from assigned genotypes from LiPA assays. HCV subtype information was obtained using phylogenetic analyses
based on MiSeq data. Sequencing success was defined as sequences having a minimum of 100-fold coverage at all RAS-associated positions
in each respective gene. ˆ Two genotype 3–6 samples from the set of 55 samples were excluded from this table, as no viral load data were
available.

3.6. Sensitivity-Minority Variants

Given the increased sensitivity of NGS methods in detecting minority variants and
the high degree of genetic variation amongst HCV samples, we also assessed the assay’s
ability to reliably detect these species. This was done by sequencing 95 clinical specimens
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of multiple genotypes, each processed in duplicate. Upon successful sequencing, the
prevalence of each individual nucleotide (A, T, C, G) at every position in the genome was
determined for all sequences. Subsequently, for each pair of replicates, the mean and
coefficient of variation (CV) of nucleotide prevalence was calculated for each base/position
combination. The median and interquartile range of the coefficient of variation was
visualized for all observed mean nucleotide prevalence values (Figure 4).

Figure 4. Assay sensitivity in detecting minority variants between sample duplicates at different mean nucleotide frequencies
(defined as the mean prevalence of all permutations of nucleotides and positions within a sequence). This parameter was
assessed using 95 samples run in duplicate, of which 84 passed sequencing. (A) The total number of nucleotide substitutions
(N) detected at a particular mean substitution prevalence. (B) Median coefficient of variation (CV) of minor species with
interquartile range (IQR) at different mean substitution prevalence.

Of the 95 samples selected for analysis in this parameter, 84 were successfully se-
quenced (88.4%). MiCall genotype assignment using sequence data alone was used for
genotype assignment, as no prior LiPA-based genotype result was available for these sam-
ples. Sequences were assigned the following genotypes: GT1a (n = 69), GT1b (n = 10), GT1e
(n = 3), GT2b (n = 2). Note that the 11 specimens that failed sequencing were determined to
harbor GT1a HCV after analysis of the partial sequences assembled by the MiCall pipeline.

Through inspection of the relationship between CV and mean nucleotide frequency,
we determined that nucleotide substitutions >0.2% prevalence could be reproducibly
detected. Minimal variation CV was observed for nucleotide substitutions present in >0.2%
of sequence reads, indicating that substitutions observed at these levels in one replicate
are likely to be detected in the other replicate at a similar prevalence. However, nucleotide
detection becomes less reliable for rare substitutions with <0.2% prevalence as shown by the
sharp increase in CV at lower prevalence levels. However, a more conservative threshold
may be warranted given MiSeq error rates may be higher. In a separate analysis of two
HCV clones combined at different ratios (data not shown), we estimated the combined
MiSeq random and systematic error rate to be approximately 0.5%. Given the greater
error rate, as well as the limitations of PCR, the technical lower limit of minority species
detection should be considered 0.5%.

3.7. Specificity

Across all analyses included in this validation, there was no evidence of contamination
observed. Neither the HCV-negative sample nor the negative controls (DEPC-treated
water) included in runs of this validation, as well routine clinical runs following this study,
produced a detectable PCR product by agarose gel electrophoresis. Common interfering
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substances (e.g., hemoglobin) are unlikely to affect our assay due to the RNA extraction
method.

Analysis for interfering substances was not performed during this study but was
previously done during the validation of the GT1-optimized method. In that study, the lack
of interference from other common viruses was assessed using HCV-positive plasma was
spiked with one of three additional specimens: a clinically derived HIV-1 plasma sample, a
HIV-1 molecular clone or a clinically-derived HBV-positive plasma sample. These mixed-
infection samples were subsequently processed in triplicate using the GT1-optimized
method. No evidence of the off-target amplification of HIV or hepatitis B virus from spiked
samples was observed in that study, nor in coinfected samples using the newly described
method since its clinical implementation [36].

3.8. Genotype Spectrum

A total of 146 samples, representing 7 different genotypes and subtypes, were used
to evaluate the ability of this assay to classify genotypes against the previously reported
genotype. Roughly 90% sequencing success rates were observed for the epidemic strains
present in G7 countries, such as GT1a, GT1b, 2b, 3a, and GT6 (Table 3). About 70% success
rates were observed in GT4 and GT5. Two of the 55 GT3-6 samples were excluded in the
genotype spectrum analysis due to viral loads <5 log10 IU/mL. One other sample from
the presumed GT3-6 sample set, which had no available LiPA-based genotype result, was
identified as GT1b using sequence data, leaving 52 GT3-6 specimens. In total, NS3 and
NS5a were both successfully sequenced in 45 out of 52 GT3-6 samples (87%), and NS5b
was successfully sequenced in 39/52 (75%) samples in these genotypes. Small drops in
coverage at this position are to be expected, given its proximity to the location of the 2nd
round PCR amplification primer position (NS5b codon 336) and the decreased efficiency of
Nextera XT processing near the ends of the amplicon. All samples failing NS5b sequencing,
but not NS3 and NS5a, had viral loads >5.1 log10 IU/mL.

Table 3. Sequencing success for the HCV NS3, NS5a and NS5b genes using the genotype-independent-
HCV assay for genotypes 1–6.

Genotype Genotype
Subtypes *

Samples
Attempted ˆ Sequenced (%)

NS3 NS5a NS5b

1
1a 78 72 (92%) 72 (92%) 72 (92%)
1b 11 11 (100%) 11 (100%) 11 (100%)
1e 3 2 (67%) 2 (67%) 2 (67%)

2 2b 2 2 (100%) 2 (100%) 2 (100%)
3 3a 20 17 (100%) 17 (100%) 17 (100%)
4 4a, 4n 7 5 (71%) 5 (71%) 2 (29%)
5 5a 4 3 (75%) 3 (75%) 3 (75%)
6 6a, 6e, 6h, 6k, 6t 21 20 (95%) 20 (95%) 17 (85%)

Overall - 146 132 (90%) 132 (90%) 126 (86%)
* Genotypes were inferred through sequence analysis or in the absence of sequence data from assigned genotypes
from LiPA assays. HCV subtype information was obtained using phylogenetic analyses based on MiSeq data.
Sequencing success was defined as sequences having a minimum of 100-fold coverage at all RAS-associated
positions in each respective gene. ˆ Only samples with viral loads above the estimated assay limit of detection
(5 log10 IU/mL) were included.

We next evaluated the ability of the sequencing assay to accurately identify the HCV
genotypes of the 146 samples described above. Genotypes inferred from the sequence data
by MiCall were compared with the LiPA-based genotype data provided by the sample
providers where available. Genotype comparisons could be assessed for 95 samples, as
our study was blinded to the LiPA-based genotypes for 37 samples originating from the
C-WORTHY trial. There was a 100% concordance between the genotype calls provided by
the LiPA probe-based assay and the genotype calls determined by direct MiSeq sequence
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mapping. Subtype information was identical for all genotype 1–3 samples across both geno-
typing methods. In cases of genotypes 4–6 (n = 18), ambiguous subtype information (e.g.,
genotype 4 or 4a/c/d) was provided by LiPA for all genotype 4 and 6 samples (n = 13/18).
Direct sequence mapping provided definitive subtype information (e.g., genotype 4a) for all
but three of these samples (n = 10/18), where the remaining three could not be sequenced.

3.9. Overlapping Region of Amplicons

The MiDi amplicon was designed to provide sequence coverage to the end of NS5b,
beyond the WG amplicon that extends from Core to codon 336 of NS5b. However, only
two RAS positions are covered by the overlap of WG and MiDi amplicons, and no se-
quences with known resistance-associated mutations at these positions were observed in
this validation (Supplementary Materials Table S4). We therefore assessed the proportion
of each nucleotide at all overlapping positions in NS5b (not only RAS positions). There
was an excellent correlation between the proportion each nucleotide observed between
MiDi and WG (r2 > 0.98). A summary of the mean number of sequence reads, amino
acid counts and amino acid prevalence for the two NS5B RAS (S282 and L320) within
the overlapping region obtained by WG and MiDi amplicons is shown in Supplementary
Materials Table S4.

4. Discussion

We had previously developed HCV genotyping assays that were optimized to detect
the NS3 Q80K polymorphism in HCV GT1 specimens only, using both Sanger and NGS
(MiSeq) sequencing technologies [36]. Although these assays are suitable to capture the
resistance profile of the most prevalent HCV genotype, GT1 represented only 44% of all
new HCV infections globally in 2015 [40]. Despite the availability of HCV RAS screening
laboratory services in the United States (e.g., Labcorp, Quest Diagnostics), these have only
been validated for GT1 infections; no commercially available test to our knowledge has
been extensively validated to characterize non-GT1 HCV infections. We have therefore
developed and validated an NGS method to infer HCV genotypes and identify RAS for
clinical purposes regardless of the associated HCV genotype/subtype classification. This
genotype-independent method can be used to screen for all currently known RAS within
NS3, NS5a and NS5b and potentially guide therapeutic decision making in treatment-naïve
and -experienced individuals.

The genotype-independent sequencing assay described here demonstrated similar
performance as the previously validated GT1-optimized NGS method [36]. Overall, high
accuracy and precision in all replicates tested was observed (>99.7%). Importantly, samples
used to assess both inter- and intra-assay concordance were highly diverse as illustrated by
the number of low-prevalence (2–5%) nucleotide mixtures observed in sequences from these
samples. Despite this intra-sample diversity, NGS sequencing was capable of accurately
and reproducibly characterizing the diversity of HCV species within a sample, regardless
of genotype. Note that reproducibility displayed similar results as the repeatability metric,
albeit with slightly more variability at both the 2% and 20% prevalence thresholds for
amino acid substitution detection.

Substitution prevalence thresholds used in this study focused on two cutoffs: 20%
to reflect a Sanger-sequencing limit of detection and 2% to utilize the potential of NGS to
detect minority variants. A suitable question stemming from this study is which cutoff is
most optimal for the detection of RAS and is sufficient to correlate with clinical outcomes.
A separate study found that a 10% cutoff predicted DAA response in GT3 infections [41].
Parameters in this study intended to analyze the assay’s capacity to detect substitutions
consistently and quantitatively. Results show that when a prevalence cutoff is utilized
to make a nucleotide or amino acid call, the most variance in detecting substitutions is
centered around the cutoff itself, as one would expect. Using a 20% cutoff, effectively all
high-prevalence (i.e., ≥20%) substitutions are detected consistently, and no substitutions
with a true prevalence below 10% are detected. Substitutions whose prevalence is between
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10 and 20% are only detected incorrectly after repeat testing of the same sample, on average
in 1 of 5 replicates. In contrast, utilizing a 2% cutoff shows a greater spread in its ability
to detect substitutions around and above the threshold. Generally, only substitutions
with a presumed prevalence above 10% could be reliably detected despite the lower
cutoff. However, further studies are needed to elucidate on potential clinical implications
of modifying these prevalence cutoffs and the effect of minority variants on treatment
outcomes.

In this study, sample providers provided LiPA-based genotype classifications for
samples, where available. In rare cases, the LiPA assay can misclassify infections or fail
to resolve genotype and/or subtype entirely [42–45]. By using a set of pan-genomic
PCR primers and inferring HCV genotype in silico from deep-sequencing genomic data,
this assay obviates the need to perform HCV genotyping by LiPA prior to sequencing
and potentially resolves HCV subtypes with greater accuracy. Laboratories may also
opt to perform NS5b sequencing for genotype identification rather than LiPA assays
or whole-genome sequencing assays such as the one described here. NS5B sequencing
has demonstrated lower rates of genotype misclassification compared to LiPA and other
genotyping kits, and may also be more cost-effective [18]. However, this approach restricts
genomic data to the NS5b region only and fails to capture RAS located outside this gene.

This whole-genome sequencing assay can be used to better characterize the prevalence
of RAS across the HCV genome and within non-GT1 HCV infections. Data generated by
this method, in conjunction with phenotype and observational studies, can be used to
identify novel RAS within or outside of these genes and possibly correlate with treatment
outcomes. Additional validation studies would be required to reassess the performance of
this assay for those new mutations.

Having demonstrated similar performance to a previously validated GT1 assay, this
genotype-independent HCV sequencing assay further expands the availability of RAS
screening to other HCV genotypes. This method has been implemented clinically at the
BC Centre for Excellence in HIV/AIDS and has been used to deliver ~4000 resistance
test reports to physicians across Canada as of August 2021. The assay protocols and
paired software are freely available to interested labs worldwide; software is available at
https://github.com/cfe-lab/MiCall.

Both the validated GT1-optimized method and new genotype-independent method
exhibited similar limitations. In terms of limit of detection, both assays require signifi-
cantly more input starting material (~5log10 IU/mL) than their Sanger sequencing counter-
parts [36]. Despite this, the plasma viral load required for testing is below the expected
HCV viral load range for most untreated individuals, including those living with HIV, cir-
rhosis, advanced liver disease, or those who have previously failed DAA treatment [46–50].
Another limitation of the assay described here is the requirement for two amplicons to
cover the entire HCV genome and capture the full spectrum of HCV genotype, except for
the 5′ and 3′ untranslated regions. The generation of the additional MiDi amplicon to cover
the remainder of NS5B beyond codon 336 has increased cost and laboratory work implica-
tions. However, this additional cost may be warranted due to the potential for RAS beyond
codon 336 and the use of NS5b sequence data for phylogenetic cluster identification [51].

A notable consideration of this study is the genotype representativeness within indi-
vidual validation parameters. With the exception of sensitivity and genotype coverage that
were analyzed using a large spectrum of available genotypes, the remaining validation
tests were assessed using predominantly GT1 specimens. Additionally, these consisted
largely of GT1a samples, with the minimal inclusion of GT1b specimens. Equal representa-
tiveness of all genotypes in each validation parameter was not possible in this validation
and represents an important limitation. GT1b and non-GT1 samples, particularly rare
genotypes, could not be included in the study in large numbers due to a lack of sample
availability. These factors may limit our ability to infer assay performance from this study
for these uncommon genotypes. Although many genotypes are under-represented in this
study, the assay demonstrated acceptable metrics in analyzing the available specimens.

https://github.com/cfe-lab/MiCall
https://github.com/cfe-lab/MiCall


Viruses 2021, 13, 1721 15 of 18

Since utilizing this method clinically at the BC Centre for Excellence in HIV/AIDS, no
negative bias has been observed towards these less common genotypes (data not shown).

5. Conclusions

In summary, we have developed and characterized a genotype-independent, whole-
genome HCV sequencing workflow on the Illumina MiSeq platform. This assay can
provide accurate HCV drug resistance profiles to currently known RAS, notably in cases
of DAA-treatment failure or in select treatment-naïve cases, to personalize HCV therapy.
We demonstrated positive and consistent performance of the test including accuracy,
repeatability, reproducibility and sensitivity. Importantly, the assay successfully amplified
and sequenced 90% of samples regardless of genotype. Since the method generates near-
full-genome coverage for any HCV genotype, the method could be expanded to screen
for other known RAS and phylogenetic cluster identification. The assay and associated
bioinformatic software also simultaneously provide genotype classification, which can
supplement validated, probe-based genotyping results or be used on a research-use-only
basis in instances wherein no genotype assignments are otherwise available. Together,
this assay and bioinformatic pipeline can also facilitate the implementation of HCV drug
resistance testing by other laboratories globally, with an end-to-end, sample-to-report
workflow.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13091721/s1, Laboratory Protocol, Table S1. Primers used in the genotype-independent
sequencing protocol. Primers were purified by standard desalting, Table S2. FDA guideline of
Reference Strains for Reporting of Amino Acid Sequence Data, Table S3. HCV resistance-associated
substitutions (RAS) in genotype 1a and 1b that were analyzed for accuracy. X indicates a variant with
any mutation except the wildtype amino acid residue, Table S4. A summary of the mean number
of sequence reads and wildtype amino acid counts for the two NS5B RAS within the overlapping
region obtained by WG and MiDi amplicons: S282 and L320, Figure S1. Accuracy nucleotide
concordance between GT1-optimized and the genotype-independent sequencing assays, Figure S2.
Nucleotide concordance between accuracy replicates (n = 93 samples), Figure S3. Repeatability and
Reproducibility of amino acid substitution detection amino acid substitutions.
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