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Abstract

Purpose

This study aimed to investigate the biomechanical effects of a newly developed interspinous pro-

cess device (IPD), called TAU. This device was compared with another IPD (SPIRE) and the

pedicle screw fixation (PSF) technique at the surgical and adjacent levels of the lumbar spine.

Materials and methods

A three-dimensional finite element model analysis of the L1-S1 segments was performed to

assess the biomechanical effects of the proposed IPD combined with an interbody cage.

Three surgical models—two IPD models (TAU and SPIRE) and one PSF model—were

developed. The biomechanical effects, such as range of motion (ROM), intradiscal pressure

(IDP), disc stress, and facet loads during extension were analyzed at surgical (L3-L4) and

adjacent levels (L2-L3 and L4-L5). The study analyzed biomechanical parameters assuming

that the implants were perfectly fused with the lumbar spine.

Results

The TAU model resulted in a 45%, 49%, 65%, and 51% decrease in the ROM at the surgical

level in flexion, extension, lateral bending, and axial rotation, respectively, when compared

to the intact model. Compared to the SPIRE model, TAU demonstrated advantages in stabi-

lizing the surgical level, in all directions. In addition, the TAU model increased IDP at the L2-

L3 and L4-L5 levels by 118.0% and 78.5% in flexion, 92.6% and 65.5% in extension, 84.4%

and 82.3% in lateral bending, and 125.8% and 218.8% in axial rotation, respectively. Fur-

ther, the TAU model exhibited less compensation at adjacent levels than the PSF model in

terms of ROM, IDP, disc stress, and facet loads, which may lower the incidence of the adja-

cent segment disease (ASD).
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Conclusion

The TAU model demonstrated more stabilization at the surgical level than SPIRE but less

stabilization than the PSF model. Further, the TAU model demonstrated less compensation

at adjacent levels than the PSF model, which may lower the incidence of ASD in the long

term. The TAU device can be used as an alternative system for treating degenerative lum-

bar disease while maintaining the physiological properties of the lumbar spine and minimiz-

ing the degeneration of adjacent segments.

Introduction

Spinal fusion is a common procedure for the surgical treatment of lumbar degenerative dis-

eases [1, 2]. Spinal fusion using pedicle screw fixation (PSF) technique combined with poste-

rior lumbar interbody fusion has several advantages such as high rate of fusion, increase the

height of intervertebral disc space, and maintaining the stability of spine [3, 4]. Although the

PSF technique is a popular surgical method for the treatment of lumbar degenerative disease,

it is technically demanding and can result in several complications [5]. In addition, the rigid

fixation of lumbar spine can increase the range of motion (ROM) and intradiscal pressure

(IDP) of adjacent levels, and cause adjacent segment diseases (ASDs) [6].

Alternative techniques were developed to overcome the disadvantages associated with the

PSF technique. Interspinous process devices (IPDs) are widely used for the treatment of lum-

bar degenerative diseases. IPDs aim to provide stabilization after decompression surgery,

restore the height of intervertebral foramen, and reduce the loads at the facet joints [7].

Implantation of IPD has been reported in several studies to be effective in the surgical treat-

ment of degenerative spinal diseases [7–9].

Recently, a newly developed IPD, TAU (GS Medical, Korea), has been introduced. This

device is an alternative to traditional PSF systems, and used as an adjuvant to an interbody

cage in spinal fusion. In this FE study, the biomedical effects on the lumbar spine using the

newly developed IPD were compared with that of another IPD (SPIRE, Medtronic Sofamor

Danek, Memphis, TN, USA) and the PSF (Anyplus screw, GS Medical Co., Ltd., Korea) system

by using a hybrid testing protocol.

Materials and methods

Study design

A previously validated, 3-dimensional, intact, osteoligamentous lumbar spinal segment model

of L1-S1 was used [10]. The geometry of the lumbar spine vertebrae was obtained from com-

puted tomography (CT) data of a healthy 44-year-old male. The material properties of each

component were obtained from the literature, as summarized in Table 1 [11–13]. The final FE

model had six vertebrae (L1-S1), five intervertebral discs, cartilage endplates, and ligaments.

The total number of nodes and elements were 69,337 and 68,816, respectively. The FE model

was exported to ABAQUS software (ABAQUS 6.13; Hibbitt, Karlsson & Sorenson, Inc., Provi-

dence, RI, USA) after the material properties were applied to each component of the lumbar

spine model. A total of four FE models of the lumbar spine were constructed in this study. The

first one was a model of a healthy lumbar spine. The other three models were the implanted

models, where two were implanted with IPDs (TAU and SPIRE) and the other used a PSF sys-

tem (Fig 1).
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FE model of interspinous process devices and PSF technique (implanted

model)

To compare the biomechanical changes after lumbar spine surgery, three types of surgical

models -two IPD models and one PSF model- were developed based on the validated intact

model. The geometries of the implants were recreated by PTC Creo Parametric 4.0 software

(Parametric Technologies Corp., MA, USA) from the real product and then transferred into

the ABAQUS software to construct the FE model.

Table 1. Material properties used in the finite element models.

Materials Young’s modulus (MPa) Poisson’s ratio Cross-sectional area (mm2)

Bony structure

Cortical bone 12,000 0.3

Cancellous bone 100 0.2

Posterior element 3,500 0.25

End plate 25 0.25

Annulus ground 4.2 0.45

Nucleus pulposus 1.0 0.499

Annulus fibers

Layer 1, 2 550 0.5

Layer 3, 4 495 0.39

Layer 5, 6 413 0.31

Layer 7, 8 358 0.24

Ligaments

ALL 7.8 (< 12%), 20 (> 12%) 63.7

PLL 10 (< 11%), 20 (> 11%) 20

LF 15 (< 6.2%), 19 (> 6.2%) 40

CL 7.5 (< 25%), 33 (> 25%) 30

ITL 10 (< 18%), 59 (> 18%) 1.8

ISL 10 (< 14%), 12 (> 14%) 40

SSL 8 (< 20%), 15 (> 20%) 30

ALL: anterior longitudinal ligament; PLL: posterior longitudinal ligament; LF: ligament flavum; CL: capsule ligament; ITL: intertransverse ligament; ISL: interspinous

ligament; SSL: supraspinous ligament.

https://doi.org/10.1371/journal.pone.0243771.t001

Fig 1. Finite element model of the intact and implanted lumbar spine: (A) Intact model, (B) SPIRE model with

interbody cage, (C) TAU model with interbody cage, (D) Pedicle screw fixation model with interbody cage.

https://doi.org/10.1371/journal.pone.0243771.g001
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The PSF model consisted of two interbody cages, four pedicle screws, and two rods. The

material used for the pedicle screws and rods was Ti-6Al-4V alloy. Young’s modulus and Pois-

son’s ratio were assigned to be 114,000 MPa and 0.3, respectively. The length and diameter of

the pedicle screw were 45 mm and 6 mm, respectively. Further, the length and diameter of the

rod were 80 mm and 6 mm, respectively. The pedicle screws were simplified as cylinders. Fol-

lowing the standard surgical method, the pedicle screw placement was performed using Wein-

stein’s method [14], and screws were inserted parallel to the superior endplate. Then, the

interbody cage was inserted at the disc space between L3 and L4. The material of the cage was

polyetheretherketone; moreover, the Young’s modulus and Poisson’s ratio of the cage were

assigned to be 3,600 MPa and 0.3, respectively. A “Tie” interaction was applied to the inter-

body cage and vertebral bodies for complete fusion.

The IPD model consisted of two interbody cages and the IPD. The interbody cages were

inserted at the same place as in the PSF model. The IPD (TAU and SPIRE) device is comprised

of two titanium plates with aggressive, opposing spikes connected at their midpoint. The surgi-

cal technique of IPD was performed as described by Kim et al. [15]. To implant the IPDs, a

part of the L3-L4 interspinous ligament was removed to obtain congruent contact surfaces

[16]. IPD was inserted between the cranial and caudal portions of the spinous processes, and

each blade ensures maximal contact with its respective spinous process [17]. Also, the “Tie”

interaction was applied to the IPD and spinous process for complete fusion. The IPDs were

constructed using Ti-6Al-4V alloy. The Young’s modulus and Poisson’s ratio were assigned to

be 113,000 MPa and 0.3, respectively. All models were verified by an experienced surgeon.

Boundary and loading condition

Two loading conditions were used in this study as described by Choi et al. [18]. The first load-

ing condition was for validating the intact FE model, following the same protocol used in the

study by Yamamoto et al. [19]. The second loading condition was applied to both the intact

and surgical models to analyze the biomechanical changes after surgery caused by the PSF or

IPD. A follower load of 400 N, which represents a partial body weight along the curvature of

the lumbar spine, was applied [20]. The truss elements were attached bilaterally along the cur-

vature of the lumbar spine, as discussed in previous studies [21]. The validation of the intact

FE model and the biomechanical changes caused by the surgical implants were investigated in

flexion, extension, lateral bending, and axial rotation. A hybrid loading protocol, was imple-

mented to investigate biomechanical changes at adjacent segment by varying the moment

until the overall deflection of the implanted models equaled the predicted deflection for the

intact model [22, 23]. The data were normalized according to the intact model as percentage

values under each loading condition.

Results

Range of motion

The results of the ROM are shown in Fig 2 and Table 2. The PSF model demonstrated a 79%,

83%, 85%, and 67% decrease in the ROM at the surgical level (L3-L4) in flexion, extension, lat-

eral bending, and axial rotation, respectively, when compared to the intact model. The SPIRE

model demonstrated a 41%, 45%, 61%, and 29% decrease in the ROM at the surgical level

(L3-L4) in flexion, extension, lateral bending, and axial rotation, respectively, when compared

to the intact model. Meanwhile, the TAU model resulted in a 45%, 49%, 65%, and 51%

decrease in the ROM at the surgical level in flexion, extension, lateral bending, and axial rota-

tion, respectively, when compared to the intact model. The TAU model revealed a greater

decrease in the ROM at the surgical level in all directions when compared to the SPIRE model.
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However, the TAU model showed lesser decrease in the ROM at the surgical level in all direc-

tions when compared to the PSF model.

At adjacent levels (L2-L3 and L4-L5), a relatively larger ROM was observed in the PSF

model than in the IPD models (Fig 2). When compared to the intact model, the ROM for the

PSF model corresponding to the L2-L3 and L4-L5 levels increased by 36.6% and 9.1% in flex-

ion, 35.8% and 3.7% in extension, 14.8% and 14.8% in lateral bending, and 5.2% and 10.3% in

axial rotation, respectively. For the SPIRE model, the ROM at the L2-L3 and L4-L5 levels

increased by 26.9% and 3.3% in flexion, 25.2% and 4.3% in extension, 14.8% and 13.9% in lat-

eral bending, and 3.2% and 1.3% in axial rotation, respectively. In addition, the ROM for the

TAU model at the L2-L3 and L4-L5 levels increased by 29.0% and 4.3% in flexion, increased

by 27.7% and decreased by 1.7% in extension, increased by 14.6% and 13.6% in lateral bending,

respectively, and decreased by 0.6% in axial rotation (at L4-L5 level). The PSF model showed a

greater increase in ROM at adjacent levels than IPD models. Further, the TAU model induced

a minimum increase in ROM at adjacent levels in lateral bending and axial rotation among all

the surgical models.

Intradiscal pressure and disc stress at adjacent level discs

The IDP at adjacent levels is displayed in Fig 3. All surgical models increased the IDP at the

adjacent level substantially in flexion, extension, lateral bending, and axial rotation. When

compared to the intact model, the PSF model increased IDP at the L2-L3 and L4-L5 levels by

118.7% and 81.5% in flexion, 97.2% and 69.2% in extension, 84.7% and 86.5% in lateral bend-

ing, and 126.1% and 230.0% in axial rotation, respectively. When compared to the intact

model, the SPIRE model increased IDP at the L2-L3 and L4-L5 levels by 114.2% and 80.0% in

flexion, 87.6% and 67.6% in extension, 82.3% and 85.9% in lateral bending, and 124.4% and

227.2% in axial rotation, respectively. The TAU model increased IDP at the L2-L3 and L4-L5

levels by 118.0% and 78.5% in flexion, 92.6% and 65.5% in extension, 84.4% and 82.3% in lat-

eral bending, and 125.8% and 218.8% in axial rotation, respectively. The TAU model demon-

strated a greater increase in IDP at superior adjacent level than the SPIRE model. However,

Fig 2. Range of motion for the intact and implanted lumbar models (Data were normalized with respect to the

intact model as percentage values).

https://doi.org/10.1371/journal.pone.0243771.g002
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the TAU model induced a minimum increase in IDP at the inferior adjacent level among all

the surgical models. In addition, the PSF model showed a greater increase in the IDP than the

IPDs (TAU and SPIRE) in all directions.

The PSF system sustained the most disc stress at adjacent segments in all directions. The

TAU model sustained lesser disc stress than the SPIRE model during flexion, but marginally

more stress during extension. Meanwhile, the TAU model sustained almost the same disc

stress as the SPIRE model during lateral bending and axial rotation (Fig 4). Further, the TAU

and SPIRE models were observed to have similar disc stress distribution when compared to

the intact model.

Facet loads

Fig 5 shows the facet loads at the surgical and adjacent levels. A comparison of the facet loads

at the surgical and adjacent levels reveals that at the surgical level in the surgical model, the

Table 2. Biomechanical parameters among various surgical devices (Data were normalized with respect to the

intact model as percentage values).

L2-3 L3-4 (surgical level) L4-5

ROM

Flexion SPIRE 126.9 58.5 103.3

TAU 129.0 55.5 104.3

PSF 136.6 21.3 109.1

Extension SPIRE 125.2 55.4 104.3

TAU 127.7 51.3 98.3

PSF 135.8 16.9 103.7

Lateral bending SPIRE 114.8 38.6 113.9

TAU 114.6 34.6 113.6

PSF 114.8 15.3 114.8

Axial rotation SPIRE 103.2 70.9 101.3

TAU 99.4 48.9 100

PSF 105.2 32.6 110.3

IDP

Flexion SPIRE 214.2 179.8

TAU 218.0 178.5

PSF 218.7 181.5

Extension SPIRE 187.6 167.6

TAU 192.6 165.5

PSF 197.2 169.2

Lateral bending SPIRE 182.3 185.9

TAU 184.4 182.3

PSF 184.8 186.5

Axial rotation SPIRE 224.4 327.2

TAU 225.8 318.8

PSF 226.1 329.9

Facet loads

SPIRE 154.3 81.4 183.7

TAU 154.6 76.0 188.4

PSF 160.1 41.0 297.2

ROM: range of motion; PSF: pedicle screw fixation; IDP: intradiscal pressure.

https://doi.org/10.1371/journal.pone.0243771.t002
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facet loads decreased significantly relative to the intact model. However, at the superior

(L2-L3) and inferior (L4-L5) adjacent levels, the facet loads increased. When compared to the

intact model, the facet loads at the superior level increased by 54.3% in the SPIRE model,

54.6% in the TAU model, and 60.1% in the PSF model. Further, the facet loads at the inferior

level increased by 83.7% in the SPIRE model, 88.4% in the TAU model, and 197.2% in the PSF

model. The TAU model showed lesser loads at the surgical level than the SPIRE model, while

it showed marginally more loads at the adjacent levels than the SPIRE model.

Discussion

In this study, the biomechanical changes after implantation of the new IPD- the TAU device-

were investigated and compared with another IPD (SPIRE) and a PSF technique, using FE

analysis. Recently, a newly developed IPD, TAU, was introduced; however, there is no

Fig 3. Intradiscal pressure at adjacent levels in implanted lumbar models (Data were normalized with respect to

the intact model as percentage values).

https://doi.org/10.1371/journal.pone.0243771.g003
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biomechanical study regarding this new device. As suggested by Panjabi et al., a hybrid proto-

col presented the postoperative changes after lumbar spine surgery; moreover, it is appropriate

for the biomechanical evaluation of adjacent spinal levels after spine surgery [22, 23]. There-

fore, the used FE model was concluded to be appropriate for representing the surgical model

of the lumbar degenerative disease and for evaluating the adjacent segment degeneration.

As expected, at the surgical level (L3-L4), the ROM in all surgical models was significantly

decreased in all directions. In addition, the TAU model showed a greater stabilization effect at

the surgical level than the SPIRE model. The FE analysis showed that the SPIRE and PSF mod-

els increased the ROM at adjacent levels, in all directions. However, the TAU model decreased

the ROM at extension and axial rotation. Furthermore, the TAU model demonstrated a mini-

mal change in ROM at adjacent levels in lateral bending and axial rotation.

Fig 4. Stress distribution at the (A) superior (L2-L3) and (B) inferior (L4-L5) adjacent level discs.

https://doi.org/10.1371/journal.pone.0243771.g004
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IPDs are used with an interbody cage in lumbar spinal fusion surgery and can be used as an

alternative to the PSF system [24]. The SPIRE device alone can provide immediate rigid fixa-

tion of the destabilized lumbar spine and to reduce ROM [17, 25]. In biomechanical studies

comparing IPDs and PSF, IPDs reduced the ROM at flexion and extension to the same degree

as PSF systems [17, 26]. Consequently, the TAU model showed comparable biomechanical

effects with the PSF model. At the surgical level (L3-L4), the ROM in all directions was

remarkably decreased. Conversely, at the adjacent level, the ROM, IDP, disc stress, and facet

loads of the PSF model were remarkably increased according to the fusion effect. These adja-

cent effects were previously reported and considered as major complications of spinal fusion

[21, 27].

The IDP at adjacent levels was directly affected by different devices. The PSF model signifi-

cantly increased the IDP at adjacent levels. When compared to the PSF model, the TAU and

SPIRE models showed lesser increase in IDP at adjacent levels. Furthermore, the IDP at adja-

cent levels was not significantly increased by the IPDs, which may be beneficial in preventing

ASD after fusion surgery in the long term.

The disc stress after lumbar spine surgery at the adjacent level should not excessively exceed

that of the intact model because excessive increase in the disc stress may accelerate the degen-

eration of adjacent segments. The TAU model marginally increased the disc stress at the adja-

cent level in all directions; further, it demonstrated almost the same results as the SPIRE

model. However, the disc stress at the TAU model was significantly lower than that in the PSF

model. These results reveal that the TAU device had minimal effect on disc stresses at adjacent

levels, which is similar to the previous study [28]. Further, these results show that the IPDs

may cause less degeneration at the adjacent levels than the PSF system.

In this study, the facet loads at adjacent levels of the TAU model increased marginally more

than that of the SPIRE model during extension motion. The aim of the IPDs is to alleviate

facet joint pain; therefore, surgeons should consider the facet loads at surgical and adjacent lev-

els [29]. However, the facet loads at adjacent levels of the TAU model were lower than that of

the PSF model. In addition, the facet loads at the surgical level of the TAU model were lower

than that in the SPIRE model. These results indicate that when compared to the PSF model,

the TAU model demonstrates advantages in decreasing the facet loads, which may be

Fig 5. Facet loads during extension at surgical and adjacent levels in implanted lumbar models (Data were

normalized with respect to the intact model as percentage values).

https://doi.org/10.1371/journal.pone.0243771.g005
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beneficial in relieving the pain of patients suffering from lumbar degeneration. Further, the

less loading to surgical and adjacent facet may cause less degenerative changes to the facet

joints.

The PSF system is associated with the limitation of motion at the fusion level and may

cause excessive movement at the segments above and below the fusion level, and increases the

degeneration of the adjacent segments [1, 27]. Conversely, a comparative biomechanical study

showed that IPD reduces the ROM, load on a disc, and articular process stresses [30]. There-

fore, IPDs can preserve a more normal anatomy of the spine and cause less violation to adja-

cent facet joints, resulting in a lesser probability of degeneration of the adjacent facet [31]. In

our study, the TAU model showed less facet loads at adjacent level than PSF, and demon-

strated relatively lesser motion in the adjacent segments when compared to that of the PSF

model. Furthermore, the IDP at the adjacent levels was not significantly increased by the IPD,

which may be an advantage of IPD for preventing ASD.

However, previously established IPDs have certain weak points, which cannot effectively

control the axial rotation and lateral bending. Wang et al. revealed that the SPIRE device pro-

vided considerable stability in flexion and extension; moreover, the limitation of motion was

similar to the bilateral PSF system, but the SPIRE device demonstrated a less stabilizing effect

in lateral bending and axial rotation [17]. In our study, the ROM of the TAU model combined

with interbody cage in lateral bending and axial rotation at the surgical level was lower than

that of the SPIRE model, and it could overcome the limitation of the previously established

SPIRE device. In addition, SPIRE has shown certain complications, such as posterior migra-

tion of interbody cage to the spinal canal, in a clinical study [15]. The posterior migration of

the interbody cage to the spinal canal is due to the excessive flexion motion at the surgical

level. Therefore, the TAU device was designed to endure more loads and limit the motions

during flexion movement. As demonstrated in the results, the remaining ROM during flexion

at surgical level was smaller in the TAU model than the SPIRE model. As the TAU model sta-

bilized the surgical level more than the SPIRE during flexion motions, it could reduce the pos-

terior migration of the interbody cage. However, this mechanism is hypothetical and a further

prospective clinical study will be required for validation.

The newly developed device, TAU, is different from SPIRE in several aspects of its design

(Fig 6). In addition, TAU has six spikes that are 4.5 mm in length, while SPIRE has eight spikes

that are 3.2 mm in length. This longer length of the spike in the TAU device may increase the

fixation force during the movement. Further, the fixation force is improved by increasing the

contact area of the set screw through the “V hole” of the shaft. TAU consists of a ball-and-

Fig 6. Features of the TAU device.

https://doi.org/10.1371/journal.pone.0243771.g006
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socket joint, where two plates and shafts meet; consequently, the TAU device and spinous pro-

cess are conjoined at an appropriate angle with a larger force than that in the SPIRE, depend-

ing on the shape of the spinous process. Therefore, ROMs at the surgical level in all directions

decreased considerably more in the TAU model than in the SPIRE model. Further, when con-

joined with a posterior interbody cage, it can endure more loading at the surgical level during

flexion movement and can reduce the retropulsion of the interbody cage to the spinal canal.

While the SPIRE device has a straight shape, the TAU is shaped similar to a “Z,” which permits

multilevel surgeries. In addition, the TAU device has a hole at the plate to remove bone frag-

ments caused by spikes. Further, it is possible to break the shaft after locking the set screw in a

TAU device; this may increase the convenience of the procedure. In addition, the convenient

and easy characteristics of the TAU device may reduce the possibility of malposition during

surgery, which was assumed to be a reason for postoperative complications [32, 33].

There are certain limitations of this study that must be acknowledged. One of the most

important limitation is that the results of this study were obtained by finite element analysis

and should be revealed through actual clinical studies in the future. Second, only one unique

lumbar spine FE model was developed, so it may represent only a small fraction of human

lumbar spines. Moreover, the components of the lumbar spine were simplified as linear elastic.

Third, the present FE model did not include the characteristics of real spine such as degenera-

tion, dehydration of disc, reduced disc height, hypertrophy of ligament, osteoporosis, and frac-

ture of spinous process, there may be a difference from the actual clinical trial. Also, we did

not consider the loosening of an implant and assumed that only complete fusion between

bone and implant after surgery was achieved. The actual fusion effect between the bone and

implant, duration of fusion, and failure of implants must be investigated through clinical stud-

ies. Therefore, such comparative studies and clinical trials should be conducted as future work.

However, FE studies, unlike in vitro studies, can help researchers to examine the effects of the

different devices on load sharing and stresses in the lumbar spine.

In summary, the FE analysis results show that the adjacent level effects of using the TAU

device were superior to those using the PSF system. Furthermore, implanting the TAU device

is simple and involves essentially no risk of nerve root injury and cerebrospinal fluid leakage

because it is implanted on the spinous process. Further, the biomechanical results demon-

strated that the TAU device provides fixation that is comparable in stability with PSF and with

considerably less concomitant risk. Moreover, the TAU model stabilizes the surgical level

more than SPIRE. When compared to other IPDs and the PSF, TAU demonstrated less com-

pensation at adjacent levels in terms of ROM, IDP, disc stress, and facet loads, which may

lower the incidence of ASD after fusion surgery. Consequently, the TAU device may be an

attractive alternative to other systems. Thus, TAU can be used for the treatment of lumbar

degenerative disease; moreover, it is expected to reduce the potential for degenerative changes

at adjacent levels.

Conclusion

In this study, we used a L1-S1 FE model to investigate the biomechanics of a newly developed

IPD. This newly developed IPD, called TAU, was designed to stabilize the lumbar spine, not

only to control lumbar spine movements, but also to minimize the loads on the adjacent level.

Based on the simulated results, it exhibited similar stabilization effect at the surgical level and

less biomechanical changes at the adjacent levels relative to PSF. The TAU device can be con-

sidered as an alternative system for treating degenerative lumbar disease while maintaining the

physiological properties of the lumbar spine and minimizing the degeneration of adjacent

segments.
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