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Introduction

Due to its avascularity and low biosynthetic activity, 
articular cartilage has limited self-regenerative capacity 
after tissue damage as a result of trauma, developmental 
anomalies, or progressive degeneration such as osteoar-
thritis.1,2 Several therapies have been attempted to repair 
cartilage defects, including curettage, transplantation  
of chondrocytes, and drilling through the subchondral 
bone.3–6 Although these therapies provide some benefits, 
the outcomes are generally less satisfactory because the 
repair tissue often resembles fibrocartilage rather than 
hyaline cartilage. In recent years, cell-based articular car-
tilage tissue engineering has proved to be a promising 
alternative therapy for repairing damaged cartilage by 
combining chondrogenic cells, biomaterial scaffolds, and 
suitable culture conditions.7,8

Chondrocytes and stem cells are commonly used for 
cartilage tissue engineering. Previously, autologous chon-
drocytes were preferred, but present studies have suggested 
that autologous cells have additional problems of dedif-
ferentiation upon increased passaging for cell expansion, 
donor site limitation, and morbidity.7,9 Recently, many 
studies have indicated that human adipose-derived stem 
cells (hASCs) can easily be obtained from liposuction 

waste or arthroscopy, and maintained in a stable undiffer-
entiated state during in vitro expansion. These cells have 
the capacity to differentiate into cartilage, bone, muscle, 
and adipose lineages.7,9–13 Although some studies suggest 
that hASCs may have limited chondrogenic potential 
and might not be suitable for cartilage regeneration,14,15 
several studies have shown the in vivo and in vitro chon-
drogenic differentiation potential of hASCs in cartilage 
tissue engineering approaches using natural and synthetic 
scaffolds.16–19
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Silk, a unique family of proteins derived from silkworms 
and spiders, is a novel protein-based polymeric biomaterial 
with impressive mechanical properties, biocompatibility, 
and biodegradability.20–22 Previous studies have reported in 
vitro cartilage tissue engineering of bone marrow–derived 
stem cells (BMSCs) and embryonic stem cell-derived 
mesenchymal stem cells using three-dimensional (3D) 
degradable silk-based scaffolds.23–25

In the present study, we hypothesized that hASCs 
could be suitable for chondrogenic differentiation using 
porous aqueous-derived silk scaffolds. The chondrogenic 
differentiation potential of hASCs in aqueous-derived 
silk scaffolds was compared with conventional micro-
mass culture techniques.

Materials and methods

Materials

Fetal bovine serum (FBS), low-glucose Dulbecco’s modi-
fied Eagle medium (DMEM), antibiotic–antimycotic, trypsin–
ethylenediaminetetraacetic acid (EDTA), Trizol reagent, 
and Quant-iT PicoGreen dsDNA Assay kit were obtained 
from Invitrogen Corporation (Carlsbad, CA, USA). 
Ascorbic acid and insulin–transferrin–selenium (ITS)+1 
(1.0 mg/mL insulin from bovine pancreas, 0.55 mg/mL 
human transferring, 0.5 µg/mL sodium selenite, 50 mg/mL 
bovine serum albumin, and 470 µg/mL linoleic acid) were 
obtained from Sigma (St. Louis, MO, USA). All other sub-
stances were of analytical or pharmaceutical grade and 
were obtained from Sigma. Transforming growth factor-β1 
(TGF-β1) was obtained from R&D systems (Minneapolis, 
MN, USA). Silkworm cocoons were kindly supplied by 
Tajimia Shoji Co. (Yokohama, Japan).

Preparation of scaffolds

Aqueous-derived silk fibroin scaffolds were prepared by 
adding 4 g of granular NaCl (particle size; 710–850 µm) 
into 2 mL of 6 wt% silk fibroin solution in disk-shaped 
Teflon containers (1.8 cm in diameter × 2 cm in height) 
based on previously published procedures.21,26 The contain-
ers were covered and left at room temperature for 24 h, and 
then immersed in water and the NaCl extracted for 2 days. 
The porosity of the aqueous-derived silk scaffolds was 
~96%, and the compressive strength and modulus were 
58 ± 3 and 670 ± 30 kPa, respectively.26

hASCs expansion

Isolated hASCs, as described by McIntosh et al.,27 were cul-
tured in low-glucose DMEM supplemented with 10% FBS 
and 1% antibiotic–antimycotic. Media were replenished 
every 3 days, and cells were passaged at 80% confluence 
using trypsin–EDTA. The initial passage of the primary cell 
culture was referred to as passage 0 (P0).

Cell seeding on the silk scaffolds and in vitro culture

For examination of cell growth and differentiation in vitro 
on the silk scaffolds, passage 2 (P2) hASCs (1 × 106 cells/
scaffold) were seeded onto prewetted (DMEM, overnight) 
scaffolds (5 mm diameter × 3 mm thick). The constructs 
were placed into 24-well plates. Cells were allowed to 
attach for 2 h. The constructs were placed in a humidified 
incubator at 37°/5% CO2. Medium was replaced at a rate of 
50% every 2–3 days for 6 weeks. Chondrogenic medium 
consisted of low-glucose DMEM supplemented with 1% 
FBS, 1% antibiotic–antimycotic, 50 µg/mL ascorbic acid, 
1% ITS+1, and 10 ng/mL TGF-β1.

Micromass culture

P2 hASCs were placed in a 15 mL polypropylene tube at a 
density of 1 × 106 cells/mL and harvested by centrifugation 
for 5 min at 500g. Cell pellets in the tubes were cultured in 
chondrogenic medium (see section “Cell seeding on the 
silk scaffolds and in vitro culture”) for 6 weeks. Tube caps 
were loosened in order to maintain 37°C and 5% CO2. 
Medium was replaced at a rate of 50% every 2–3 days.

Biochemical analysis

For DNA content, four constructs per group and time 
points were minced with microscissors on ice. DNA content 
was measured using the PicoGreen assay (Invitrogen 
Corporation), according to the manufacturer’s protocol. 
Samples were measured fluorometrically at an excitation 
wavelength of 480 nm and an emission wavelength of 528 
nm. The amount of glycosaminoglycan (GAG) was meas-
ured using the 1,9-dimethylmethylene blue (DMB; Sigma) 
assay.28,29 Samples (N = 4) were digested for 16 h with papain 
digestion solution (125 µg/mL papain, 5 mM l-cystein, 100 
mM Na2HPO4, 5 mM EDTA, pH 6.2) at 60°C. Individual 
samples were mixed with the DMB solution, and absorbance 
was measured at 525 nm. Total GAG content of each sample 
was extrapolated using standard plots of shark chondroitin 
sulfate (Sigma). Collagen content was measured using a 
modified Hride Tullberg–Reinert method.30 Digested sam-
ples were dried at 37°C in 96-well plates for 24 h and reacted 
with a dye solution for 1 h with mild shaking. The dye solu-
tion (pH 3.5) was prepared with Sirius red dissolved in picric 
acid–saturated solution (1.3%) at 1 mg/mL. After washing 
five times with 0.01 N HCl, the dye–sample complex was 
resolved in 0.1 N NaOH. Absorbance was read at 550 nm. 
Total collagen content of each sample was extrapolated using 
a standard plot of bovine collagen (Sigma).

RNA isolation, real-time reverse transcription 
polymerase chain reaction

Total RNA from constructs (N = 4 per group) was extracted 
using Trizol reagent (Invitrogen Corporation), and the 
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isolated RNA concentration and quality were determined 
using a spectrophotometer. Quantitative real-time reverse 
transcription polymerase chain reaction (RT-PCR) assays 
for aggrecan, type I collagen, type II collagen, SOX9, and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
transcripts were carried out using gene-specific double-
fluorescence-labeled probes in a 7900 Sequence Detector 
(PE Applied Biosystems, Foster City, CA, USA). Probes 
and primers for these genes were obtained from PE 
Applied Biosystems as Assays-On-Demand gene expres-
sion products. Briefly, the RNA samples were reverse tran-
scribed into cDNA using High Capacity cDNA Reverse 
Transcription Kit, according to the manufacturer’s proto-
col (Applied Biosystems). Real-time PCR amplification 
was performed in a 384-well plate with a 13 µL of reac-
tion mixture. The thermal cycling conditions were 2 min 
at 50°C and 10 min at 95°C, followed by 50 cycles of 15 
s of denaturation at 95°C and 1 min of annealing and 
extension at 60°C. The comparative threshold6 PCR cycle 
detection method (ΔΔCt method) that compares the dif-
ferences in Ct values of hASCs and treated groups was 
used to calculate the relative fold change in gene expres-
sion. All experiments were carried out in quadruple for 
each condition.

Histological evaluation

After fixation with 10% neutral-buffered formalin for at 
least 24 h, specimens (N = 4 per group and time point) 
were embedded within paraffin and sectioned at 5 µm 
thickness. For histological evaluation, sections were 
deparaffinized, rehydrated trough a series of graded ethanol, 
and stained with Alcian blue (pH 2.5) with hematoxylin 
counterstaining.

Statistical analysis

Repeated measures analysis of variance (ANOVA), using 
post hoc Dunnett’s multiple comparison method, was used 
to determine the p-value. Results were considered signifi-
cant at p < 0.05. All values are expressed as mean ± stand-
ard deviation.

Results

Biochemical analysis

The DNA content of the cell–silk constructs was signifi-
cantly higher than those of micromass culture at 3 and 6 
weeks after cell seeding (p < 0.05) (Figure 1). In the 
micromass culture, similar cell proliferation was observed 
at 3 and 6 weeks (p < 0.05), while cell proliferation in the 
cell–silk constructs decreased at 6 weeks compared to 3 
weeks (p < 0.05). The GAG level in cell–silk constructs 
produced at 3 and 6 weeks was 41% (p < 0.05) and 53% 

greater (p < 0.05), respectively, than in the micromass 
cultures (Figure 2). However, GAG synthesis in micromass 
cultures at 3 versus 6 weeks and in cell–silk constructs at 
3 versus 6 weeks was not significantly. Total collagen 
level in the cell–silk constructs was sixfold to sevenfold 
higher (p < 0.05) than in micromass; however, there was 
no significant difference within the micromass and cell–
silk construct groups at 3 versus 6 weeks (Figure 3).

Expression of chondrogenic differentiation-
associated genes

After 3 weeks of culture, transcript levels of SOX9, type II 
collagen, and type I collagen were statistically similar in 

Figure 1. Proliferation of hASCs. Proliferation of hASCs in the 
aqueous-derived 3D scaffolds and micromass cultures determined 
by DNA assay using the PicoGreen assay. Data are shown as 
mean ± standard deviation from four samples. The symbol “*” 
represents statistically significant differences (p < 0.05).
hASC: human adipose-derived stem cell; 3D: three-dimensional.

Figure 2. Synthesis of glycosaminoglycans (GAGs). The amount 
of GAG in samples measured by the 1,9-dimethylmethylene blue 
(DMB) assay. Data are shown as mean ± standard deviation from 
four samples. The symbol “*” represents statistically significant 
differences (p < 0.05).
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both groups of cultures. However, the levels of SOX9, type 
II collagen, and type I collagen transcripts were significantly 
upregulated (p < 0.05) in the cell–silk constructs at 6 weeks 
(Figure 4) in comparison to micromass culture. Expression 
of aggrecan in the cell–silk constructs was higher (p < 0.05) 
than in micromass culture at 3 weeks, and the expression 
increased in both groups at 6 weeks, with 32% greater (p < 
0.05) expression in the cell–silk constructs than in micro-
mass culture (Figure 4(a)).

Histological observations

The accumulation of a major component of the extracellular 
matrix (ECM) proteoglycan was examined by alcian blue 
staining at 6 weeks (Figure 5). Histological examination 
revealed that pores were filled with cells, and the cells were 
uniformly distributed in the cell–silk constructs at 6 weeks 
(Figure 5(c) and (d)). Moreover, chondrocyte-specific 
lacunae formation was evident and distributed in the both 

Figure 3. Measurement of total collagen. The amount of total 
collagen measured by the Hride Tullberg–Reinert method. Data 
are shown as mean ± standard deviation from four samples. 
The symbol “*” represents statistically significant differences  
(p < 0.05).

Figure 4. Expression of RNA transcripts related to chondrogenic differentiation. Transcript expression of several chondrogenic 
differentiation markers quantified by real-time RT-PCR. a; Aggrecan Gene Expression, b; Type I Collagen Gene Expression, c; Sox 9 
Gene Expression, d; Type II Collagen Gene Expression. Transcript levels were normalized by GAPDH. Data are shown as mean ± 
standard deviation from four samples. The symbol “*” represents statistically significant differences (p < 0.05).
RT-PCR: reverse transcription polymerase chain reaction; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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groups of cultures. Alcian blue staining was more intense in 
micromass than in the cell–silk constructs; however, this 
staining difference did not correlate with GAG quantitation 
data (see earlier section).

Discussion

The field of tissue engineering involving hASCs is rapidly 
advancing and offers the possibility of regeneration of tis-
sues damaged by disease or trauma.18,31 hASCs have high 
proliferative and multilineage potential, including chondro-
genesis, and can be obtained in abundance from fat tissue 
with minimal injury.13,17,32,33 Guilak et al. showed that 
hASCs possess the ability to synthesize cartilage matrix 
proteins if cultured in a 3D matrix in the presence of spe-
cific soluble mediators (TGF-β and dexamethasone).34

Although previous studies suggested that BMSCs are 
more suitable than hASCs for chondrogenesis,35 several 
studies have shown the chondrogenic differentiation 
potential of hASCs in cartilage tissue engineering.16–19 
Previous studies also showed that hASCs retain strong 
proliferation ability, maintain their phenotypes, and have 
strong multidifferentiation potential.36–38 In this study, we 
observed that gene expression for aggrecan and type II 
collagen were upregulated in both micromass and silk 3D 
scaffolds. However, transcript levels were higher in silk 
3D matrices than in micromass culture. SOX9, a key tran-
scription factor in chondrogenesis,8 was also upregulated 
in cell–silk constructs at 6 weeks.

It is well known that type I collagen is associated with 
the dedifferentiation process during monolayer expansion 
of chondrocytes, and its presence is a poor indicator of 

Figure 5. Alcian blue staining. (a and b) Micromass cultures and (c and d) constructs of silk with hASCs cultured for 6 weeks. 
Extracellular matrices of proteoglycan (blue) were detected in the both groups. Arrow (→) indicates examples of chondrocyte-
specific lacunae. Scale bars indicate 250 µm (a and c; 10×) and 100 µm (b and d; 40×).
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articular ECM-like matrix.39 However, Barry et al.40 
showed that type I collagen was uniformly detected in 
undifferentiated cells and throughout differentiation. 
Therefore, significance of the detection of type I collagen 
expression in the silk 3D matrices needs to be further 
elucidated.

Silkworm silk fibroin has been used commercially as 
biomedical sutures for decades and in textile production for 
centuries. Silkworm silk from Bombyx mori consists of 
heavy and light chain polypeptides of ~350 and ~25 kDa, 
respectively, connected by a disulfide link.26,41,42 These core 
fibers are encased in a sericin coat, a family of glue-like 
proteins. The sericin glue-like proteins are the major cause 
of adverse problems with biocompatibility and hypersensi-
tivity to silk.20,43 Sericins are the water soluble and extract-
able by boiling. After sericins were removed, throughout the 
period of implantation, silk scaffolds were well tolerated by 
the host animals, and immune responses to the implants 
were mild.44 Fibroin is a protein dominated in composition 
by the amino acids glycin, alanine, and serine that form 
antiparallel β-sheets in the spun fibers, leading to the stabil-
ity and mechanical features of the fibers.45,46 The unique 
strength and resistance to mechanical compression,20,47 
biocompatibility,48–51 the slow rate of degradation,52–54 the 
utility of this protein in various forms for tissue engineering 
soft,55,56 and hard21,26,57 tissue suggest this biomaterial as a 
suitable substrate for tissue engineering.

A number of methods, such as salt leaching, gas form-
ing, or freeze-drying, have been reported to generate porous 
3D matrices from natural and synthetic polymers.26 In this 
study, porous aqueous-derived silk scaffolds were prepared 
using a salt leaching method, and the pore size and the 
porosity of the scaffolds were regulated by the granular 
NaCl size for supporting hASC differentiation. One previ-
ous study has illustrated that normal appearing articular 
cartilage is similar to porous aqueous-derived silk scaffolds 
with respect to mechanical properties.58 Compressive 
moduli were 581 ± 17 and 670 ± 30 kPa for human knee 
articular cartilage58 and 6 wt% silk fibroin porous aqueous-
derived scaffolds,26 respectively. Therefore, the mechan-
ical properties of porous biodegradable polymeric 
scaffolds are favorable for cartilage tissue engineering. 
Other studies supported good cell adhesion and growth 
on aqueous-derived silk 3D scaffolds because of its rougher 
surface structure.21 The high porosity (>90%) and intercon-
nected porous network are also desirable for ingrowth of 
cells and synthesis of ECM.59 The porosity percentage 
(96%), pore size (650 ± 50), and modulus (670 ± 30 KPa) of 
the aqueous-derived silk scaffolds appeared to support 
hASC chondrogenic differentiation to a greater degree 
than micromass culture at 6 weeks.

The present study shows that hASCs in biodegradable 
and biocompatible 3D aqueous-derived silk scaffolds 
may be useful for tissue engineered cartilage regenera-
tion. Cell growth, GAG production, and chondrogenic 

differentiation-associated gene expression in the silk 
scaffolds groups were statistically greater compared with 
micromass culture. The scaffolds appeared to provide a 
suitable environment for hASC survival and chondrogen-
esis. Further investigation into the mechanical properties 
and in vivo behavior of these hASC–silk scaffold con-
structs will be necessary to fully evaluate its potential for 
use in tissue engineering.
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