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Background and Objective: Terahertz (THz) imaging has wide applications in biomedical research 
due to its properties, such as non-ionizing, non-invasive and distinctive spectral fingerprints. Over the past 
6 years, the application of THz imaging in tumor tissue has made encouraging progress. However, due to 
the strong absorption of THz by water, the large size, high cost, and low sensitivity of THz devices, it is still 
difficult to be widely used in clinical practice. This paper provides ideas for researchers and promotes the 
development of THz imaging in clinical research.
Methods: The literature search was conducted in the Web of Science and PubMed databases using the 
keywords “Terahertz imaging”, “Breast”, “Brain”, “Skin” and “Cancer”. A total of 94 English language 
articles from 1 January, 2017 to 30 December, 2022 were reviewed.
Key Content and Findings: In this review, we briefly introduced the recent advances in THz near-field 
imaging, single-pixel imaging and real-time imaging, the applications of THz imaging for detecting breast, 
brain and skin tissues in the last 6 years were reviewed, and the advantages and existing challenges were 
identified. It is necessary to combine machine learning and metamaterials to develop real-time THz devices 
with small size, low cost and high sensitivity that can be widely used in clinical practice. More powerful THz 
detectors can be developed by combining graphene, designing structures and other methods to improve the 
sensitivity of the devices and obtain more accurate information. Establishing a THz database is one of the 
important methods to improve the repeatability and accuracy of imaging results. 
Conclusions: THz technology is an effective method for tumor imaging. We believe that with the joint 
efforts of researchers and clinicians, accurate, real-time, and safe THz imaging will be widely applied in 
clinical practice in the future.
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Introduction

Terahertz (THz) wave refers to electromagnetic radiation with 
a frequency of 0.1–10 THz (a wavelength of 30–3,000 μm),  
which is between the microwave and infrared regions. 
Compared to other bands, the THz wave has good 
penetration properties for many non-polar and non-metallic 
substances. At the same time, THz waves are strongly 
absorbed by water molecules. THz radiation is non-ionizing 
and non-invasive due to its very low photon energy. Many 
organic molecules have strong absorption and scattering 
characteristics for the THz spectrum due to low-frequency 
vibration and rotational transitions of the molecules, so that 
each molecule has its own unique “fingerprint spectrum”  
(1-3). As a result, the THz technology has been applied 
in the field of food (4,5), agriculture (6,7), biology (8-10), 
security inspection (11) and communications (12,13).

THz technologies are mainly divided into THz 
spectroscopy and THz imaging technology.  THz 
spectrometers are mainly divided into three categories: 
Fourier transform spectroscopy (FTS), photo-mixing 
spectrometer and THz time-domain spectroscopy (THz-
TDS) (14). Although FTS has a poor signal-to-noise ratio 
(SNR), it has a wide spectral coverage (100 GHz–5 THz). 
Due to the high spectral density and high frequency 
resolution, the photomixing spectrometer is a highly 
accurate and simple instrument, but its measurement takes 
a long time. THz-TDS is the Fourier transform of the 
THz time domain signal of the sample into absorption 
coefficient, refractive index (RI) and transmittance. This 
technology provides a time-resolved spectral analysis, and 
effectively suppresses some common sources of noise. The 
basic principle of the THz imaging system is as follows: 
place the sample on the XYZ platform to change its 
position; then collect and process information of the THz 
wave (amplitude and/or phase) at different positions of the 
sample; finally, construct a point-by-point image. THz 
imaging is mainly divided into THz pulse imaging (TPI) 
systems and continuous wave (CW) THz imaging systems. 
TPI is generated by a femtosecond pulsed laser. Although 
it requires a longer scanning time, the intensity and phase 
information of the THz waveform can be recorded to 
obtain more details of the sample (15). The CW imaging 

system is generated by a CW laser. It is of small size and 
low cost, but its application range is limited due to the 
narrow source spectrum.

There are currently many problems to be solved with 
THz technology. The high-power and high-efficiency THz 
radiation source is the main challenge that researchers need 
to overcome. Two researches have shown that spintronic-
based and intense laser-driven THz sources can achieve 
higher output power (16,17). It is also crucial to achieve a 
THz device with high sensitivity, ultra compactness, and 
broadband detection. Quantum sensing technology and 
metamaterials are being applied to THz detectors to solve 
the above problems (18,19). The problem of high cost and 
large volume of THz devices can be solved by solid-state 
electronic oscillators.

This review has mainly summarised the development 
of THz imaging technology in biomedical applications. 
At present, biomedical imaging technology mainly 
includes X-ray, computed tomography (CT), magnetic 
resonance imaging (MRI) and so on. Compared with 
X-ray and CT, THz technology has almost no radiation 
hazard to the human body and significantly improves the 
sensitivity of tumors differentiation in a non-ionizing 
way (20). Compared with MRI, THz technology has a 
suitable penetration depth for superficial tumors. And 
small handheld devices for intraoperative imaging can be 
developed using this technology (8). THz medical imaging 
is based on differences of water content in tissue and 
structural changes: cancer tissue contains more water due to 
tissue edema and increased cellularity, resulting in different 
THz absorption; pathological changes in the tissue lead to 
changes in the microenvironment and cellular structure, 
resulting in differences in imaging (8,21). According to the 
basic mechanism of THz medical imaging, this technology 
has been applied to breast, brain, skin, liver, colon cancer, 
diabetic foot, bone, cervical cancer, etc. (22-29).

The content of this paper is mainly divided into the 
following aspects: various THz medical imaging techniques 
were introduced in section 2; in sections 3, 4 and 5, we mainly 
discussed the research progress of THz imaging technology 
in breast, brain and skin tissues in the past six years;  
finally, some suggestions for the future development of 
THz medical imaging were put forward. We present this 
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article in accordance with the Narrative Review reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-526/rc).

Methods

A comprehensive search was conducted in the Web of 
Science and PubMed databases to review existing research 
on the THz imaging technology and cancer. We searched 
for the following keywords: “Terahertz imaging”, “Breast”, 
“Brain”, “Skin” and “Cancer”. The search time range was 
from January 1, 2017 to December 30, 2022. The search 
strategy summary is shown in Table 1.

THz imaging technique

THz near-field imaging

In the THz range, the spatial resolution of the traditional 
far-field spectrum is limited by the diffraction limit, which 
is about half the wavelength, leading to imaging limitations. 
To improve the spatial resolution, the near-field THz 
wave can be generated by using the metal tip and small 
aperture (30,31). In addition, placing the sample close to 
the detector is the simplest method to achieve the near-field 
THz electric field (32). The near-field scanning imaging 
system based on the conventional THz optical waveguide 
antenna uses the unbiased antenna and microprobe as the 
THz transmitter and detector, respectively. Through the 
coupling between the probe tip and the near-field, the 
probe can be placed close to the sample surface. Geng et al.  
modified the traditional THz near-field imaging system based 
on a photoconductive antenna microprobe (PCAM) (33).  

They used a delay line based on a voice coil motor, which 
increased the imaging speed by 100 times. The probe-
sample separation range could be controlled within a 
few microns to meet the requirements of THz near-field 
imaging of biological samples. Li et al. developed a PCAM-
based near-field THz-TDS system (Figure 1A) (34). The 
spatial resolution of the system had reached 3 μm, which was 
1–2 orders of magnitude higher than the traditional THz 
imaging system. The changes in cell morphology during 
natural drying were successfully monitored (Figure 1B).

In addition to the technologies mentioned above, the 
THz scattering type scanning near-field optical microscope 
(THz s-SNOM) based on the atomic force microscope 
(AFM) using metal or metal-coated tips is also a very 
powerful near-field imaging technology (37). It had been 
demonstrated that this technology can provide nanometer 
spatial resolution. Nevertheless, due to the weak THz 
scattering properties of biomolecules, THz nanoimaging 
of single biomolecules remains unsolved. Yang et al. used 
a graphene substrate with high THz reflectivity and atomic 
flatness to minimize the topographic noise. At the same 
time, the free propagation of the THz electric field was 
concentrated in the vicinity of the platinum (Pt) probe. 
In order to enhance the THz near-field signal and ensure 
mechanical stability, the Pt probe with a shaft length of  
100 μm was selected for the experiment. This study 
ultimately provided the morphology and THz scattering 
images of single biomolecules at the nanometer scale (38).

THz single-pixel imaging

The traditional THz-TDS imaging system requires 
raster scanning pixel-by-pixel to reconstruct the THz 

Table 1 The search strategy summary

Items Specification

Date of search 17/02/2022–01/10/2022

Databases and other sources searched Web of Science and PubMed

Search terms used “Terahertz imaging”, “Terahertz imaging” + “Breast”, “Terahertz imaging” + “Brain”, “Terahertz 
imaging” + “Skin” and “Terahertz imaging” + “Cancer”

Timeframe 2017–2022

Inclusion and exclusion criteria Published full-text journals and conference papers in English, excluding reviews and non-
English papers. Papers that utilized terahertz imaging for biological tissue imaging were 
selected, otherwise excluded

Selection process The literature selection was done independently by Cong M. Differences were resolved by 
consensus

https://qims.amegroups.com/article/view/10.21037/qims-23-526/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-526/rc
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time waveform, which greatly increases the acquisition 
time. Single-pixel imaging technology uses modulation 
technology to encode the spatial information of the 
THz wave, and it uses a single-point detector to collect 
the reflected light or transmitted light after the spatially 
encoded THz wave irradiates the target information. 
Finally, the two-dimensional image of the target is 
reconstructed by a decoding algorithm (39,40).

The core components of single pixel imaging are spatial 
light modulators (SLMs) and reconstruction algorithms. 
The compressed sensing (CS) imaging algorithm is one of 
the most commonly used reconstruction algorithms (41). 
This algorithm essentially consists of compressed sampling 
and computational image reconstruction. The compressed 

signal is transformed into a high-dimensional signal that is 
projected onto a low-dimensional space. A reconstruction 
algorithm is used to solve an optimization problem. 
Ultimately, the original signal can be reconstructed with 
high probability from these few projections. The algorithm 
reconstructs high-quality THz images by measuring 
fewer pixels (42). At the same time, the combination of 
CS and inverse Fresnel diffraction (IFD) algorithms has 
reconstructed clear THz single-pixel images (43). THz 
imaging is limited by the diffraction limit, resulting in low 
resolution and unable to meet the requirements of high-
precision measurement. The IFD algorithm can effectively 
eliminate the diffraction effects in THz fields, thus greatly 
improving the resolution of THz imaging. She et al. 

Figure 1 Schematic diagram of the THz device. (A) Schematic illustration of the experimental setup (34). (B) Changes in cell morphology 
during natural drying: (i) optical image; (ii-iv) THz image of cells dried for 1, 3, 5 h (34). (C) Schematic of THz single pixel imaging. A 
spatial modulator is made by combining graphene, silicon and gold to improve image quality (35). (D) Schematic of the imaging setup. 
Remove all OAPMs and illuminate the sample directly. Images were captured using a lens designed specifically for RIGI cameras (36). TPX, 
methyl pentene copolymer; THz, terahertz; CW, continuous wave; TX, transmitter; OAPMs, off-axis parabolic mirrors. 
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proposed a new THz single-pixel imaging technology based 
on the spatial Fourier spectrum (Figure 1C) (35). Graphene 
was added to the traditional THz modulator to reconstruct 
the THz image. CS imaging is difficult to achieve real-time 
imaging. In this study, a partially sampled Adama matrix and 
a regularized image reconstruction matrix were employed to 
reduce the computation time, and achieved 32×32 resolution 
at a speed of about 6 frames per second (44). Moreover, to 
get insight into hidden objects, the single-pixel imaging 
technology could be used to achieve two-dimensional 
tomographic THz imaging (45). Recently, Li et al. designed 
a SLM based on tunable liquid crystals (LCs) for THz 
single-pixel compressive imaging. The proposed frequency 
switching method based on LC-SLM and auto-calibrated 
compressive sensing (ACCS) algorithm can improve the 
frame rate limit, saving almost half of the imaging time (46).  
The use of frequency selective SLM for single-pixel 
imaging based on LC, micro electromechanical systems 
(MEMS), and phase change materials has great potential. It 
provides a reliable and low-cost method.

THz real-time imaging

With the development of highly sensitivity and real-time 
THz detectors, real-time THz imaging has been widely 
used in security and medical fields (47,48). The most 
common real-time THz imaging technologies are fast 
optical delay lines, photoconductive antenna arrays, and 
electro-optical camera sampling (49). Traditional THz 
imaging systems used raster scanning, which took a long 
time to acquire image data. A broadband THz spectral 
imaging system with a highly sensitive THz camera was 
used for real-time imaging (50). Usually, the thermal 
detector achieved real-time imaging by using the focal 
plane array, but it had the disadvantage of low sensitivity. To 
overcome this shortcoming, a new optomechanical element 
molecular array was invented, which successfully obtained 
THz images of metal and biological objects in real time (51).  
Perraud et al. achieved real-time three-dimensional imaging 
by focusing on the shape algorithm (52). Zolliker et al. 
combined a commercial fiber-coupled photoconductive 
antenna THz source with a microbolometer camera to 
propose a real-time THz imaging system with strong 
adaptability (Figure 1D) (36). The real-time images of 
samples with micron resolution could be obtained by two-
dimensional electro-optical imaging of THz beams (53). 
Meanwhile, the research has shown that dynamic intensity 
contour correction is one of the effective ways to achieve 

real-time THz electro-optical imaging (54).

THz biomedical imaging

Breast tissue

As one of the “invisible killers” of women, breast cancer 
had about 2.26 million cases worldwide by 2020 (55). Breast 
conserving surgery (BCS) is a common treatment for early-
stage breast cancer with tumors less than 20 cm in size. 
Pathologists need to perform a histopathological analysis of 
the excised tissue, which can take about 10 days. However, 
15–20% of patients will need to undergo secondary surgery, 
which not only affects the patient’s health but also increases 
the cost of treatment (56). Therefore, THz imaging, as a 
non-invasive and rapid imaging technology, can be applied 
to the detection of breast tumors (57).

The study found that the water content of cancer tissue 
is higher than that of healthy tissue, and the cancerous area 
of the sample has a higher RI and absorption coefficient 
due to the unlimited proliferation of cancer cells (58-60). 
Therefore, THz imaging can distinguish cancerous tissue 
from healthy tissue, which provides a fast and effective 
method for assessing the edge of breast cancer tissue. 
Bowman et al. performed THz imaging of formalin-fixed, 
paraffin-embedded breast cancer samples (61). The study 
found that the detection accuracy of the THz system can 
reach a depth of 1 mm when the tumor is not sliced. This 
demonstrated the effectiveness of THz in assessing tumor 
margins. Due to the strong absorption of THz waves in 
water and the limited penetration depth of THz waves, 
the reflection mode has been adopted in most studies. 
The reflection mode is sensitive to small phase changes 
in the absorption coefficient due to deviations in sliding 
and tension thickness and non-ideal tension adhesion. 
By comparing reflection and transmission, it was found 
that the reflection mode has higher resolution and clearer 
boundary between different regions (62). Therefore, it 
is more suitable for imaging of breast tissue. Most THz 
imaging devices are too bulky, which limits the use of THz 
imaging devices. Grootendorst et al. used a small and simple 
handheld TPI system to scan 46 cases of freshly excised 
breast cancer samples in vitro with the frequency range 
of 0.1–1.8 THz. The results showed that the accuracy, 
sensitivity and specificity of the TPI system for the 
diagnosis of benign and malignant breast tissue were 87%, 
86% and 96% for support vector machine (SVM) and 88%, 
87% and 96% for Bayesian, respectively (Figure 2A) (63).
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Using THz technology to image fresh breast tissue in the 
300–600 GHz frequency range, Cassar et al. demonstrated 
a clear contrast between breast cancer tissue and healthy 
tissue (59). This result provided a theoretical basis for THz 
near-field imaging in the sub-wavelength range. In the 
same year, Mavarani et al. investigated different types and 

grades of breast cancer tissue using THz reflection imaging 
at the same frequency (65). The ability to discriminate 
between different tissues in this frequency range was 
demonstrated. However, the resolution of THz imaging 
in the range of 300–600 THz is low. In order to improve 
the resolution of the image, it was been proposed that the 
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Figure 2 Imaging of breast tissue at THz. (A) (i) Schematic diagram of a THz handheld probe system; (ii) localization of samples for 
terahertz imaging; (iii) pulse spectra from breast tissue, respectively, for tumors, fibrocytes and adipocytes, and air (63); (B) (i) SPoTS 
microscope; (ii) comparison of HES and THz images of invasive ductal carcinoma (64); (C) (i) schematic of a system with Schottky diode 
detectors; (ii) THz images of breast cancer in a mouse model (22). THz, terahertz; HES, hematoxylin-eosin-saffron; PE, polyethylene; YIG, 
yttrium iron garnet; SPoTS, schematic of scanning point terahertz source. 
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near-field sensor based on the commercial 0.13 m SiGe-
heterojunction bipolar transistor (HBT) technology could 
be used to improve SNR; in addition, the horizontal 
resolution could reach 10 m (65,66). This technique can 
be used to detect tissue with small changes in dielectric 
constant. In other frequency ranges, compact silicon-based 
subwavelength THz imagers could be used to accurately 
image the edge of breast cancer (67). In order to apply THz 
imaging to biological tissue imaging with inhomogeneous 
subwavelength scale, Okada et al. developed a schematic of 
scanning point terahertz source (SPoTS) microscope with 
a spatial resolution of 10 μm (Figure 2B) (64). This study 
proved that the system can observe the inhomogeneity 
of cells in invasive ductal carcinoma (IDC) through 
transmission reflection imaging of paraffin-embedded breast 
cancer tissue, which promotes the application progress of 
THz technology in biopsy. The maximum detection value 
of the THz imaging system for tissue is 5 mm, which limits 
the clinical application. In 2021, Chen et al. imaged breast 
cancer in mouse models at 108 GHz using a THz scanning 
device constructed by a cryogenic temperature operated 
Schottky diode detector (Figure 2C) (22). The results 
showed that the detection sensitivity of the detector reached 
10–13 W/Hz. The thickness of the detected sample was 
increased to 8 cm and the volume was less than 1 mm3.

In recent years, many researches have focused on the 
automatic localization and classification of breast cancer 
images. The direction and shape of freshly resected tissue 
will change when it is examined by histopathology (gold 
standard technology) after THz imaging. As a result, 
the THz images and histopathological images cannot be 
reconciled. Solving the problem of deformation by manual 
marking caused a waste of human and material resources, so 
grid modification algorithm was adopted (63,68). However, 
this method only performs an automatic pixel-by-pixel 
comparison between the external contours of the THz 
image and the case image. Bowman et al. were the first to 
apply Bayesian Mixture Model in Markov chain Monte 
Carlo (MCMC) format to THz image classification, and all 
THz images had receiver operating characteristic (ROC) 
area greater than 0.8. It was also the first time that THz 
imaging was performed on E0771 breast cancer cells (69). 
Compared with interpolation-based morphing, a mesh 
morphing algorithm based on homography mapping can 
capture and correct the complex deformation caused by 
paraffin embedding, so that the pathological images can 
be automatically and accurately transformed into the same 
shape and resolution of the THz image counterpart (70). 

To evaluate the mesh morphing algorithm, an unsupervised 
Bayesian learning algorithm based on MCMC was used to 
classify the samples. The results showed that the area under 
the ROC of cancer was more than 85% in fresh tissue 
and more than 77% in formalin-fixed paraffin-embedding 
(FFPE) tissue. Therefore, this algorithm can provide 
more effective and accurate evaluation of THz imaging. 
Bowman et al. found that using the Sobel operator for 
edge detection could well define the tumor boundary, thus 
enabling automatic processing for THz imaging (61). To 
realize the automation of tissue classification, the research 
applied principal component analysis (PCA), artificial 
neural network (ANN) (accuracy 98.2%; sensitivity 100%; 
specificity 100%) and K-nearest neighbor (KNN) (accuracy 
96.4%; sensitivity 95.1%; specificity 100%) algorithm to 
THz images, which achieved better tissue classification 
accuracy and reduced breast cancer detection time (59,71). 
In addition, the energy to Shannon entropy ratio (ESER) 
index has been combined with machine learning classifiers 
for automatic identification of different breast tissues (72). 
Compared to KNN and SVM, the accuracy, sensitivity 
and accuracy of ESER were 92.85%, 89.66%, and 96.67% 
for breast IDC, respectively. Meanwhile, Chavez et al. 
demonstrated that the expectation maximization (EM) 
algorithm with the low-dimension ordered orthogonal 
projection (LOOP) method had an accuracy of 74.69% 
in tissue classification (73). In recent years, researchers 
have found that a supervised multinomial Bayesian 
learning method is more suitable for the detection of 
freshly excised breast cancer samples compared with the 
existing one-dimensional MCMC and two-dimensional  
EM (74). Using the above learning methods, the areas under 
the ROC curves for cancer and muscle reached 92.71% 
and 86.18% respectively. THz reflection imaging by RI 
at the frequency of 550 THz has no significance for the 
classification of low-density malignant edges. To overcome 
this limitation, Cassar et al. combined morphological 
expansion and RI threshold, which reported the high 
sensitivity of 80% and specificity of 82% (75).

At present, the main challenges of THz imaging in breast 
cancer are as follows: (I) the results need to be compared with 
standard medical imaging tools to verify the effectiveness 
of THz (76). (II) After THz imaging of freshly excised 
breast cancer tissue, the direction and shape of the tissue 
changed during histopathological staining. (III) Excessive 
fluid around freshly resected tissue causes fluid diffusion 
of cancer cells, leading to inaccurate classification. (IV) 
In the resection of breast cancer tumor, doctors can use 
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THz imaging technology to quickly detect the edge of the 
tumor, which can avoid a second operation to remove the 
remaining cancer tissue. However, the dielectric properties 
of muscle and cancer overlap, and their classification is not 
accurate (63,69,73), as shown in [Figure 2A (iii)]. Therefore, 
it is very important to improve the differentiation between 
breast cancer tissue and fibrous tissue. A study has improved 
the segmentation between tumor tissue and cancer by 
combining Siamese neural network with multiclass SVM (77).  
Therefore, machine learning or deep learning can be 
used to improve the classification accuracy of fibers and 
cancer. At the same time, metamaterials can also be used to 
improve the contrast between fibers and cancer tissue. (V) 
The biological toxicity of THz contrast agent in vivo needs 
to be urgently solved. For in vivo THz imaging, contrast 
agents can be used to improved image contrast. Researchers 
have investigated THz contrast agents such as metallic 
nanomaterials, iron oxide nanoparticles, metallic oxide, 
carbon-based nanomaterials for imaging in vivo (10,78-80). 
However, the biological safety of contrast agents still needs 
to be constantly explored.

Brain tissue

Brain tissue can be visualized using hematoxylin and 
eosin (H&E) staining with an optical microscope, which 
is considered the gold standard. Brain tissue can also 
be imaged using positron emission tomography (PET) 
imaging and fluorescence imaging. However, PET imaging 
requires a positron-emitting radionuclide to be injected 
into the body, and fluorescence imaging requires a dye to 
be injected before surgery. The tissue slices are imaged 
directly using THz technology, which does not require 
any labelling. Therefore, label-free THz technology can 
reduce the burden on the body. Recently, studies have 
shown that label-free THz technology can be used to study 
brain tissues, such as demyelinating disease (Figure 3A) 
(81,87), Alzheimer’s disease (Figure 3B) (82,88), brain injury 
(Figure 3C) (83,89,90), glioma, and so on. It provides a new 
technical method for early diagnosis and formulation of 
minimally invasive treatment plan (91). Glioma is the most 
common malignant tumor. Since tumors and normal tissues 
cannot be accurately identified by white light microscopy, 
THz technology is one of the techniques that have been used 
to accurately define the contour of the tumor boundary (92). 
Due to the higher cell density and water content in brain 
tumor regions, the RI and absorption coefficient of tumor 
tissues are higher than those of normal tissues (93,94). 

Overall, THz technology can be used for differentiation.
THz imaging can reveal different regions of brain tissue 

compared to other imaging techniques. When this method 
was used, the tumor area was not only consistent with the 
pathological section of the H&E-stained image, but also 
consistent with the tumor area confirmed by green fluorescent 
protein (GFP) fluorescence image (Figure 3D) (84).  
At the same time, the contour of the tumor margin and the 
differentiation of different grades of glioma can be clearly 
shown (95), thus alleviating the bottleneck of incomplete 
resection rate of low-grade glioma, which is underestimated 
by protoporphyrin IX (PPIX) fluorescence imaging. The 
study found that the tumor area in GFP fluorescence 
imaging was wider than that in THz imaging in the 
experiment of the living mouse model in vivo, which may 
be due to the diffuse fluorescence signal of tumor deep in 
the tissue (Figure 3E) (84). Up to now, studies have analysed 
glioma imaging in vivo or in vitro by using rat and mouse 
models, and a few studies have used human glioma samples 
for in vitro imaging (10,84,86,96). Wu et al. demonstrated 
that under the high frequency intensity (2.52 THz), THz 
technology can well discriminate normal tissue from brain 
glioma tissue in vivo or in vitro (96).

THz time-domain attenuated total reflection (THz-TD-
ATR) spectroscopy mainly consists of the THz-TDS system 
and the ATR prism (97). In the experiment, the sample is 
placed on the prism base. The incident THz beam incident 
undergoes total internal reflection (TIR) at the prism-
sample interface, producing an evanescent wave. Compared 
with transmission and reflection THz imaging, the THz-
ATR imaging system can not only reduce the influence of 
water on the results, but also maintain the characteristics 
of high sensitivity while ensuring the integrity of sample 
information. It was found that the continuous THz-ATR 
imaging system can distinguish tumors in freshly resected 
brain tissue from normal tissue (98). The effective imaging 
area of the ATR prism is a key factor for the THz-ATR 
imaging system. In 2020, Wu et al. adopted an isosceles 
triangle-shaped silicon prism with the base angle of 49 deg 
and realized that the effective imaging area is equivalent to 
the imaging area of the prism. Meanwhile, the exit surface 
of the secondary reflected beam is different from that of 
single reflection. Therefore, the imaging results will not be 
affected by the secondary reflected beam (Figure 3F) (85). 
Research has shown that the angle of incidence of THz 
wave on the prism bottom is 30 deg, and the system has 
high resolution and stability. Glioma tissues could be well 
distinguished through the system and were consistent with 
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visual and H&E staining images. By optimizing the ATR 
prism, the angle of incidence to the bottom of the prism 
was chosen to be 30 deg. C6-glioma regions of rat brain 
tissue and U87-glioma regions of mouse brain tissue with 

different sizes can be well differentiated by THz imaging 
and are consistent with H&E staining images. This year, 
Wu et al. verified the effect of temperature on the imaging 
of fresh isolated mouse glioma tissue by using THz 
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ATR imaging system at the frequency of 0.4–2.53 THz  
(Figure 3G) (86). The results showed that the average 
reflectance of normal tissue increased with increasing 
temperature, while the reflectance of tumor area showed a 
decreasing trend. In addition, the average RI and absorption 
of normal tissue at 20 and −10 ℃ were both smaller than 
those of tumor tissue. Therefore, it is necessary to select 
a suitable temperature for THz imaging. The THz near-
field imaging system based on the PCAM successfully 
distinguished the corpus callosum and brain regions of 
mouse brain tissue (33). This research laid the foundation 
for the subsequent THz near-field microscope. Solid 
immersion microscopy is an imaging technique that can 
overcome the Abbe diffraction limit. This method will 
improve the resolution of THz imaging, making the image 
clearer. Imaging of brain tissue with a high-resolution THz 
solid-state immersion microscope revealed mesoscale spatial 

fluctuations in THz optical properties due to structural 
heterogeneity of intact tissue and tumor tissue. The observed 
THz microscopic images showed heterogeneity of brain 
tissue in the THz wavelength range (Figure 3H) (23). At the 
same time, the intensity and phase of reflected light through 
the THz solid immersion microscope were explained using 
the solid immersion lens reflectivity model. Thus, the RI 
distribution of fresh rat glioma samples could be reconstructed 
with sub-wavelength spatial resolution, demonstrating the 
application potential of the new silicon microscope (99).

In order to better segment tumor tissue and normal 
tissue, the following two methods can be applied: (I) 
metamaterials (metasurfaces) were used to enhance the 
interaction between THz waves and tissue samples, so the 
contrast of images of normal and tumor tissue is improved 
(Figure 4A,4B) (88,100); (II) machine learning is used to 
process the THZ image. It mainly includes the following 
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four steps: image preprocessing; region of interest (ROI) 
segmentation; feature extraction; pattern classification. In 
most cases, poor resolution and contrast, as well as noise 
from devices and the environment, can reduce the quality 
of THz images and obscure important details needed for 
accurate segmentation. Therefore, the segmentation of 
THz images is very important. ROI segmentation of THz 
images is mainly achieved by image pre-processing through 
denoising, ROI segmentation, ROI modification and ROI 
display in the original image. Block matching 3D denoising, 
fuzzy c-means clustering, morphological operation and Canny 
edge detection were combined to accurately segment glioma 
tissues from normal tissues and complex background (101).  
Using the above method, the accuracy, sensitivity, and 
specificity of ROI segmentation reached 95.6%, 84.5% and 
97.7%, respectively. PCA was used for statistical analysis of 
THz images to better distinguish normal tissues from tumor 
tissues (Figure 4C) (93). The characteristics of THz images 
were extracted by combining the spatial transmittance 
distribution and the normalized gray histogram. Different 
degrees of traumatic brain injury (TBI) were classified 
and identified using random forest (RF). The highest 
classification accuracy was 87.5% (Figure 4D) (89). For 
the detection of mild TBI, RF has a sensitivity of 88.9%. 
Therefore, it has a lower missed diagnosis rate.

Although normal tissue and tumor tissue can be 
distinguished by THz imaging technology at present, 
edematous tissue and tumor tissue cannot be distinguished (95). 
This leads to unnecessary resection of the patient during 
surgery. Developments in metamaterials and detector 
sensitivity are continuously improving image contrast. This 
makes it easier and more convenient to distinguish between 
benign and malignant tumors.

Skin tissue

Skin is a flexible outer layer of tissue that covers the body 
and performs essential functions that have a major impact 
on health. Many studies on skin tissue have been carried out 
in the THz range.

In recent years, the advantages of THz radiation in 
the detection and treatment of dermatauxe and scars have 
become increasingly prominent. THz imaging of skin tissue 
is based on the interaction of THz radiation with tissue 
water, other low-polarity biomolecules, isolated cells and 
various structural components of the tissue (24). Studies have 
shown that the RI of hyperplastic scars is significantly higher 
than that of normal skin using THz imaging (102-104).  

Fan et al. found that THz imaging has great potential for 
monitoring the wound healing process in vivo by observing 
the 6-month scar recovery process. It could also differentiate 
between hypertrophic and normal scars (Figure 5A) (104). 
The RI of hypertrophic scars is significantly higher than 
that of normal skin, whereas the RI of normal scars is the 
opposite. This study demonstrated the potential of THz as 
an adjunctive therapy for scars. At the same time, it can also 
be used to study the healing of skin scars by detecting the 
water content and its spatial distribution in the skin (108).

At present, three- and four-point classification methods are 
commonly used for the depth of burns, namely first-degree, 
superficial second-degree, deep second-degree and third-
degree burns. However, this method is mainly diagnosed by 
doctors according to clinical manifestations, and the accuracy 
rate is only between 40% and 80%. In addition, the diagnostic 
techniques used for burn depth mainly include fluorescence 
detection technology (109), laser Doppler imaging (110,111), 
polarization-sensitive optical coherence tomography (112), 
near-infrared spectral imaging technology (113), and so 
on. In contrast, THz can be used to assess burn wounds  
in vitro and in vivo using differences in water content, which 
is non-ionizing and can be imaged without touching the 
patient (114). THz imaging has great potential to become a 
prominent diagnostic technique for burn wound evaluation 
with high sensitivity and high resolution (115).

Furthermore, skin cancer is usually divided into two main 
types: non-melanoma skin cancer (NMSC) and malignant 
melanoma (MM) skin cancer (116). In particular, MM is the 
most threatening. Although most patients with NMSC can 
be cured by surgery, the incidence of NMSC is about ten 
times that of MM (117). The gold standard for removing 
skin cancer is Mohs micrographic surgery, but it is very 
time-consuming and costly. THz imaging technology has 
been shown to have great potential in the diagnosis of skin 
tissue and related cancers (118). Azizi et al. improved the 
resolution of conventional sensors through photonic band 
gap (PBG) and a new THz sensor for early detection of skin 
cancer was developed (119). Melanoma has been reported to 
be one of the most dangerous skin cancers (24), which has a 
higher density, higher water content and lower fat content 
than normal skin. Studies have shown that melanoma has a 
higher RI and absorption coefficient than normal skin using 
THz imaging (Figure 5B) (105,120,121). Therefore, THz 
imaging has great potential for early non-invasive diagnosis 
of MM. The artifacts refer to structures similar to the 
sample contour caused by frequency-dependent diffraction 
at the sample edges in THz images. From the THz 
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C

intensity image, it was found that the THz power at the 
edge of the sample was significantly lower than that inside. 
There is a significant power loss at the edges. Both of the 
above phenomena can affect the accuracy of the THz image 
edge. Recently, Yang et al. combined Fresnel Kirchhoff 
diffraction theory with optical aberration to reasonably 
explain the reason for artifact and large power loss at the 
THz image edge of melanoma (122). Furthermore, NMSC 
is the most common cancer in the world, of which basal cell 
carcinoma is one of the most common skin malignancies. 
Studies have found that NMSC has higher water content, 
resulting in lower transmittance than normal skin (123,124). 
In three-dimensional THz images, normal skin was found 

to have regular cell patterns, whereas basal cell carcinoma 
lacked normal cell patterns (Figure 5C) (106). This can be 
used as a basis for early diagnosis. In 2014, Joseph et al. 
combined THz imaging with optical imaging for the first 
time (Figure 5D) (107). The results showed that the image 
could not only accurately display the morphological features 
of NMSC, but also accurately identify its edge position.

Water has a strong absorption of THz waves, so the 
effective penetration of THz is only 0.2–0.3 mm. In the  
0.1–2 THz range, 90% of the THz radiation can be retained 
in the ice for 1 mm, making it possible to image frozen tissue 
with a thickness of 5 mm. The boundary between frozen and 
non-frozen tissues shows strong reflection, proving that 
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THz skin-freezing technology has great potential in skin 
diagnosis and other applications (125). In addition, THz 
imaging technology can also show the distribution and 
penetration of local drugs and detect hydration in the skin 
(48,126,127). Nevertheless, there are still some defects in 
the research of skin diseases by THz technology. The most 
important problem is the lack of penetration depth. Skin 
cancer can occur in different parts of the human body. In 
order to achieve real-time imaging of skin cancer, it is also 
necessary to accelerate the development of rapid movement 
of imaging systems and complex geometric imaging for 
different positions in future research (43). 

Conclusions

In conclusion, THz imaging technology is developing 
continuously in biomedicine. Due to the strong absorption 
effect of water on THz waves, most of the current studies used 
frozen or paraffin embedded tissue sections and fresh tissue for 
imaging, which can cause slight damage to the human body. In 
future research, we should constantly overcome the problem 
of water absorption and achieve in vivo monitoring as soon as 
possible. At the same time, we need to develop THz systems 
with better cost effectiveness and detection accuracy. Firstly, 
THz technology is integrated with emerging technologies 
such as artificial intelligence and cloud computing, to 
promote the intelligence and networking of THz technology. 
THz imaging can use machine learning to realize real-time 
intelligent identification and detection of objects. Secondly, 
the repeatability and accuracy of the results can be improved 
by formulating a standard imaging operation system and 
establishing a THz database. Finally, metamaterials are applied 
to improve the interaction between the THZ wave and the 
target sample as well as the sensitivity of the THZ detector, 
ultimately achieving better detection accuracy.

THz imaging has been shown to be able to differentiate 
between benign and malignant tissues, but the treatment 
recommendations given by clinicians vary widely depending 
on the stages and type of tumor. Therefore, the sensitivity 
of the THz imaging system should be continuously 
improved for the evaluate of the stage and type of tumor (8). 
Slice thickness, storage conditions, and ice content should 
be fully considered when establishing the THz database for 
clinical testing. To improve the sensitivity of THz imaging, 
THz metamaterials or nanoparticle contrast agents can be 
used to enhance THz reflection and improve the contrast 
of images. In addition, materials such as graphene can also 
be used to improve THz emitters and detectors for better 

detection performance. At present, the THz endoscope 
prototype can accurately distinguish tumor tissue, but 
compact transceivers are still needed for THz technology 
to be applied in the clinic. In addition, the development of 
portable and low-cost THz devices is highly beneficial for 
their application in different clinical situations. At the same 
time, in order to reduce the effect on detection accuracy 
caused by the loss of water absorption, microfluidics 
devices, nanofluidic devices, and THz-ATR systems can be 
used.
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